New! View global litigation for patent families

US3783880A - Method for aiding formation of bone forming material - Google Patents

Method for aiding formation of bone forming material Download PDF

Info

Publication number
US3783880A
US3783880A US35616273A US3783880A US 3783880 A US3783880 A US 3783880A US 35616273 A US35616273 A US 35616273A US 3783880 A US3783880 A US 3783880A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
bone
method
splint
coil
fig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
W Kraus
Original Assignee
W Kraus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets

Abstract

Method for aiding formation of bone forming material in the region of a bone structure of a living being. Two electrodes are applied to spaced areas on opposite sides of the region of the bone structure. An alternating electric potential difference is applied across the electrodes. This potential difference has a frequency below 100 c/s and a magnitude such that it produces a current density of at most 10 Mu A/mm2 at the electrode surfaces in physical contact with the areas.

Description

United States Patent [191 Kraus Jan. 8, 1974 METHOD FOR AIDING FORMATION OF BONE FORMING MATERIAL [76] Inventor: Werner Kraus, Bauerstrasse 3 l,

Munich, Germany [22] Filed: May 1, 1973 [21] Appl. No.: 356,162

Related US. Application Data [62] Division of Ser. No. 26,809, April 9, 1970, Pat. No.

[30] Foreign Application Priority Data Apr. 10, 1969 Germany P 19 18 299.1'

[52] US. Cl. 128/82.1 [51] Int. Cl A6ln 15/00 [58] Field of Search 128/821, 82, 399, 128/400, 359

[56] References Cited OTHER PUBLICATIONS Effects of Electric Currents on Bone in Vivo by Bassett et al., Nature, Vol. 204, Nov. 14, 1964, pp.

A istairp n & K w

The Efiect of Direct Current on Bone by Friedenberg et al., Surgery, Gynecology & Obstetrics, July 1968, pp. 97l02.

Bioelectric Potentials in Bone by Friedenberg et aL, The Journal of Bone and Joint Surgery, Vol. 48, July 1966, pp. 915-923.

Primary Examiner-Charles F. Rosenbaum Assistant ExaminerJ. Yasko [57] ABSTRACT Method for aiding formation of bone forming material in the region of a bone structure of a living being. Two I electrodes are applied to spaced areas on opposite sides of the region of the bone structure. An alternating electric potential difference is applied across the electrodes. This potential difference has a frequency below 100 c/s and a magnitude such that it produces a current density of at most 10 uA/mm at the electrode surfaces in physical contact with the areas.

12 Claims, 7 Drawing Figures AC. SIGNAL GENERATOR and MODULATOR PATH-MU 81974 A. C. S/GNAL GE/VERA 70R and ODl/LA TOR FIG. 3

PATEN'I'EUJAH i 3,783,880

SHEET 3 BF 4 PATENTEDJAN 14 3.788.880

f-LHTU U U? 4 METHOD FOR AIDING FORMATION OF BONE FORMING MATERIAL CROSS-REFERENCE TO RELATED APPLICATION This application is a division of Application Ser. No. 26,809, filed Apr. 9th, 1970 now US. Pat. No. 3,745,995.

BACKGROUND OF THE INVENTION The present invention relates to a method for aiding formation of bone forming material in a region of the bone structure of a living being, such as a human'being or an animal.

In the medical field it is often desired to speed up formation of bone forming material, e.g. in healing a fracture, or to induce the bone forming material to form at all, as in the case of pseudo-arthrosis or osteoporosis.

The method and apparatus described herein provide the possibility of accelerating the formation of bone forming material and correspondingly reducing the period of time necessary for recovering from a fracture, as well as the possibility of inducing formation of bone where this ability has been impeded by a disorder such as osteoporosis.

SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a novel method for helping bone disorders to mend, e.g. fractures or osteoporosis or other disorders of the mineral metabolism.

Another object of the present invention is to provide a method for shortening the period of time which is necessary to bring a fractured limb into a state where it can be used again. 1

A further object. of the invention is to provide a method using an improved splint which promotes healing of the splinted fracture and which is simultaneously of reduced size and weight, so that the wound trauma is reduced and the aftereffects of the fracture are alleviated I The method for aiding the formation of bone forming material in a region of a bone structure of a living being includes the application of electrodes on opposite sides of the region of the bone structure and the application to these electrodes of an alternating electrical potential difference having a frequency below IOOc/s and a magnitude such that it produces a current density of at most 10 ,uA/mm at the surfaces of the electrodes.

The alternating electric potential difference which is applied can be unsymmetrical with respect to zero. The

alternations of this applied potential difference prefera-' bly provides a wave form with gradual slopes. Additionally, this potential difference can have a wave form which is triangular and has a harmonic content below 20 percent. The frequency of the alternating potential difference can be between 1 and 65 c/s.

In the carrying out of this method for aiding the for- FIG. 2 is a schematic perspective view of an embodiment of a splint for practicing the present invention and attached to a broken bone.

FIG. 3 is an enlarged cross-sectional view taken generally along the line Ill-Ill in FIG. 2.

FIG. 4 is a somewhat enlarged cross-sectional view taken generally along the line IV-IV in FIG. 2.

FIG. 5 is a schematic elevation view, partly in cross section, of a further embodiment of a splint structure.

FIG. 6 is a schematic view, partly in cross section of still another embodiment of a splint applied to a fractured bone to be mended.

FIG. 7 is a schematic perspective view of yet another embodiment of a splint structure attached to a broken bone.

DESCRIPTION OF THE PREFERRED EMBODIMENTS There is shown in FIG. 1 a bone 10 of a living being, e.g. a femur (thigh bone) of a human being, which has gaps 12, 14 caused by a fracture.-

The parts of the fractured bones are fixed in the normal position by means of two opposed splints 16,18

which may be fixed to the parts of the broken home by mation of bone material, it is additionally possible to v utilize a magnetic field having a direction substantially parallel to the collagene fibers of the bone structure, which assists in the formation of bone material.

BRIEF DESCRIPTION OF THE DRAWINGS means of screws as usual in the medical art. Thesplints may be made of a stainless steel material or a Co-Cralloy known as Vitallium and may have the form of a curved plate.

To the main surface of splint 16, which is opposite to the bone 10, is attached a pick-up arrangement which includes a rod-like magnetic core 20 bearing three pick-up coils 22,24, 26. The core and the coils are encapsulated in an appropriate plastic material 28. The core is made of a material having low reluctance, such as a magnetically soft ferrite or Permalloy. A first terminal of coil 22 is electrically connected, or do coupled to splint 16, and the second terminal of coil 22 is connected through an insulated wire 30 to two rod-like electrodes 32. The insulation of the wire 30 extends up to the point where the conductor enters the bone 10, or more specifically the gap 12 between the bone 'portions separated by the fracture.

The first (the upper in FIG. 1) terminal of coil 24 is connected to an insulated wire which passes into the bone 10 through a hollow screw 34 insulated against the splint 16. The wire extends preferably into the endostale bone or marrow cavity of the bone 10 and is bare beginning from the point where it leaves screw 34.. The other (lower) terminal of coil 24 is connected to a screw 36 which is insulated against splint 16, but has a bare tip which extends into the bone 10, preferably as far as into the endostale bone or marrow cavity, and forms an electrode.

The lower terminal of coil 26 is again connected to splint l6, and the other terminal of coil 26 is connected through an insulated wire 38 both to a rod-like electrode 40, which extends radially into gap 14, and to the second splint 18 which may be fixed to the portions of bone 10 by screws (not shown) in the usual manner.

A tube-like field coil 42 is provided which may be slipped over the broken limb into the position shown-in FIG. 1. Field coil 42 comprises a plurality of windings encompassing the broken limb and, thus, magnetic core 20 bearing pick-up coils 22, 24, and 26. The field coil 42 is connected to an 'a.c. signal generator 44, which may be of known construction and supplies to coil 42 an alternating current, e.g. a sinusoidal current having a low harmonics content which may be less than 20 percent, preferably less than 10 percent or 5 percent. The signal delivered by the a.c. signal generator has a frequency of less than 1000 c/s, preferably less than 100 or 60 c/s, e.g. between 1 or c/s and 40 0/5. The signal generator 44 may comprise a modulator for superimposing higher frequency oscillations onto the basic signal; these oscillations or undulations may have a frequency which is at least three times the frequency of the basic signal.

When excited by signal generator 44, field coil 42 produces an alternating magnetic field symbolized in FIG. 1 by field lines 48 which are picked up by core and induce alternating currents in the coils 22, 24, 26, so that alternating currents or potentials are produced between the spaced electrodes connected to the terminals of said coils. It is these alternating currents or potentials having gradual, gentle slopes, low harmonics content and low frequency, which greatly enhance the formation of bone forming material, or callus. Callus forming rates which are more than three to five times faster than the normal rates have been observed in human beings to which the present apparatus and method were applied for healing a fracture. Further callus formation could be induced in pathological cases where normal callus formation had failed, as in the case of pseudo-arthrosis.

The recovery of the broken bone is further aided by the magnetic field which is produced by field coil 42 and which is essentially parallel to the structural elements of the bone to be formed.

A further embodiment of a splint for use in the present apparatus and method is depicted in FIGS. 2, 3 and 4. Splint 50 has the form of an elongated, curved plate which is attached to a broken bone 52 by screws 54. The splint 50 has a circumferential groove 56 (see FIG. 3) into which one or several pick-up coils 58 are wound. Groove 56 housing the pick-up coil or coils is enclosed with an appropriate plastic material or resin 60, e.g. an epoxy resin. The coil ends extend into boresof the bone or the gaps in the bone caused by the fracture, as shown in FIG. 4. The portion of the wires between the coil proper and the point of entrance into the bone or gap is insulated, e.g. by a teflon insulation, the bare tip of the wire forming an electrode. One of the coil ends may be connected to a screw 54 which may or may not be insulated against the splint.

The pick-up coils cooperate with a field coil (see FIG. 2) which is positioned in the vicinity of splint 50 and functions in a manner similar to coil 42 shown in FIG. 1.

FIG. 5 shows a splint 60 which is externally applied to an injured limb, i.e. to the skin 62 thereof. The splint 60 may be of any suitable material, e.g. a plastic or resin material which is hardened in situ, and comprises pointed spine-like members 64, the roots of which are embedded in the material forming the splint 60 proper. The pointed ends 66 of members 64 are inserted into the broken bone 68, preferably as far as the marrow channel as shown in FIG. 5, to fix the bone in its proper position. Simultaneously, the pointed ends 66 being of metal serve as electrodes and are connected to respective pick up coils 70 which are similar to those described in connection with FIG. 2. The portions of members 64 which are outside of bone 68 are insulated against the tissue 72 surrounding the bone 68. In operation, a current is induced in coils 70, e.g. by a pick-up coil as shown in FIG. 2 or by the stray-fields which exit in the environment and are caused by the mains, electrical appliances, and so on.

FIG. 6 shows a splint according to the present invention which is in general similar to the splint shown in FIG. 5 and comprises a plastic or resin material 80,

shaped and cured in situ on the skin 82 of the outer side of an injured hand comprising broken bones 84. The main difference between the splints according to FIG. 5 and 6 respectively, is that a capacitor 88 is connected in parallel to pick-up coil 86 for tuning it to the frequency of the induced currents. The capacitor 88 is embedded in material and provides for an especially low harmonics content of the induced signal, which will produce a purely sinusoidal current.

As noted above, a major advantage of the present invention is that callus is formed so quickly that the broken bone will be able to recover to a substantial portion of its original strength in a relatively short time, so that the splint need not supplement the load carrying function of the bone when the injured individual has otherwise recovered 'sufficiently to be able to get up again. Thus, the splint is only needed for fixing the broken bone in the proper position during the initial stage of healing and can be made much lighter and thinner than the presently used splints. The screws used to attach the splint to the bone may be correspondingly smaller, which greatly reduces the wound trauma and the aftereffects which arise after removal of the splint; e.g. the filling of the screw holes with bone forming material. Further, the use of the so-called Kuentscher-nail (a rod-like supporting element, inserted into the marrowchannel of a broken bone) may be dispensed with.

FIG. 7 shows a novel splint'of such reduced dimensions, the splint comprises a curved plate-like member 90, made of stainless steel or Vitallium, to which pick-up coil means 92 wound around a magnetic core 94 are attached. Member may be made of sheet material having a thickness of l to 2 mm in contrast to 4 to 6 mm in the known splints. Member 90 is connected toone terminal of each of the coils making up coil means 92 through an unsymmetrically conducting device 99, such as a diode, to make the shape of the current wave unsymmetrical. Preferably, member 90 is positive during the current periods having the higher amplitude.

Pick-up coil means 92 is connected by insulated leads 96 to bare, slender, rod-like electrodes 98 adapted for insertion into a bone structure (e.g. as shown in FIG. 4) to aid forming or regeneration of bone material.

The electrode portions which are in contact with the bone structure consist preferably of a noble-metal alloy, e.g. an alloy of90 percent by weight Pt and 10 percent by weight Ir, or stainless alloys such as Co-Cr-alloy known as Vitallium. The insulation may consist of Teflon, and all of the materials which are in contact with bone or tissue are of course so chosen that they are compatible with the environment and the living or organic matter.

The induced current which enters into the bone region may consist, e.g., of a sinusoidal wave having low harmonics content, a triangular wave, a series of triangular or essentially sinusoidal pulses of alternating polarity, the pulses being separated by periods of time during which the current is zero or negligible. The waveforms or pulses need not to be symmetrical.

The invention is not limited to healing fractured bones, it may be applied with success also for curing other bone disorders where forming of bone material is to be enhanced or promoted. Thus, the invention may be applied, e.g., to curing osteoporosis, regenerating bone structure destroyed by a tumor, to cure an illness known as Sudecksche Atrophia and so-called false articulations (pseudo-arthrosis).

The pick-up coil means may also be positioned adjacent the peripheral edge, e.g. at the straight long edge portion, of the plate member of the splint.

EXAMPLE I A novel splint similar to that shown in FIG. 2 was attached and electrodes, which were in the form of nee- .dles consisting of a platinum-iridium alloy, were applied as shown in FIG. 4 to the broken right femur- (upper thigh bone) of a rabbit. A similar splint and similar electrodes, however, without being connected to a pick-up coil or other current source were applied to the like-wise broken left femur of the same animal. This was carried out in an operation under narcosis lege artis. The animal was kept in a barn within which an electric a.c. field was maintained producing in the windings of the pick-up coil an a.c. current of sinusoidal waveshape and a frequency of 25 c/s. The maximum current density at the areas of contact between the electrodes and the tissue or bone was about five microamperes per square millimeter. After having been keptin the electric field for three weeks, the rabbit was killed and sections of the bones in the planes of the electrodes were prepared. The sections showed that at least three times as much callus had formed in the area of those electrodes which were connected to the pick-up coil in comparison with the area connected to the other, currentless dummy electrodes.

EXAMPLE II Similar results as in Example I have been achieved in mending an injured bone of a human being: A splint similar to that shown in FIG. 7 (without diode 99) was applied to the femur of a male (age about 50) which had been injured in a car accident about one year ago. The fracture did not heal because callus did not form by itself.

The applied novel splint comprised a metal plate of usual size to which a pick-up coil was attached having 200 windings of teflon-insulated platinum wire (diameter 0.1 millimeters) wound on a magnetic core consisting of two superimposed Permalloy sheets each having a length of 50 mm, a width of4 mm and a thickness of 0.5 mm. The electrodes connected to the terminals ofthe pick-up coil and inserted into the gap of the fractured bone were needle-like members consisting of an alloy of 90 percent by weight platinum and 10 percent by weight iridium and having a diameter of about 0.5 to 1 mm. v

A field coil was put around the splinted limb and excited by a sine-wave a.c. current of 25 c/s to produce an a.c. field of about 800 ampere-turns in the region of the pick-up coil.

After the splinted limb had been kept in the electric field and treated as described for 14 days, an x-ray investigation showed that plenty of new callus has formed in the area around and between the electrodes.

The patient who was regarded as incurable before the described treatment eventually completely recovered.

It will be understood that the above description of the present invention is susceptible to various modifications, changes and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.

I claim:

1. A method for aiding formation of bone forming material in the region of a bone structure of a living being, the method comprising the steps of:

a. positioning at least two electrodes into physical contact with spaced areas on opposite sides of the region of the bone structure;

b. applying an induced alternating electric potential difference across the electrodes, the potential difference having a frequency below c/s and a magnitude such that it produces, at the electrode surfaces in physical contact with the areas a current density of at most 10 ,uA/mm 2. A method as defined in claim 1 further comprising the step of producing, in the region, an alternating magnetic field having. a direction substantially parallel to the collagene fibers of the bone structure.

3. The method as defined in claim 1 wherein alternations are used which are unsymmetrically in respect to a zero value.

4. The method as defined in claim 1 wherein the alternating electrical potential difference has a wave form with a harmonics content below 20 percent.

5. The method as defined in claim 1 wherein the alternating electric potential difference has a triangular wave form.

6. The method as defined in claim 1 wherein the alternating electric potential difference has a wave form consisting of pulses of alternating polarity.

7. The method as defined in claim 1 wherein the alternations have a wave form with gradual slopes.

8. The method as defined in claim 1 wherein the potential difference has a magnitude to produce a current density between 3 and 7 p.A/mm at the electrode surfaces in physical contact with the body substance areas.

9. The method as defined in claim 1 wherein the alternations have a frequency between 1 and 65 c/s.

10. The method as defined in claim 1 wherein the alternations have a frequency between 10 and 30 c/s.

1 l. The method as defined in claim 1 wherein the living being is a human being.

12. The method as defined in claim 1 wherein the spaced areas, at which the electrodes are applied, are disposed within the skin and are formed by internal body substance including soft tissue and bone sub stance.

Claims (12)

1. A method for aiding formation of bone forming material in the region of a bone structure of a living being, the method comprising the steps of: a. positioning at least two electrodes into physical contact with spaced areas on opposite sides of the region of the bone structure; b. applying an induced alternating electric potential difference across the electrodes, the potential difference having a frequency below 100 c/s and a magnitude such that it produces, at the electrode surfaces in physical contact with the areas a current density of at most 10 Mu A/mm2.
2. A method as defined in claim 1 further comprising the step of producing, in the region, an alternating magnetic field having a direction substantially parallel to the collagene fibers of the bone structure.
3. The method as defined in claim 1 wherein alternations are used which are unsymmetrically in respect to a zero value.
4. The method as defined in claim 1 wherein the alternating electrical potential difference has a wave form with a harmonics content below 20 percent.
5. The method as defined in claim 1 wherein the alternating electric potential difference has a triangular wave form.
6. The method as defined in claim 1 wherein the alternating electric potential difference has a wave form consisting of pulses of alternating polarity.
7. The method as defined in claim 1 wherein the alternations have a wave form with gradual slopes.
8. The method as defined in claim 1 wherein the potential difference has a magnitude to produce a current density between 3 and 7 Mu A/mm2 at the electrode surfaces in physical contact with the body substance areas.
9. The method as defined in claim 1 wherein the alternations have a frequency between 1 and 65 c/s.
10. The method as defined in claim 1 wherein the alternations have a frequency between 10 and 30 c/s.
11. The method as defined in claim 1 wherein the living being is a human being.
12. The method as defined in claim 1 wherein the spaced areas, at which the electrodes are applied, are disposed within the skin and are formed by internal body substance including soft tissue and bone substance.
US3783880A 1969-04-10 1973-05-01 Method for aiding formation of bone forming material Expired - Lifetime US3783880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19691918299 DE1918299B2 (en) 1969-04-10 1969-04-10 Rail for guiding and healing of fractured bone

Publications (1)

Publication Number Publication Date
US3783880A true US3783880A (en) 1974-01-08

Family

ID=5730828

Family Applications (2)

Application Number Title Priority Date Filing Date
US3745995A Expired - Lifetime US3745995A (en) 1969-04-10 1970-04-09 Apparatus and method for aiding formation of bone forming material
US3783880A Expired - Lifetime US3783880A (en) 1969-04-10 1973-05-01 Method for aiding formation of bone forming material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US3745995A Expired - Lifetime US3745995A (en) 1969-04-10 1970-04-09 Apparatus and method for aiding formation of bone forming material

Country Status (4)

Country Link
US (2) US3745995A (en)
JP (1) JPS5037945B1 (en)
DE (1) DE1918299B2 (en)
GB (1) GB1311519A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306564A (en) * 1977-09-22 1981-12-22 Werner Kraus Electrification attachment for an osteo-synthesis implantate
US4467808A (en) * 1982-09-17 1984-08-28 Biolectron, Inc. Method for preventing and treating osteoporosis in a living body by using electrical stimulation non-invasively
US4467809A (en) * 1982-09-17 1984-08-28 Biolectron, Inc. Method for non-invasive electrical stimulation of epiphyseal plate growth
WO1985003449A1 (en) * 1984-02-08 1985-08-15 Ben Dov Meir Bone growth stimulator
US4549547A (en) * 1982-07-27 1985-10-29 Trustees Of The University Of Pennsylvania Implantable bone growth stimulator
US4620543A (en) * 1984-06-15 1986-11-04 Richards Medical Company Enhanced fracture healing and muscle exercise through defined cycles of electric stimulation
US4785244A (en) * 1984-11-30 1988-11-15 American Telephone And Telegraph Company, At&T Bell Laboratories Magneto-electric sensor device and sensing method using a sensor element comprising a 2-phase decomposed microstructure
US4889111A (en) * 1984-02-08 1989-12-26 Ben Dov Meir Bone growth stimulator
EP0561068A2 (en) * 1992-02-20 1993-09-22 AMEI TECHNOLOGIES Inc. Implantable bone growth stimulator and method of operation
US5524624A (en) * 1994-05-05 1996-06-11 Amei Technologies Inc. Apparatus and method for stimulating tissue growth with ultrasound
US5565005A (en) * 1992-02-20 1996-10-15 Amei Technologies Inc. Implantable growth tissue stimulator and method operation
WO2001051119A1 (en) * 2000-01-12 2001-07-19 Amei Technologies Inc. Combined tissue/bone growth stimulator and external fixation device
US6292699B1 (en) * 1999-01-29 2001-09-18 Electro-Biology, Inc. Direct current stimulation of spinal interbody fixation device
US6393328B1 (en) 2000-05-08 2002-05-21 International Rehabilitative Sciences, Inc. Multi-functional portable electro-medical device
US6423061B1 (en) 2000-03-14 2002-07-23 Amei Technologies Inc. High tibial osteotomy method and apparatus
US6560487B1 (en) 2000-05-08 2003-05-06 International Rehabilitative Sciences, Inc. Electro-medical device for use with biologics
US6675048B2 (en) 2000-05-08 2004-01-06 International Rehabilitative Sciences, Inc. Electro-medical device for use with biologics
US20060052782A1 (en) * 2004-06-07 2006-03-09 Chad Morgan Orthopaedic implant with sensors
US20070179562A1 (en) * 2006-02-01 2007-08-02 Sdgi Holdings, Inc. Implantable tissue growth stimulator
US20080172106A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Osteogenic stimulus device, kit and method of using thereof
US20080172107A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Stand alone osteogenic stimulus device and method of using
US20080171304A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Dental implant kit and method of using same
US20090088857A1 (en) * 1994-05-27 2009-04-02 Gary Karlin Michelson Implant for the delivery of electrical current to promote bone growth between adjacent bone masses
US7747332B2 (en) 2000-05-08 2010-06-29 International Rehabilitative Sciences, Inc. Electrical stimulation combined with a biologic to increase osteogenesis

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2116869C2 (en) * 1970-04-06 1987-07-23 Kraus, Werner, Dipl.-Ing., 8000 Muenchen, De Bone and biological tissue growth promotion appts. - uses flat coil for application of LF current from generator
US3893462B1 (en) * 1972-01-28 1987-03-24
US4026304A (en) * 1972-04-12 1977-05-31 Hydro Med Sciences Inc. Bone generating method and device
GB1400680A (en) * 1972-09-21 1975-07-23 Telectronics Pty Ltd Bone prosthesis
US3906549A (en) * 1973-12-18 1975-09-23 Louis Bucalo Implanting structure and method
US3968790A (en) * 1975-02-26 1976-07-13 Rikagaku Kenkyusho Electret method of promoting callus formation in regeneration of bones
DE2611744C2 (en) * 1976-03-19 1982-01-28 Werner Dipl.-Ing. 8000 Muenchen De Kraus
US4216548A (en) * 1976-03-19 1980-08-12 Werner Kraus Long-term endoprosthesis
US4027392A (en) * 1976-05-10 1977-06-07 Interface Biomedical Laboratories Corporation Endosteal bionic tooth and implantation method
US4105017A (en) * 1976-11-17 1978-08-08 Electro-Biology, Inc. Modification of the growth repair and maintenance behavior of living tissue and cells by a specific and selective change in electrical environment
US4244373A (en) * 1978-05-17 1981-01-13 Nachman Marvin J Electrical stimulation dental device
JPS5811706U (en) * 1981-07-15 1983-01-25
DE3240592A1 (en) * 1982-11-03 1984-05-03 Kraus Werner An implantable device for stimulating bone growth
US4535775A (en) * 1983-02-10 1985-08-20 Biolectron, Inc. Method for treatment of non-union bone fractures by non-invasive electrical stimulation
DE3406565C2 (en) * 1984-02-23 1995-04-27 Kraus Werner Means for generating a low-frequency alternating voltage to two electrodes of a tissue serving for the regeneration of tissue implant
US4888018A (en) * 1988-12-27 1989-12-19 Giampapa Vincent C Method of positioning and securing a chin implant
DE9006056U1 (en) * 1990-05-29 1991-09-26 Kraus, Werner, Dipl.-Ing., 8000 Muenchen, De
US5304210A (en) * 1992-01-28 1994-04-19 Amei Technologies Inc. Apparatus for distributed bone growth stimulation
US5330477A (en) * 1992-01-28 1994-07-19 Amei Technologies Inc. Apparatus and method for bone fixation and fusion stimulation
EP0647436A1 (en) * 1993-10-06 1995-04-12 SMITH & NEPHEW RICHARDS, INC. Bone section reattachment apparatus
DE19544750A1 (en) * 1995-11-30 1997-06-05 Christoph Rehberg The implantable device with the inner electrode to promote tissue growth
WO1999060837A9 (en) * 1998-05-27 2000-04-06 Nuvasive Inc Bone blocks and methods for inserting
US6251140B1 (en) 1998-05-27 2001-06-26 Nuvasive, Inc. Interlocking spinal inserts
WO1999060957A9 (en) 1998-05-27 2000-05-25 Nuvasive Inc Methods and apparatus for separating and stabilizing adjacent vertebrae
US6463323B1 (en) 1998-11-12 2002-10-08 Em Vascular, Inc. Electrically mediated angiogenesis
US6560489B2 (en) 1999-08-24 2003-05-06 Em Vascular, Inc. Therapeutic device and method for treating diseases of cardiac muscle
US6556872B2 (en) 1999-08-24 2003-04-29 Ev Vascular, Inc. Therapeutic device and method for treating diseases of cardiac muscle
US6852126B2 (en) 2000-07-17 2005-02-08 Nuvasive, Inc. Stackable interlocking intervertebral support system
JP4175899B2 (en) * 2001-05-23 2008-11-05 オーソゴン テクノロジーズ 2003 リミテッド Magnetic drivable intramedullary device
US6923814B1 (en) 2001-10-30 2005-08-02 Nuvasive, Inc. System and methods for cervical spinal fusion
US7618423B1 (en) 2002-06-15 2009-11-17 Nuvasive, Inc. System and method for performing spinal fusion
US7776049B1 (en) 2002-10-02 2010-08-17 Nuvasive, Inc. Spinal implant inserter, implant, and method
WO2004084742A1 (en) 2003-03-24 2004-10-07 Theken Surgical Llc Spinal implant adjustment device
US7918891B1 (en) * 2004-03-29 2011-04-05 Nuvasive Inc. Systems and methods for spinal fusion
US7544208B1 (en) 2004-05-03 2009-06-09 Theken Spine, Llc Adjustable corpectomy apparatus
US8439915B2 (en) * 2004-09-29 2013-05-14 The Regents Of The University Of California Apparatus and methods for magnetic alteration of anatomical features
USD741488S1 (en) 2006-07-17 2015-10-20 Nuvasive, Inc. Spinal fusion implant
US8623088B1 (en) 2005-07-15 2014-01-07 Nuvasive, Inc. Spinal fusion implant and related methods
EP1912578B1 (en) 2005-07-28 2018-02-07 NuVasive, Inc. Total disc replacement system
ES2315959T5 (en) * 2006-05-12 2016-05-26 Stryker Trauma Gmbh Device and medical system for electrical stimulation of osteogenesis
US8673005B1 (en) 2007-03-07 2014-03-18 Nuvasive, Inc. System and methods for spinal fusion
WO2008112853A3 (en) * 2007-03-15 2008-10-30 Amei Technologies Inc Encompassing external fixation device with incorporated pemf coil
US7841475B2 (en) * 2007-08-15 2010-11-30 Kalustyan Corporation Continuously operating machine having magnets
USD671645S1 (en) 2007-09-18 2012-11-27 Nuvasive, Inc. Intervertebral implant
DE102007049542A1 (en) 2007-10-16 2009-04-23 Neue Magnetodyn Gmbh An implantable device system for generating localized electromagnetic fields in the region of an implant and coil assembly
US8083796B1 (en) 2008-02-29 2011-12-27 Nuvasive, Inc. Implants and methods for spinal fusion
US8075629B2 (en) * 2008-12-18 2011-12-13 Depuy Products, Inc. Orthopaedic prosthesis having a seating indicator
US8403995B2 (en) 2008-12-18 2013-03-26 Depuy Products, Inc. Device and method for determining proper seating of an orthopaedic prosthesis
USD754346S1 (en) 2009-03-02 2016-04-19 Nuvasive, Inc. Spinal fusion implant
US9687357B2 (en) 2009-03-12 2017-06-27 Nuvasive, Inc. Vertebral body replacement
US9387090B2 (en) 2009-03-12 2016-07-12 Nuvasive, Inc. Vertebral body replacement
US9351845B1 (en) 2009-04-16 2016-05-31 Nuvasive, Inc. Method and apparatus for performing spine surgery
US8287597B1 (en) 2009-04-16 2012-10-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
USD731063S1 (en) 2009-10-13 2015-06-02 Nuvasive, Inc. Spinal fusion implant
EP2468216B1 (en) * 2010-12-23 2014-05-14 Baumgart, Rainer, Dipl.-Ing. Dr. med. Implantable prosthesis for replacing human hip or knee joints and the adjoining bone sections
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
USD721808S1 (en) 2011-11-03 2015-01-27 Nuvasive, Inc. Intervertebral implant
US20130165733A1 (en) * 2011-12-27 2013-06-27 Richard A. Rogachefsky Orthopedic fixation device with magnetic field generator
US8679189B1 (en) * 2013-02-11 2014-03-25 Amendia Inc. Bone growth enhancing implant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3357434A (en) * 1964-04-06 1967-12-12 Avco Corp Inductively linked receiver

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bioelectric Potentials in Bone by Friedenberg et al., The Journal of Bone and Joint Surgery, Vol. 48, July 1966, pp. 915 923. *
Effects of Electric Currents on Bone in Vivo by Bassett et al., Nature, Vol. 204, Nov. 14, 1964, pp. 652 654. *
The Effect of Direct Current on Bone by Friedenberg et al., Surgery, Gynecology & Obstetrics, July 1968, pp. 97 102. *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421115A (en) * 1977-09-22 1983-12-20 Werner Kraus Electrification attachment for an osteosynthesis implantate
US4306564A (en) * 1977-09-22 1981-12-22 Werner Kraus Electrification attachment for an osteo-synthesis implantate
US4549547A (en) * 1982-07-27 1985-10-29 Trustees Of The University Of Pennsylvania Implantable bone growth stimulator
US4467808A (en) * 1982-09-17 1984-08-28 Biolectron, Inc. Method for preventing and treating osteoporosis in a living body by using electrical stimulation non-invasively
US4467809A (en) * 1982-09-17 1984-08-28 Biolectron, Inc. Method for non-invasive electrical stimulation of epiphyseal plate growth
US4889111A (en) * 1984-02-08 1989-12-26 Ben Dov Meir Bone growth stimulator
WO1985003449A1 (en) * 1984-02-08 1985-08-15 Ben Dov Meir Bone growth stimulator
US4620543A (en) * 1984-06-15 1986-11-04 Richards Medical Company Enhanced fracture healing and muscle exercise through defined cycles of electric stimulation
US4785244A (en) * 1984-11-30 1988-11-15 American Telephone And Telegraph Company, At&T Bell Laboratories Magneto-electric sensor device and sensing method using a sensor element comprising a 2-phase decomposed microstructure
EP0561068A2 (en) * 1992-02-20 1993-09-22 AMEI TECHNOLOGIES Inc. Implantable bone growth stimulator and method of operation
US5441527A (en) * 1992-02-20 1995-08-15 Amei Technologies Inc. Implantable bone growth stimulator and method of operation
EP0561068A3 (en) * 1992-02-20 1995-09-27 American Med Electronics Implantable bone growth stimulator and method of operation
US5565005A (en) * 1992-02-20 1996-10-15 Amei Technologies Inc. Implantable growth tissue stimulator and method operation
US5766231A (en) * 1992-02-20 1998-06-16 Neomedics, Inc. Implantable growth tissue stimulator and method of operation
US5524624A (en) * 1994-05-05 1996-06-11 Amei Technologies Inc. Apparatus and method for stimulating tissue growth with ultrasound
US20090088857A1 (en) * 1994-05-27 2009-04-02 Gary Karlin Michelson Implant for the delivery of electrical current to promote bone growth between adjacent bone masses
US7935116B2 (en) * 1994-05-27 2011-05-03 Gary Karlin Michelson Implant for the delivery of electrical current to promote bone growth between adjacent bone masses
US8206387B2 (en) 1994-05-27 2012-06-26 Michelson Gary K Interbody spinal implant inductively coupled to an external power supply
US6292699B1 (en) * 1999-01-29 2001-09-18 Electro-Biology, Inc. Direct current stimulation of spinal interbody fixation device
WO2001051119A1 (en) * 2000-01-12 2001-07-19 Amei Technologies Inc. Combined tissue/bone growth stimulator and external fixation device
US6678562B1 (en) * 2000-01-12 2004-01-13 Amei Technologies Inc. Combined tissue/bone growth stimulator and external fixation device
US6423061B1 (en) 2000-03-14 2002-07-23 Amei Technologies Inc. High tibial osteotomy method and apparatus
US20020164905A1 (en) * 2000-03-14 2002-11-07 Amei Technologies Inc., A Delaware Corporation Osteotomy guide and method
US6675048B2 (en) 2000-05-08 2004-01-06 International Rehabilitative Sciences, Inc. Electro-medical device for use with biologics
US20040015203A1 (en) * 2000-05-08 2004-01-22 Mcgraw Michael B. Multi-functional portable electro-medical device
US6988005B2 (en) 2000-05-08 2006-01-17 International Rehabilitative Sciences, Inc. Multi-functional portable electro-medical device
US6393328B1 (en) 2000-05-08 2002-05-21 International Rehabilitative Sciences, Inc. Multi-functional portable electro-medical device
US6560487B1 (en) 2000-05-08 2003-05-06 International Rehabilitative Sciences, Inc. Electro-medical device for use with biologics
US7747332B2 (en) 2000-05-08 2010-06-29 International Rehabilitative Sciences, Inc. Electrical stimulation combined with a biologic to increase osteogenesis
US20040015209A1 (en) * 2000-05-08 2004-01-22 Mcgraw Michael B. Electro-medical device for use with biologics
US20060052782A1 (en) * 2004-06-07 2006-03-09 Chad Morgan Orthopaedic implant with sensors
USRE46582E1 (en) 2004-06-07 2017-10-24 DePuy Synthes Products, Inc. Orthopaedic implant with sensors
US8083741B2 (en) 2004-06-07 2011-12-27 Synthes Usa, Llc Orthopaedic implant with sensors
US8838249B2 (en) 2006-02-01 2014-09-16 Warsaw Orthopedic, Inc. Implantable tissue growth stimulator
US20070179562A1 (en) * 2006-02-01 2007-08-02 Sdgi Holdings, Inc. Implantable tissue growth stimulator
US8078282B2 (en) * 2006-02-01 2011-12-13 Warsaw Orthopedic, Inc Implantable tissue growth stimulator
US20080171304A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Dental implant kit and method of using same
US20080172107A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Stand alone osteogenic stimulus device and method of using
US20080172106A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Osteogenic stimulus device, kit and method of using thereof

Also Published As

Publication number Publication date Type
GB1311519A (en) 1973-03-28 application
DE1918299A1 (en) 1970-10-15 application
US3745995A (en) 1973-07-17 grant
DE1918299B2 (en) 1972-04-13 application
JPS5037945B1 (en) 1975-12-05 grant

Similar Documents

Publication Publication Date Title
Chardack et al. Five years' clinical experience with an implantable pacemaker: An appraisal
Cragg et al. Changes in conduction velocity and fibre size proximal to peripheral nerve lesions
Doyle et al. Electrical stimulation of the eighth cranial nerve
Lichter et al. Radio-frequency hazards with cardiac pacemakers
Desmedt et al. Spinal and far-field components of human somatosensory evoked potentials to posterior tibial nerve stimulation analysed with oesophageal derivations and non-cephalic reference recording
Sisken et al. Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic fields
US5269304A (en) Electro-therapy apparatus
US5123898A (en) Method and apparatus for controlling tissue growth with an applied fluctuating magnetic field
US6607500B2 (en) Integrated cast and muscle stimulation system
US5191880A (en) Method for the promotion of growth, ingrowth and healing of bone tissue and the prevention of osteopenia by mechanical loading of the bone tissue
Andrew et al. Augmentation of bone repair by inductively coupled electromagnetic fields
US4066065A (en) Coil structure for electromagnetic therapy
Hultman et al. Evaluation of methods for electrical stimulation of human skeletal muscle in situ
US6678562B1 (en) Combined tissue/bone growth stimulator and external fixation device
US5103806A (en) Method for the promotion of growth, ingrowth and healing of bone tissue and the prevention of osteopenia by mechanical loading of the bone tissue
US3809075A (en) Bone splint
US6175769B1 (en) Spinal cord electrode assembly having laterally extending portions
US5413596A (en) Digital electronic bone growth stimulator
US5425752A (en) Method of direct electrical myostimulation using acupuncture needles
US5158080A (en) Muscle tone
US5387231A (en) Electrotherapy method
US4467809A (en) Method for non-invasive electrical stimulation of epiphyseal plate growth
Shannon et al. Auditory brainstem implant: II. Postsurgical issues and performance
US7158835B2 (en) Device for treating osteoporosis, hip and spine fractures and fusions with electric fields
US20040077923A1 (en) Control of body electrical activity by magnetic fields