US3782076A - Process for reducing the arsenic content of gaseous hydrocarbon streams by use of supported lead oxide - Google Patents

Process for reducing the arsenic content of gaseous hydrocarbon streams by use of supported lead oxide Download PDF

Info

Publication number
US3782076A
US3782076A US00247983A US3782076DA US3782076A US 3782076 A US3782076 A US 3782076A US 00247983 A US00247983 A US 00247983A US 3782076D A US3782076D A US 3782076DA US 3782076 A US3782076 A US 3782076A
Authority
US
United States
Prior art keywords
feedstream
arsenic
recited
sorbent
ppb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00247983A
Inventor
D Stahlfeld
J Young
N Carr
F Massoth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Gulf Research and Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulf Research and Development Co filed Critical Gulf Research and Development Co
Application granted granted Critical
Publication of US3782076A publication Critical patent/US3782076A/en
Assigned to CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. reassignment CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure

Definitions

  • This invention relates to the removal of arsenic from gaseous streams and more particularly to a process for reducing the arsenic content of a gaseous hydrocarbon stream by the use of an oxide of lead.
  • Catalytic cracking is one of the principal methods for refining petroleum fractions to recover more valuable hydrocarbon products such as gasoline.
  • the unit in which the cracking operation takes place generally employs a fluidized bed and thus is termed a fluid catalytic cracking (FCC) unit.
  • FCC fluid catalytic cracking
  • a variety of lower boiling products in gaseous form are discharged from the FCC unit and these are usually further treated to recover separate hydrocarbon fractions, e.g. ethylene.
  • This further treatment of FCC vapors may, as in the case of the hy drogenation of acetylene, involve the use of a noble metal catalyst.
  • nobel metal catalysts are rapidly deactivated by feedstock impurities such as arsenic. It thus becomes desirable to reduce the arsenic content of the FCC gases to the lowest possible level before subjecting them to further treatment.
  • arsenic is present in FCC gases. It is known, however, that FCC gases in which arsenic can be detected. cause the aforesaid deleterious effects upon a noble metal catalyst. Although it is believed that a major portion of the arsenic contained in the gases is present as arsine (AsH the term arsenic as used herein is intended to include arsenic in any combined gaseous form.
  • the dispersed sorbent will withstand an acceptable loading of arsenic before breakthrough when the arsenic is present in a gaseous light hydrocarbon stream containing both olefins and water vapor. While many materials will function to remove arsenic from admixture with inert gases such as argon and such materials remain active for reasonable loadings of arsenic, most of these materials fail quickly in the removal of arsenic from light hydrocarbon gases such as the gases obtained from FCC units or refinery olefin streams such as streams consisting essentially of ethylene or propylene.
  • the term breakthrough means the passage of arsenic beyond or downstream of the substance intended to remove it and is usually expressed as a percentage of the arsenic not removed in relation to the arsenic content of the charge stock.
  • the present invention provides a process for reducing the arsenic content of a gaseous hydrocarbon feedstream which comprises contacting said feedstream with a sorbent dispersed upon a supporting material, said sorbent comprising an oxide of lead.
  • the supporting material is preferably selected from a high surface area refractory metal oxide or mixtures of refractory metal oxides and most preferably a high surface area alumina.
  • the hydrocarbons in the feedstream have from one to five carbon atoms per molecule with minor amounts of about two percent or less of higher carbon atom molecules such as C
  • the hydrocarbons in the feedstream have from one to three carbon atoms with minor amounts of about 10 percent or less of hydrocarbons having from four to six carbon atoms.
  • the feedstream normally includes olefins and water vapor.
  • the feedstream is substantially free of sulfur compounds.
  • the arsenic content of the feedstream is generally in excess of 20 ppb and following contact with the sorbent the arsenic content of the feedstream is reduced to less than 20 ppb, preferably less than 10 ppb and more preferably less than 2 ppb.
  • the term ppb means parts per billion and ppm means parts per million, and such parts are parts by volume unless otherwise indicated.
  • the present invention provides that the feedstream is contacted with the sorbent at a temperature in' the range of 50 to 400F. and more preferably in the range of to 250F.
  • the charge stock for treatment in accordance with the invention is a gaseous hydrocarbon feedstream wherein the hydrocarbons preferably have from one to three carbon atoms per molecule and which feedstream contains aresenic as an impurity, typically in an amount from about 20 parts per billion (ppb) to about 200 parts per million (ppm) or more.
  • Particularly preferred for treatment by the process of the invention are those light hydrocarbon gases obtained by the catalytic.
  • the charge stock is free of sulfur compounds such as I-I S, since sulfur compounds appear to seriously interfere with the removal of arsines from gaseous hydrocarbon charge stocks. That is, the process of the invention will operate in the presence of sulfur compounds, but the loading of the supported lead oxide before breakthrough will be seriously impaired.
  • the manner of removing sulfur compounds from the charge stock may be by any of the methods well known in the art. Such methods include, for example, the use of liquid solutions of amines or the use of caustic solutions, e.g., sodium hydroxide solution.
  • the petroleum charge for catalytic cracking enters through line 2 into FCC unit 4 where it is converted under usual catalytic cracking conditions to a variety of lower boiling products, including gasoline type products.
  • Gasoline is removed from FCC unit 4 through line 6.
  • the other gaseous products of the cracking process, which products are of primary concern here, are removed from FCC unit 4 through line 8 and enter an absorber section 10.
  • Absorber section 10 normally consists of several component units (not shown) such as an amine absorber, a knock-out drum to remove any entrained liquids from the gaseous products; and a heater to insure that the gases remain in the vapor phase.
  • the FCC gases exiting from the heater unit of absorber section 10 have the typical composition shown in the following Table I:
  • the FCC absorber gases are usually at a temperature from 80 to 150F., more usually from 100 to 125F., and at a pressure from 250 to 400 psig, more usually at a pressure from 290 to 360 psig.
  • the increased pressures are those normally employed in the FCC unit and are used to propel the gases through the various units in the recovery train.
  • the absorber gases leave the absorber section 10 through line 12 and pass into arsenic removal unit 14.
  • arsenic removal unit 14 is to reduce the concentration of arsenic in the FCC absorber gases from a concentration in excess of 20 ppb to a concentration at the outlet of less than 20 ppb.
  • concentration of arsenic in the FCC absorber gases is usually on the order of 50 to 750 ppb but can be as high as 20 ppm or more.
  • the arsenic content of the gases is lowered to less than 10 ppb and more preferably to less than 2 ppb by arsenic removal unit 14.
  • arsenic removal unit 14 The type of solid material employed in arsenic removal unit 14 is an important feature of the invention and will be discussed in detail hereinbelow. Suffice it to say here that the material comprises an oxide of lead well dispersed upon a suitable support having a high surface area.
  • the temperatures to be employed in arsenic removal unit 14 can suitably be from 50 to 400F., are usually from to 250F., and are preferably from to 200F. Temperatures below 50F. are undesirable because of the increased cost and the decreased activity of the sorbent at those levels. Temperatures above the stated range are undesirable due to the increased expense of operating the process. Apart from economic considerations, however, high temperature levels, which would otherwise promote hydrogenation of olefms present in the feed stream when certain other sorbent materials are employed, are not of concern in the process of the present invention since lead oxide is not a hydrogenation catalyst. Higher operating temperatures do have the advantage in the process of the invention of prolonging the life of the lead oxide sorbent before regeneration is required.
  • the pressure to be employed in arsenic removal unit 14 is suitably atmospheric pressure or below, to 1000 psig or more.
  • FCC units typically operate to produce product gases, as noted above, at pressures from about 250 to 350 psig.
  • the process of the present invention operates well at atmospheric pressure, but since it is expensive to depressure the FCC absorber gases and repressure the final products for transport through pipelines, it is desirable to operate the arsenic removal process at increased pressure of, say, 250 to 350 psig.
  • a limitation on the maximum operating pressure is, however, the effect of pressure on promoting undesirable side reactions such as the polymerization of any olefms which may be present in the feedstream.
  • the gaseous volume hourly space velocity (GVHSV) at standard conditions of temperature and pressure can suitably be from 1,000 to 36,000 v/v/hr and is usually from 2,000 to 10,000 v/v/hr.
  • the product is removed from the arsenic removal unit 14 through line 16.
  • the combined gases in line 24 enter system 26 which consists of a number of units, not individually shown, for the purpose of drying and recovering various hydrocarbon fractions.
  • a C;, fraction, for example, can be removed through line 28 and a C fraction through line 30.
  • the stream of most present interest and of greatest volume is the C, stream containing small amounts of acetylene, which stream is shown in the FIGURE as being removed from system 26 through line 32 and which pases into an acetylene converter 34.
  • the acetylene content is produced in the pyrolysis furnace 20.
  • Hydrogen enters acetylene converter 35 by means of line 35.
  • Acetylene converter 34 may contain a catalyst which is sensitive to poisoning by even minute quantities of arsenic, and thus it is one of the main objectives of the present invention to protect the catalyst in the acety lene converter 34 from permanent deactivation by arsenic.
  • Catalysts which are particularly susceptible to arsenic poisoning are those containing the noble metals such as platinum and palladium.
  • Hydrogenation conditions are, of course, employed in acetylene converter 34, and such conditions are well known to workers skilled in the art.
  • the C stream, substantially free of acetylene, is then taken from acetylene converter 34 through line 36 to a distillation zone 38 where ethylene is removed through line 40 and heavier products may be suitably removed through line 42. The heavier products may be recycled as feed to pyrolysis furnace 20 if desired.
  • aresenic removal unit 14 could have been positioned immediately before the acetylene converter 26, if desired. Similarly, the same benefits would accrue for any arsenic-susceptible catalysts used in the hydrogenation of the propadiene in the C stream from line 28.
  • the sorbent employed in the process of the invention is most easily converted to a high surface area form by dispersion onto a suitable high surface area support.
  • the manner of dispersing the sorbent on the supports is not critical and may be accomplished by means well known in the art.
  • One method is described in detail in Example 1 below. Briefly, the technique involves the deposition of lead from a solution, preferably aqueous, of a suitable lead salt such as lead nitrate followed by calcining in the presence of air to produce a sorbent comprising lead oxide.
  • the lead salt which is employed must be one which will decompose to the desired lead oxide form on calcining or which can be oxidized to the desired lead oxide form under conditions which will not impair the desired surface area characteristics of the support.
  • the amount of lead dispersed on the support is suitably from 5 to 50 weight percent and preferably from to 30 weight percent of the total sorbent plus support.
  • Suitable high surface area supports are those well known in the art as catalyst supports.
  • suitable supporting materials are the usual porous naturally occurring or synthetically prepared high surface area, i.e., over about 50 mlg, refractory metal oxides well known in the art as catalyst supports, e.g., alumina, silica, boria, thoria, magnesia or mixtures thereof.
  • the supporting material is one of the partially dehydrated forms of alumina. More preferably, the alumina is one having a surface area in excess of 50 m /g, preferably a surface area of 150 to 350 m /g.
  • Suitable forms of the higher surface area aluminas and their methods of preparation are described in the Kirk- Othmer Encyclopedia of Chemical Technology, Second Edition, Volume 2, pages 41 et seq.
  • Other suitable supports include clays, zeolites and crystalline silica aluminas.
  • EXAMPLE 1 The purpose of this example is to describe one preparation of a lead oxide material supported by high surface area alumina.
  • An aqueous solution of lead nitrate was prepared by adding 837.21 g. of Pb (N00 (Mallinckrodt Analytical Reagent Grade) to distilled water to give a final folume of 1670 ml.
  • the weight of this solution was 2322 g. and its specific gravity was 1.3904 g/cc. It contained the equivalent of 22.55 percent Pb.
  • a one-step incipient impregnation of the alumina was carried out by adding, with stirring, the Pb(NO solution to 2055 g. of l/ l 6-inch extrudates of a suitable alumina which had previously been heated to l,000F. over a period of 6 hours and held at l,000F. for 10 hours.
  • the incipient wetness absorptivity of the alumina was 0.8127 ml/g of alumina.
  • the wet material was dried with occasional stirring for 12 hours at 250F.
  • the dry material was then calcined by raising the temperature to 1,000F. over a period of 6 hours and holding at 1,000F. for 9 hours.
  • the final calcined composition analyzed 20 weight percent lead calculated as the metal.
  • the compacted density was 0.804 g/cc and it had a nitrogen B.E.T. surface area of m lg and a nitrogen pore volume of 0.471.
  • the final sorbent was off-white in appearance X-ray analysis of the sorbent showed the presence of some crystalline lead sulfate, which is white. There is a small amount of sulfate associated with the alumina base (1.08 percent sulfur), and this probably accounts for the presence of the lead sulfate. A similar preparation using a very low sulfur base (0.08 percent) showed the presence by X-ray diffraction analysis of the complex 4PbO'PbSO, which is also white.
  • the lead nitrate from which the sorbent was prepared is known to decompose at conditions far less severe than the calcination conditions.
  • lead oxides due to the complex chemistry of lead oxides, it is believed the lead is primarily present as PbO or some combination of PhD with lead sulfate due to the light color of the finished sorbent.
  • Other forms of lead oxide such as PbO Pb O and Pb O are highly colored.
  • the reactor containing the supported sorbent con- This optical transmittance was then plotted as a funcsist d of 8 inch l.D. stainless steel cylinder, with a /5 tion of time.
  • the numerical derivative of this curve was inch O.D. thermowell extending along its axis.
  • the recalculated to determine the rate of arsine breakactor was suitably heated. The temperature at the centhrough.
  • the percent breakthrough figures given in ter of the supported sorbent material was measured by Table II below represent the percentage of the arsenic means of an iron-constantan thermocouple inserted not removed in relation to the arsenic content of the into the thermowell.
  • Example 5 demonwere no added amounts of AsH
  • the results are presstraws the telling effect of having 2 in the charge ented in the Example giv b 1 stock.
  • the runs for Examples 7-9 show that regeneration at higher temperatures increased the loadings of EXAMPLE 10 arsenic achieved.
  • EXAMPLE 1 1 In the run for this Example the bed was operated at 120 to 150F. and a pressure of 230-300 psig and a GVHSV of 9,000 for a total time of 3,230 hours without breakthrough, at which point the run was discontinued. Estimated calculation indicated the loading of arsenic to be 0.65 weight percent,
  • a process for reducing the arsenic content of a gaseous hydrocarbon containing feedstream which comprises contacting said feedstream with a sorbent dispersed upon a supporting material, said sorbent comprising lead oxide.
  • a process for reducing the arsenic content of a gaseous hydrocarbon containing feedstream containing arsenic in amounts in excess of ppb which process comprises contacting said feedstream with a sorbent dispersed on a supporting material, said sorbent comprising lead oxide.
  • gaseous hydrocarbon feedstream is a commercial FFC absorber gas.
  • a process for reducing the arsenic content of a gaseous hydrocarbon containing feedstream containing arsenic in amounts in excess of 20 ppb which process comprises contacting said feedstream with a sorbent dispersed on a supporting material, having a surface area in excess of 50 m /g, said sorbent consisting of lead oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Treating Waste Gases (AREA)

Abstract

A process for reducing the arsenic content of a gaseous hydrocarbon stream by contacting the stream with a sorbent comprising an oxide of lead dispersed upon a supporting material.

Description

Unlted States Patent [71 1 [111 3,782,076 Carr et al. 1 Jan. 1, 1974 PROCESS FOR REDUCING THE ARSENIC [58] Field of Search 55/48, 73, 74, 179, CONTENT OF GASEOUS HYDROCARBON 55/387; 196/44, 46; 208/88, 9]; 423/210, STREAMS BY USE OF SUPPORTED LEAD 229, 240 OXIDE [75] Inventors: Norman L. Carr, The Hague. [56] References Cited Netherlands; FranklinBE. lMassoth, NI STATES PATENTS Midd esex Township, ut er 2 779 7 H957 Mu a y 208/88 County, Pa.; Donald L. Stahlfeld, 2,78L297 2/!957 App zll 208/88 Glenshaw, Pa.; John E. Young, Jr., 2: ifig g Butler Primary ExaminerCharles N. Hart Attorney-Meyer Neishloss et al, [73] Assignee: Gulf Research & Development Company, Pittsburgh, Pa. [57] ABSTRACT [22] Filed: 1972 A process for reducing the arsenic content of a gase- [21 Appl. No.: 247,983 ous hydrocarbon stream by contacting the stream with a sorbent comprising an oxide of lead dispersed upon 52 us. 01.. 55/74 208/88 3 suppming material [5 I] Int. Cl B0ld 53/04 18 Claims, 1 Drawing Figure Hydrogen l2 Ab b P l i A r 36 se tz l io r i ldfnhie N20 csrfve rf r J L b Dislillollon Ethylene Zone 34 Arsenic I4 32 8 Removal "22 Unit I v Drying Recovery, C Fluid l6 24 Elc. 2s 3 4 Cululylic [6 System Crock Gasoline -26 Heavier 4 30 Products PROCESS FOR REDUCING THE ARSENIC CONTENT OF GASEOUS HYDROCARBON STREAMS BY USE OF SUPPORTED LEAD OXIDE This invention relates to the removal of arsenic from gaseous streams and more particularly to a process for reducing the arsenic content of a gaseous hydrocarbon stream by the use of an oxide of lead.
BACKGROUND OF THE INVENTION Catalytic cracking is one of the principal methods for refining petroleum fractions to recover more valuable hydrocarbon products such as gasoline. The unit in which the cracking operation takes place generally employs a fluidized bed and thus is termed a fluid catalytic cracking (FCC) unit. A variety of lower boiling products in gaseous form are discharged from the FCC unit and these are usually further treated to recover separate hydrocarbon fractions, e.g. ethylene. This further treatment of FCC vapors may, as in the case of the hy drogenation of acetylene, involve the use of a noble metal catalyst. As is well known, nobel metal catalysts are rapidly deactivated by feedstock impurities such as arsenic. It thus becomes desirable to reduce the arsenic content of the FCC gases to the lowest possible level before subjecting them to further treatment.
It should be noted that the exact form in which arsenic is present in FCC gases is difficult todetermine. It is known, however, that FCC gases in which arsenic can be detected. cause the aforesaid deleterious effects upon a noble metal catalyst. Although it is believed that a major portion of the arsenic contained in the gases is present as arsine (AsH the term arsenic as used herein is intended to include arsenic in any combined gaseous form.
DESCRIPTION OF THE PRIOR ART It is well known that arsenic in gaseous form is a highly toxic substance. Workers in the gas mask art have suggested the use of activated charcoal impregnated with a metal or metal oxide such aslead or lead oxide as a material through which. air (or other oxygencontaining gases) may be passed for the removal of arsenic. Exemplary of this proposal is U. S. Pat. No. 1,520,437.
It has been found more recently that the presence of arsenic in gasolines which are treated by contact with a noble metal containing catalyst causes a permanent" deactivation of the catalyst. Suggestions have been made in the art to pretreat petroleum fractions to remove arsenic by use of a wide range of materials such as a lignite-based activated carbon (U. S. Pat. No. 3,542,669); silica gel impregnated with sulfuric acid (U. S. Pat. No. 3,093,574); aluminum silicate (U. S. Pat. No. 2,939,833); or a salt of a metal not higher than copper in the electromotiveseries of metals (U. S. Pat. No. 2,781,297). Since lead is above copperinthe electromotive series of metals, the last-mentioned U.S. Pat. No. (2,781,297) would appear to discouragethe use of lead in removing arsenic from petroleum feedstreams. Moreover, the art also suggests thatlead is an impurity which can contaminate the reforming, catalysts employed in petroleum fraction conversion processes; see U. S. Pat. Nos. 2,769,770 and 3,093,574.
SUMMARY OF THE INVENTION It has been discovered that a suitably-dispersed material comprising an oxide of lead will directly remove arsenic from gaseous hydrocarbon streams. For the purposes of this application the lead oxide will be termed a sorbent, although that term is not intended to suggest that the arsenic removal is accomplished by physical adsorption. While not wishing to be bound by any particular theory, it is believed that some chemical reaction is involved between the arsenic and the sorbent wherein lead-arsenic compounds such as Pb As O may be formed. At a minimum, it is believed that the removal of arsenic is accomplished by chemisorption; that is, the arsenic forms bonds with the surface atoms of the sorbent that are of comparable strength with ordinary chemical bonds and stronger than the bonds formedin physical adsorption.
Surprisingly, the dispersed sorbent will withstand an acceptable loading of arsenic before breakthrough when the arsenic is present in a gaseous light hydrocarbon stream containing both olefins and water vapor. While many materials will function to remove arsenic from admixture with inert gases such as argon and such materials remain active for reasonable loadings of arsenic, most of these materials fail quickly in the removal of arsenic from light hydrocarbon gases such as the gases obtained from FCC units or refinery olefin streams such as streams consisting essentially of ethylene or propylene. In this context, the term breakthrough means the passage of arsenic beyond or downstream of the substance intended to remove it and is usually expressed as a percentage of the arsenic not removed in relation to the arsenic content of the charge stock.
The present invention provides a process for reducing the arsenic content of a gaseous hydrocarbon feedstream which comprises contacting said feedstream with a sorbent dispersed upon a supporting material, said sorbent comprising an oxide of lead. The invention further provides that the supporting material is preferably selected from a high surface area refractory metal oxide or mixtures of refractory metal oxides and most preferably a high surface area alumina. It is further provided that the hydrocarbons in the feedstream have from one to five carbon atoms per molecule with minor amounts of about two percent or less of higher carbon atom molecules such as C Preferably, the hydrocarbons in the feedstream have from one to three carbon atoms with minor amounts of about 10 percent or less of hydrocarbons having from four to six carbon atoms. The feedstream normally includes olefins and water vapor. Preferably, the feedstream is substantially free of sulfur compounds. The arsenic content of the feedstream is generally in excess of 20 ppb and following contact with the sorbent the arsenic content of the feedstream is reduced to less than 20 ppb, preferably less than 10 ppb and more preferably less than 2 ppb. In this application the term ppb means parts per billion and ppm means parts per million, and such parts are parts by volume unless otherwise indicated. Preferably, the present invention provides that the feedstream is contacted with the sorbent at a temperature in' the range of 50 to 400F. and more preferably in the range of to 250F.
DETAILED DESCRIPTION OF THE INVENTION The charge stock for treatment in accordance with the invention is a gaseous hydrocarbon feedstream wherein the hydrocarbons preferably have from one to three carbon atoms per molecule and which feedstream contains aresenic as an impurity, typically in an amount from about 20 parts per billion (ppb) to about 200 parts per million (ppm) or more. Particularly preferred for treatment by the process of the invention are those light hydrocarbon gases obtained by the catalytic.
cracking of heavier petroleum hydrocarbons such as gas oils for producing primarily gasoline. These light gases from the FCC unit have been found to contain small concentrations of arsenic even though arsine, for example, is known to decompose at about 450F. and the temperatures in the FCC unit are known to reach over 900F. There is probably insufficient contact time in an FCC unit to decompose the arsine, or perhaps the arsine decomposes and reforms on cooling.
Preferably, the charge stock is free of sulfur compounds such as I-I S, since sulfur compounds appear to seriously interfere with the removal of arsines from gaseous hydrocarbon charge stocks. That is, the process of the invention will operate in the presence of sulfur compounds, but the loading of the supported lead oxide before breakthrough will be seriously impaired.
The manner of removing sulfur compounds from the charge stock may be by any of the methods well known in the art. Such methods include, for example, the use of liquid solutions of amines or the use of caustic solutions, e.g., sodium hydroxide solution.
The process of the invention will now be further described by reference to the attached FIGURE. Referring to the FIGURE, the petroleum charge for catalytic cracking enters through line 2 into FCC unit 4 where it is converted under usual catalytic cracking conditions to a variety of lower boiling products, including gasoline type products. Gasoline is removed from FCC unit 4 through line 6. The other gaseous products of the cracking process, which products are of primary concern here, are removed from FCC unit 4 through line 8 and enter an absorber section 10. Absorber section 10 normally consists of several component units (not shown) such as an amine absorber, a knock-out drum to remove any entrained liquids from the gaseous products; and a heater to insure that the gases remain in the vapor phase. The FCC gases exiting from the heater unit of absorber section 10 have the typical composition shown in the following Table I:
TABLE I Component Nitrogen Hydrogen Methane Ethylene Ethane Propylene Propane Butenes Butanes Pentenes Pentanes Hexanes Carbon Monoxide The FCC absorber gases are usually at a temperature from 80 to 150F., more usually from 100 to 125F., and at a pressure from 250 to 400 psig, more usually at a pressure from 290 to 360 psig. The increased pressures are those normally employed in the FCC unit and are used to propel the gases through the various units in the recovery train. The absorber gases leave the absorber section 10 through line 12 and pass into arsenic removal unit 14.
The function of arsenic removal unit 14 is to reduce the concentration of arsenic in the FCC absorber gases from a concentration in excess of 20 ppb to a concentration at the outlet of less than 20 ppb. The concentration of arsenic in the FCC absorber gases is usually on the order of 50 to 750 ppb but can be as high as 20 ppm or more. Preferably, the arsenic content of the gases is lowered to less than 10 ppb and more preferably to less than 2 ppb by arsenic removal unit 14.
The type of solid material employed in arsenic removal unit 14 is an important feature of the invention and will be discussed in detail hereinbelow. Suffice it to say here that the material comprises an oxide of lead well dispersed upon a suitable support having a high surface area.
The temperatures to be employed in arsenic removal unit 14 can suitably be from 50 to 400F., are usually from to 250F., and are preferably from to 200F. Temperatures below 50F. are undesirable because of the increased cost and the decreased activity of the sorbent at those levels. Temperatures above the stated range are undesirable due to the increased expense of operating the process. Apart from economic considerations, however, high temperature levels, which would otherwise promote hydrogenation of olefms present in the feed stream when certain other sorbent materials are employed, are not of concern in the process of the present invention since lead oxide is not a hydrogenation catalyst. Higher operating temperatures do have the advantage in the process of the invention of prolonging the life of the lead oxide sorbent before regeneration is required.
The pressure to be employed in arsenic removal unit 14 is suitably atmospheric pressure or below, to 1000 psig or more. FCC units typically operate to produce product gases, as noted above, at pressures from about 250 to 350 psig. The process of the present invention operates well at atmospheric pressure, but since it is expensive to depressure the FCC absorber gases and repressure the final products for transport through pipelines, it is desirable to operate the arsenic removal process at increased pressure of, say, 250 to 350 psig. A limitation on the maximum operating pressure is, however, the effect of pressure on promoting undesirable side reactions such as the polymerization of any olefms which may be present in the feedstream. The gaseous volume hourly space velocity (GVHSV) at standard conditions of temperature and pressure can suitably be from 1,000 to 36,000 v/v/hr and is usually from 2,000 to 10,000 v/v/hr. The product is removed from the arsenic removal unit 14 through line 16.
Light hydrocarbon gases such as ethane and propane are fed through line 18 into pyrolysis furnace 20 for the purpose of cracking the ethane and propane to produce ethylene. After removal of liquid products (not shown) from pyrolysis furnace 20, the gaseous products are passed through line 22 where they are combined with the products in line 16 from the arsenic removal unit 14.
The combined gases in line 24 enter system 26 which consists of a number of units, not individually shown, for the purpose of drying and recovering various hydrocarbon fractions. A C;, fraction, for example, can be removed through line 28 and a C fraction through line 30. The stream of most present interest and of greatest volume is the C, stream containing small amounts of acetylene, which stream is shown in the FIGURE as being removed from system 26 through line 32 and which pases into an acetylene converter 34. The acetylene content is produced in the pyrolysis furnace 20. Hydrogen enters acetylene converter 35 by means of line 35.
Acetylene converter 34 may contain a catalyst which is sensitive to poisoning by even minute quantities of arsenic, and thus it is one of the main objectives of the present invention to protect the catalyst in the acety lene converter 34 from permanent deactivation by arsenic. Catalysts which are particularly susceptible to arsenic poisoning are those containing the noble metals such as platinum and palladium. Hydrogenation conditions are, of course, employed in acetylene converter 34, and such conditions are well known to workers skilled in the art. The C stream, substantially free of acetylene, is then taken from acetylene converter 34 through line 36 to a distillation zone 38 where ethylene is removed through line 40 and heavier products may be suitably removed through line 42. The heavier products may be recycled as feed to pyrolysis furnace 20 if desired.
It should be noted here that the aresenic removal unit 14 could have been positioned immediately before the acetylene converter 26, if desired. Similarly, the same benefits would accrue for any arsenic-susceptible catalysts used in the hydrogenation of the propadiene in the C stream from line 28.
PREPARATION OF DISPERSED SORBENT The sorbent employed in the process of the invention is most easily converted to a high surface area form by dispersion onto a suitable high surface area support. The manner of dispersing the sorbent on the supports is not critical and may be accomplished by means well known in the art. One method is described in detail in Example 1 below. Briefly, the technique involves the deposition of lead from a solution, preferably aqueous, of a suitable lead salt such as lead nitrate followed by calcining in the presence of air to produce a sorbent comprising lead oxide. The lead salt which is employed must be one which will decompose to the desired lead oxide form on calcining or which can be oxidized to the desired lead oxide form under conditions which will not impair the desired surface area characteristics of the support.
The amount of lead dispersed on the support is suitably from 5 to 50 weight percent and preferably from to 30 weight percent of the total sorbent plus support.
Suitable high surface area supports are those well known in the art as catalyst supports. Examples of suitable supporting materials are the usual porous naturally occurring or synthetically prepared high surface area, i.e., over about 50 mlg, refractory metal oxides well known in the art as catalyst supports, e.g., alumina, silica, boria, thoria, magnesia or mixtures thereof. Preferably the supporting material is one of the partially dehydrated forms of alumina. More preferably, the alumina is one having a surface area in excess of 50 m /g, preferably a surface area of 150 to 350 m /g. Suitable forms of the higher surface area aluminas and their methods of preparation are described in the Kirk- Othmer Encyclopedia of Chemical Technology, Second Edition, Volume 2, pages 41 et seq. Other suitable supports include clays, zeolites and crystalline silica aluminas.
EXAMPLE 1 The purpose of this example is to describe one preparation of a lead oxide material supported by high surface area alumina. An aqueous solution of lead nitrate was prepared by adding 837.21 g. of Pb (N00 (Mallinckrodt Analytical Reagent Grade) to distilled water to give a final folume of 1670 ml. The weight of this solution was 2322 g. and its specific gravity was 1.3904 g/cc. It contained the equivalent of 22.55 percent Pb.
A one-step incipient impregnation of the alumina was carried out by adding, with stirring, the Pb(NO solution to 2055 g. of l/ l 6-inch extrudates of a suitable alumina which had previously been heated to l,000F. over a period of 6 hours and held at l,000F. for 10 hours. The incipient wetness absorptivity of the alumina was 0.8127 ml/g of alumina. The wet material was dried with occasional stirring for 12 hours at 250F. The dry material was then calcined by raising the temperature to 1,000F. over a period of 6 hours and holding at 1,000F. for 9 hours. The final calcined composition analyzed 20 weight percent lead calculated as the metal. The compacted density was 0.804 g/cc and it had a nitrogen B.E.T. surface area of m lg and a nitrogen pore volume of 0.471.
The final sorbent was off-white in appearance X-ray analysis of the sorbent showed the presence of some crystalline lead sulfate, which is white. There is a small amount of sulfate associated with the alumina base (1.08 percent sulfur), and this probably accounts for the presence of the lead sulfate. A similar preparation using a very low sulfur base (0.08 percent) showed the presence by X-ray diffraction analysis of the complex 4PbO'PbSO, which is also white. The lead nitrate from which the sorbent was prepared is known to decompose at conditions far less severe than the calcination conditions. Thus, while it is not certain, due to the complex chemistry of lead oxides, it is believed the lead is primarily present as PbO or some combination of PhD with lead sulfate due to the light color of the finished sorbent. Other forms of lead oxide such as PbO Pb O and Pb O are highly colored.
Technical grade solutions may be employed in the foregoing procedure. The solutions are normally added at room temperature but elevated temperatures may be utilized. The alumina used in this preparation had a nitrogen B.E.T. surface area of 282 m /g and a pore volume of 0.63 cc/g.
ARSENIC REMOVAL Several runs were made under varying conditions to illustrate the present invention. The results of these runs are presented in Examples 2-9 summarized in Table II below. The procedures employed for all tests were identical and were as follows: Gaseous charge stocks were prepared by mixing a sufficient amount of a blend of 2,000 ppm AsH in nitrogen (supplied by Matheson Gas Co.) with one of the following diluent gases to obtain a charge stock having the designated ppm of AsH as shown in Table II below.
Diluent Gas No. 1. An ethylene stream having the following approximate analysis:
Component Vol. 1: Ethylene 65.0 Ethane 35.0 Acetylene 0.5
Diluent Gas No. 2. A pure hydrocarbon blend having the following approximate analysis:
through was 10 percent, and this increased to 20 percent after a total of 3,000 hours. lt was calculated that about 1.7 weight percent arsenic was present on the g sorbent at initial breakthrough (2,300 hours) and :22:5 [2 5 about 2.2 weight percent arsenic after 3,000 hours.
Ethylene Yet another series of runs was made wherein a slip- $22225 stream of a commercial ethylene concentrate (having Nitrogen is the approximate analysis of Diluent Gas No. 1 above) and containing about 40400 ppb of AsH was passed 10 through a 1" in diameter by 4-foot-long bed of a lead Dil t G N 3 A commercial FCC b b gas oxide sorbent prepared as described in Example 1. The f h f ll i l i results are given in Example 1 1 below.
. mately 6-inch-long bed of quartz chips which served to Typical preheat the gas stream. Component Vol. Range Vol. 15 The sorbent was dispersed on activated alumina in fijg g r lg accordance with the procedures set forth in Example I. Nitrogen 640 The bed of supported sorbent within the reactor was Me'hime 27-33 approximately 4 to 8 inches in length and consisted of Ethylene 9.8 9-ll Ethane 12.4 10-130 5-l0 cc. of material sized to 20-40 mesh. In all cases, g w 172 -180 the weight percent of lead compared with the total 3 weight of support material and sorbent was 20 percent. lsobutane 1.3 1-2.0 The arsine not removed by passage through the bed 2 of supported sorbent was scrubbed from the effluent 3 c, o; gas stream by a pyridine solution containing 0.50 g. sil- Tm! 100-0 ver diethyldithiocarbamate (Fisher Certified Reagent) Arsenic 450 ppb 50-750 ppb Hydrogen Sumde I ppmum ppm per l00 ml. pyridine. This silver salt combines with the. Carbonyl Sulfide 3.4 ppm(wt) 0-5 ppm arsine to form a highly colored complex, permitting colorimetric monitoring of the total arsine break- Diluent gases Nos. 2 and 3 were passed through a through accumulation. Small samples were periodically water bubbler to saturate them with water vapor at amdrawn from the arsine scrubber and the optical transbient temperature prior to adding arsine. Diluent gas mittance at 540 mm. wavelength was measured with a No. 1 was not saturated with water. Bausch and Lomb Spectronic 70 spectrophotometer.
The reactor containing the supported sorbent con- This optical transmittance was then plotted as a funcsist d of 8 inch l.D. stainless steel cylinder, with a /5 tion of time. The numerical derivative of this curve was inch O.D. thermowell extending along its axis. The recalculated to determine the rate of arsine breakactor was suitably heated. The temperature at the centhrough. The percent breakthrough figures given in ter of the supported sorbent material was measured by Table II below represent the percentage of the arsenic means of an iron-constantan thermocouple inserted not removed in relation to the arsenic content of the into the thermowell. The test gas was introduced at the Charge to bottom of the reactor, passing through an approxi- Referring to Table ll, the run for Example 5 demonwere no added amounts of AsH The results are presstraws the telling effect of having 2 in the charge ented in the Example giv b 1 stock. The runs for Examples 7-9 show that regeneration at higher temperatures increased the loadings of EXAMPLE 10 arsenic achieved.
In the run for this Example, the b d wa operated at Another series of runs was made wherein a slipstream to F. and a pressure of 260 280 i d a ofa commercial FCC absorber gas without the addition GVHSV of 9,000 for 8 days t whi h i a ll of added amounts of AsH was passed through a 1" in breakthrough of arsenic was noted and the GVHSV diameter y 0 g e of a lead i e en was reduced to 4,500. The run was continued for a prepared as described in Example 1. The commercial total of 2,300 hours when, again, a small breakthrough 50 FCC absorber gas had a composition within the range of arsenic was noted. Within 48 more hours, the break- S shown above for Diluent G38 g there TABLE III Corie. Arsenic loading AsH Diluent gas (weight percent) in (designated charge by number 10% 20% 33% Temp Pressure, stock from descrlpbreakhreakbreak- Example Sorbent Support p.s.l.a. GVHSV (p.p.m.) tion above) through through through 2. Lead oxide.. 'Y-AIZOH 80 16 3,000 do.-. 'y-AlrO; 15 3,000 do 'Y-AlzOa 120 15 3,000 .do W020; 120 15 3,000 d0 'y-Alroa 15 3,000 7 do 'Y'Alzoa 150 15 9,000
Regenerated supported Pb oxide from example 7, 16 hours in air at 350 s do 'Y'AiiOfl 150 15 9,000 50 0.3
Rregenerated supported Pb oxide from example 8, 16 hours in air at 9 do 14.110; 150 15 0.000 50 No.
1 Plus 200 p.p.m. H15 in the feedstock. 1 Additional loading, same test conditions.
EXAMPLE 1 1 In the run for this Example the bed was operated at 120 to 150F. and a pressure of 230-300 psig and a GVHSV of 9,000 for a total time of 3,230 hours without breakthrough, at which point the run was discontinued. Estimated calculation indicated the loading of arsenic to be 0.65 weight percent,
In each of Examples and l l, a fresh batch of sorbent was employed.
Resort may be had to such variations and modifications as fall within the spirit of the invention and the scope of the appended claims.
We claim:
1. A process for reducing the arsenic content of a gaseous hydrocarbon containing feedstream which comprises contacting said feedstream with a sorbent dispersed upon a supporting material, said sorbent comprising lead oxide.
2. A process as recited in claim 1 wherein said supportiri g rfiatei'ialisa high surface area alumina.
3. A process according to claim 2 wherein said lead oxide isPbO.
4. A process as recited in claim 2 wherein said hydrocarbons in said feedstream, have from one to five carbon atoms per molecule.
5. A process as recited in claim 4 wherein said hydrocarbon feedstream includes oelfins and water vapor.
6. A process as recited in claim 5 wherein said contacting takes place at a temperature in the range of 50F. to 400F.
7. A process for reducing the arsenic content of a gaseous hydrocarbon containing feedstream containing arsenic in amounts in excess of ppb, which process comprises contacting said feedstream with a sorbent dispersed on a supporting material, said sorbent comprising lead oxide.
8. A p r ocess as recited in claim 7 whereinsaid supporting material is a high surface area alumina.
9. A process as recited in claim 8 wherein said hydrocarbons in said feedstream have from one to five carbon atoms per molecule.
10. A process according to claim 9 wherein said lead oxide is PbO.
11. A process as recited in claim 9 wherein said hydrocarbon feedstream includes olefins and water vapor.
12. A process as recited in claim 11 wherein said contacting takes place at a temperature in the range of to 250F.
13. A process as recited in claim 12 wherein said arsenic content of said feedstream after contacting is less than 10 ppb.
14. A process as recited in claim 10 wherein said arsenic content of said feedstream after treating is less than 2 ppb.
15. A process in accordance with claim 7 wherein the gaseous hydrocarbon feedstream is a commercial FFC absorber gas.
16. A process in accordance with claim 15 wherein the absorber gas has a composition comprising:
17. A process for reducing the arsenic content of a gaseous hydrocarbon containing feedstream containing arsenic in amounts in excess of 20 ppb, which process comprises contacting said feedstream with a sorbent dispersed on a supporting material, having a surface area in excess of 50 m /g, said sorbent consisting of lead oxide.
18. A process according to claim 17 wherein said supporting material is alumina having a surface area from -350 mlg.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,782,076 I Dated January 1, 1974 Norman L. Carr, Franklin E. Massoth, v Inventor) Donald L. Stahlfeld and John E. Young, Jr.
It is certified that'errot appearein the above-identified patent and that said Letters Patent. are hereby corrected as shown below:
The text of the patent starting with C01. 7, line 41, through Col. ,8, line 51 is improperly arranged and should be read. as follows:
Col. 7, line'4l: the last word ("approxi-) is continued under Col. 8, line 13 ("mately) and the text' continues down Col. through line 51.
Col. 8, line .51: the last word ("there") is to be followed by "were in C01. 7, line 42 The text continues down Col. 7 through line 51, followed by the first 12 lines of Col. 8.
- Col. 8, line 12 v, the last word (below.") is to be followed by the heading; "EXAMPLE ll" appearing on the first line of Col. 9.
Signed and sealed this 16th day of July 197a.
(SEAL) Attest: I
MCCOY M. GIBSON, JR. c. MARSHALL DANN I Attesting Officer Commissioner of Patents

Claims (17)

  1. 2. A process as recited in claim 1 wherein said supporting material is a high surface area alumina.
  2. 3. A process according to claim 2 wherein said lead oxide is PbO.
  3. 4. A process as recited in claim 2 wherein saId hydrocarbons in said feedstream have from one to five carbon atoms per molecule.
  4. 5. A process as recited in claim 4 wherein said hydrocarbon feedstream includes oelfins and water vapor.
  5. 6. A process as recited in claim 5 wherein said contacting takes place at a temperature in the range of 50*F. to 400*F.
  6. 7. A process for reducing the arsenic content of a gaseous hydrocarbon containing feedstream containing arsenic in amounts in excess of 20 ppb, which process comprises contacting said feedstream with a sorbent dispersed on a supporting material, said sorbent comprising lead oxide.
  7. 8. A process as recited in claim 7 wherein said supporting material is a high surface area alumina.
  8. 9. A process as recited in claim 8 wherein said hydrocarbons in said feedstream have from one to five carbon atoms per molecule.
  9. 10. A process according to claim 9 wherein said lead oxide is PbO.
  10. 11. A process as recited in claim 9 wherein said hydrocarbon feedstream includes olefins and water vapor.
  11. 12. A process as recited in claim 11 wherein said contacting takes place at a temperature in the range of 80* to 250*F.
  12. 13. A process as recited in claim 12 wherein said arsenic content of said feedstream after contacting is less than 10 ppb.
  13. 14. A process as recited in claim 10 wherein said arsenic content of said feedstream after treating is less than 2 ppb.
  14. 15. A process in accordance with claim 7 wherein the gaseous hydrocarbon feedstream is a commercial FCC absorber gas.
  15. 16. A process in accordance with claim 15 wherein the absorber gas has a composition comprising: Component Range Vol. % Carbon Monoxide 0.2-3.4 Hydrogen 9-12 Nitrogen 6-10 Methane 27-33 Ethylene 9-11 Ethane 10-13.0 Propylene 15-18.0 Propane 7-15 Butenes 0-1.0 Isobutane 1-2.0 n-Butane 0-1.0 C5 0-3 C6 0-1 Arsenic 50-750 ppb Hydrogen Sulfide 0-2 ppm Carbonyl Sulfide 0-5 ppm
  16. 17. A process for reducing the arsenic content of a gaseous hydrocarbon containing feedstream containing arsenic in amounts in excess of 20 ppb, which process comprises contacting said feedstream with a sorbent dispersed on a supporting material, having a surface area in excess of 50 m2/g, said sorbent consisting of lead oxide.
  17. 18. A process according to claim 17 wherein said supporting material is alumina having a surface area from 150-350 m2/g.
US00247983A 1972-04-27 1972-04-27 Process for reducing the arsenic content of gaseous hydrocarbon streams by use of supported lead oxide Expired - Lifetime US3782076A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24798372A 1972-04-27 1972-04-27

Publications (1)

Publication Number Publication Date
US3782076A true US3782076A (en) 1974-01-01

Family

ID=22937166

Family Applications (1)

Application Number Title Priority Date Filing Date
US00247983A Expired - Lifetime US3782076A (en) 1972-04-27 1972-04-27 Process for reducing the arsenic content of gaseous hydrocarbon streams by use of supported lead oxide

Country Status (2)

Country Link
US (1) US3782076A (en)
CA (1) CA982498A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009009A (en) * 1974-07-26 1977-02-22 Gulf Research & Development Company Process for reducing the COS content of gaseous hydrocarbon streams by use of supported lead oxide
US4338477A (en) * 1979-08-07 1982-07-06 Ici Australia Limited Removal of catalyst residues from a gas
EP0302771A1 (en) * 1987-08-07 1989-02-08 Institut Français du Pétrole Process for the simultaneous removal of arsenic and carbon oxysulfide from a cut of unsaturated hydrocarbons in the liquid phase
US4861939A (en) * 1987-09-24 1989-08-29 Labofina, S.A. Process for removing arsine from light olefin containing hydrocarbon feedstocks
US4962272A (en) * 1989-05-30 1990-10-09 Aristech Chemical Corporation Treatment of arsine removal catalysts
US5169516A (en) * 1991-07-30 1992-12-08 Carr Norman L Removal of arsenic compounds from light hydrocarbon streams
US5330560A (en) * 1993-03-29 1994-07-19 Gas Research Institute Supported sorbents for removal and recovery of arsenic from gases
WO1994025142A1 (en) * 1993-04-23 1994-11-10 Den Norske Stats Oljeselskap A.S. Process for reducing the content of metal carbonyls in gas streams
FR2806092A1 (en) * 2000-03-08 2001-09-14 Inst Francais Du Petrole Process for the elimination of arsenic from light petroleum cuts, by contacting with an absorbent lead compound, the active phase of the catalytic bed being mainly in the oxide form and partly in a presulfurized form
US20030116504A1 (en) * 2001-07-24 2003-06-26 Vempati Rajan K. Absorbent for arsenic species and method of treating arsenic-contaminated waters
US20030165416A1 (en) * 2002-03-04 2003-09-04 Hard Robert A. Methods to control H2S and arsine emissions
US6960700B1 (en) 2002-12-19 2005-11-01 Uop Llc Adsorbent beds for removal of hydrides from hydrocarbons
US8211294B1 (en) 2011-10-01 2012-07-03 Jacam Chemicals, Llc Method of removing arsenic from hydrocarbons
US8241491B1 (en) 2011-10-01 2012-08-14 Jacam Chemicals, Llc Method of removing arsenic from hydrocarbons
US8734740B1 (en) 2013-03-15 2014-05-27 Clariant Corporation Process and composition for removal of arsenic and other contaminants from synthetic gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779715A (en) * 1952-06-14 1957-01-29 Universal Oil Prod Co Process for removing arsenic from a hydrocarbon feed oil used in a reforming process employing a noble metal as a catalyst
US2781297A (en) * 1952-10-24 1957-02-12 Universal Oil Prod Co Treatment of petroleum fractions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779715A (en) * 1952-06-14 1957-01-29 Universal Oil Prod Co Process for removing arsenic from a hydrocarbon feed oil used in a reforming process employing a noble metal as a catalyst
US2781297A (en) * 1952-10-24 1957-02-12 Universal Oil Prod Co Treatment of petroleum fractions

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009009A (en) * 1974-07-26 1977-02-22 Gulf Research & Development Company Process for reducing the COS content of gaseous hydrocarbon streams by use of supported lead oxide
US4338477A (en) * 1979-08-07 1982-07-06 Ici Australia Limited Removal of catalyst residues from a gas
EP0302771A1 (en) * 1987-08-07 1989-02-08 Institut Français du Pétrole Process for the simultaneous removal of arsenic and carbon oxysulfide from a cut of unsaturated hydrocarbons in the liquid phase
FR2619120A1 (en) * 1987-08-07 1989-02-10 Inst Francais Du Petrole PROCESS FOR THE JOINT ELIMINATION OF ARSENIC AND CARBON OXYSULFIDE FROM A CUP OF LIQUID PHASE UNSATURATED HYDROCARBONS
US4849577A (en) * 1987-08-07 1989-07-18 Institut Francais Du Petrole Process for eliminating jointly arsenic and carbon oxysulfide from an unsaturated hydrocarbon cut in the liquid phase
US4861939A (en) * 1987-09-24 1989-08-29 Labofina, S.A. Process for removing arsine from light olefin containing hydrocarbon feedstocks
US4962272A (en) * 1989-05-30 1990-10-09 Aristech Chemical Corporation Treatment of arsine removal catalysts
US5169516A (en) * 1991-07-30 1992-12-08 Carr Norman L Removal of arsenic compounds from light hydrocarbon streams
EP0525602A2 (en) * 1991-07-30 1993-02-03 Dr. Norman L. Carr Removal of arsenic compounds from light hydrocarbon streams
EP0525602A3 (en) * 1991-07-30 1993-03-03 Dr. Norman L. Carr Removal of arsenic compounds from light hydrocarbon streams
US5330560A (en) * 1993-03-29 1994-07-19 Gas Research Institute Supported sorbents for removal and recovery of arsenic from gases
WO1994025142A1 (en) * 1993-04-23 1994-11-10 Den Norske Stats Oljeselskap A.S. Process for reducing the content of metal carbonyls in gas streams
US5451384A (en) * 1993-04-23 1995-09-19 Den Norske Stats Oljeselskap A.S. Process for reducing the content of metal carbonyls in gas streams
FR2806092A1 (en) * 2000-03-08 2001-09-14 Inst Francais Du Petrole Process for the elimination of arsenic from light petroleum cuts, by contacting with an absorbent lead compound, the active phase of the catalytic bed being mainly in the oxide form and partly in a presulfurized form
US6623629B2 (en) 2000-03-08 2003-09-23 Institut Francais Du Petrole Process for eliminating arsenic in the presence of an absorption mass comprising partially pre-sulfurized lead oxide
US20030116504A1 (en) * 2001-07-24 2003-06-26 Vempati Rajan K. Absorbent for arsenic species and method of treating arsenic-contaminated waters
US6790363B2 (en) 2001-07-24 2004-09-14 Chk Group, Inc. Method of treating arsenic-contaminated waters
US20030165416A1 (en) * 2002-03-04 2003-09-04 Hard Robert A. Methods to control H2S and arsine emissions
US6800259B2 (en) 2002-03-04 2004-10-05 Cabot Corporation Methods to control H2S and arsine emissions
US6960700B1 (en) 2002-12-19 2005-11-01 Uop Llc Adsorbent beds for removal of hydrides from hydrocarbons
US8211294B1 (en) 2011-10-01 2012-07-03 Jacam Chemicals, Llc Method of removing arsenic from hydrocarbons
US8241491B1 (en) 2011-10-01 2012-08-14 Jacam Chemicals, Llc Method of removing arsenic from hydrocarbons
US8734740B1 (en) 2013-03-15 2014-05-27 Clariant Corporation Process and composition for removal of arsenic and other contaminants from synthetic gas

Also Published As

Publication number Publication date
CA982498A (en) 1976-01-27

Similar Documents

Publication Publication Date Title
US3782076A (en) Process for reducing the arsenic content of gaseous hydrocarbon streams by use of supported lead oxide
US4593148A (en) Process for removal of arsine impurities from gases containing arsine and hydrogen sulfide
EP0382164B1 (en) Dehydrogenation process
US4795732A (en) Sulphided platinum group metal-silicalite dehydrogenation catalysts
US5322615A (en) Method for removing sulfur to ultra low levels for protection of reforming catalysts
US3812652A (en) Process for regenerating metal oxides used in the removal of arsenic from gaseous streams
KR100693968B1 (en) Carrier Catalytic Converter for the Selective Hydrogenation of Alkines and Dienes
US4605812A (en) Process for removal of arsenic from gases
US3789581A (en) Process for initial removal of sulfur compounds from gaseous hydrocarbon feedstocks before removal of arsenic therefrom
US3128317A (en) Selective hydrogenation of acetylene in ethylene with a zeolitic catalyst
EP0964904B1 (en) Olefin purification by adsorption of acetylenics and regeneration of adsorbent
CA1335810C (en) Chemical process and catalyst
US3812653A (en) Process for reducing the arsenic content of gaseous hydrocarbon streams by use of supported copper or copper oxide
CA1144183A (en) Method of removing oxygen from a gas containing an unsaturated hydrocarbon
US5126502A (en) Process for dehydrogenation of C2 -C10 paraffin to yield alkene product
US4877920A (en) Process for removing arsine impurities in process streams
US4983560A (en) Modified zeolite catalysts
US4484013A (en) Process for coproduction of isopropanol and tertiary butyl alcohol
US2779715A (en) Process for removing arsenic from a hydrocarbon feed oil used in a reforming process employing a noble metal as a catalyst
US3836594A (en) Hydrocarbon conversion process and silica and/or alumina-containing catalyst therefor
US4009009A (en) Process for reducing the COS content of gaseous hydrocarbon streams by use of supported lead oxide
US4491516A (en) Hydrolysis of carbonyl sulfide over alumina
US4188501A (en) Purification of monoolefin-containing hydrocarbon stream
US2773011A (en) Hydrogen refining hydrocarbons in the presence of an alkali metal-containing platinum catalyst
US3833498A (en) Process for reducing the arsenic content of gaseous hydrocarbon streams by the use of selective activated carbon

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)