US3770515A - High conductivity aluminum alloys - Google Patents

High conductivity aluminum alloys Download PDF

Info

Publication number
US3770515A
US3770515A US00253335A US3770515DA US3770515A US 3770515 A US3770515 A US 3770515A US 00253335 A US00253335 A US 00253335A US 3770515D A US3770515D A US 3770515DA US 3770515 A US3770515 A US 3770515A
Authority
US
United States
Prior art keywords
percent
conductivity
aluminum
alloy
iacs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00253335A
Inventor
F Besel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novelis Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3770515A publication Critical patent/US3770515A/en
Assigned to ALCAN ALUMINUM CORPORATION reassignment ALCAN ALUMINUM CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE DATE: 07/31/8 NORTHERN IRELAND Assignors: ALCAN ALUMINUM CORPORATION A CORP. OF NY (MERGED INTO), ALCAN PROPERTIES, INC., A CORP OF OHIO (CHANGED TO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium

Definitions

  • ABSTRACT A process for obtaining a high conductivity material comprising the providing of a material from the group consisting of commercial purity aluminum and aluminum alloys wherein the alloy contains at least one alloying element in an amount of from 0.1 to 1.5 percent weight, the total not exceeding 3.0 weight percent, cold deforming the material at least 15 percent below 500F, heating for at least 20 minutes in the range of 400 to 800F and cooling.
  • the present invention relates to a new and improved electrical conductor. More particularly, the present invention resides in a new and improved aluminum alloy or commercial purity aluminum characterized by improved and surprisingly high electrical conductivity.
  • high purity aluminum has an electrical conductivity somewhat in excess of 64 percent lACS; whereas, the industrial minimum conductivity requirement for a commercial purity aluminum, such as EC grade, is about 61 percent IACS, which is substantially lower than for high purity aluminum.
  • Aluminum'base electrical conductor alloys containing varying alloying elements are well-known, such as, for example, aluminum alloy 6201 containing 0.50 to 0.9 percent silicon, 0.6 to 0.9 percent magnesium, and a maximum of 0.06 percent boron, a maximum of 0.50 percent iron, 0.10 percent copper, 0.03 percent manganese, 0.03 percent chromium and 0.10 percent zinc as impurities, other-impurities each not exceeding 0.03 percent and totaling less than 0.10 percent, the balance aluminum, and aluminum alloy 5005 containing 0.50 to 1.1 percent magnesium and a maximum of 0.40 percent silicon, 0.7 percent iron, 0.20 percent manganese 0.20 percent copper, 0.10 percent chromium and 0.25 percent zinc as impurities, other impurities each not exceeding 0.05 percent and totaling less than 0.15 percent, the balance aluminum.
  • aluminum alloy 6201 containing 0.50 to 0.9 percent silicon, 0.6 to 0.9 percent magnesium, and a maximum of 0.06 percent boron
  • alloys however are in general characterized by electrical conductivity values considerably lower than high purity aluminum.
  • aluminum alloy 620] wire possesses an electrical conductivity of only about 53 to 55 percent lACS.
  • llt is therefore, highly desirable to conveniently obtain high electrical conductivity values more favorably comparable to high purity aluminum.
  • Conventional mill processing of the aluminum base alloys employed as electrical conductors, e.g., conductor wire, bus bar etc. does not achieve the aforementioned increased conductivity however, and so it is highly desirable that a process be accomplished which meets this goal.
  • the present invention is applicable to the broad class of aluminum alloys in which:
  • the equilibrium solid solubility of the alloying additions is relatively small at room temperature with increasing solubility thereof with increasing temperature;
  • the amounts of the alloying additions in the alloy are above the solubility limit thereof at room temperature
  • the present invention is also equally applicable to commercial purity aluminum, i.e., at least 99.3 purity, as aforementioned, wherein the electrical conductivity is substantially increased to a value more closely approximating that for high purity aluminum.
  • the process of the present invention comprises:
  • the alloy is further deformed following step(D) at a temperature of from that of room to less than 500F. This may be accomplished after cooling to room temperature and reheating, or upon or after cooling down from the temperature range of step C.
  • the amount of deformation is naturally dependent upon the strength required and may range up to 99.8 percent or more.
  • the more common alloying additions employed in the alloys of the invention are copper, magnesium, silicon, cadmium, antimony, bismuth, tin, zirconium, tantalum, titanium, and/or chromium, although others may also be employed and naturally various elements as impurities may also be present.
  • the alloy provided may contain the alloying additions substantially in solution prior to the cold deforming step (B), should a direct chill of the billet after casting be employed, although the present invention is equally applicable to alloys wherein the alloying additions are to a degree not in solution. That is, it is immaterial to the present invention whether the alloying substituents are substantially in solution, and hence a direct chill or normal air cool of the casting may be readily employed after casting and/or after homogenizing,
  • the material provided may readily be in the cast condition or in the wrought condition, i.e., the casting may first be reduced prior to the cold deforming of step (B).
  • step (B) normally refers to deformation carried out at room temperature although deformation may also be carried out at higher temperatures so long as the temperature remains below the recrystallization temperatureof the particular alloy being deformed and in general ranges from room up to less than about 500F. Deforming at temperatures above that of room however, requires amount of reduction in order to provide the requisite internal deformation of the alloy. Although the maximum amount of cold reduction is not critical and may range up to 99.8 percent or more, the minimum amount of reduction required is at percent.
  • the purpose of the cold deforming of Step (B) and subsequent heating of Step(C) is to effect precipitation of those alloying constituents and impurities which exceed their solubility limit in the alloy at room temperature, and which a portion thereof has remained in solution after a normal air cool, or wherein the substituents have remained substantially in solution due to a rapid cool of the material.
  • Cold deformation of the alloy produces an unstable alloy structure containing these alloying constituents in solid solution.
  • the initial degree of cold deformation of Step (B) will effect the requisite temperature and the time of the intermediate heat treatment of Step (C) required for any particular alloy and will also determine the resultant level of electrical conductivity and strength. For example, a severely cold deformed alloy will respond at a lower temperature, but will require a longer time at said temperature in order to develop electrical conductivity substantially equal to that of an alloy having a lesser amount of cold deformation and a correspondingly lesser time at a higher heat treating temperature.
  • the heating of Step (C) must be for at least minutes the maximum time of heating is not especially critical but generally, although not necessarily, is about 48 hours.
  • electrical conductivity values of the alloys of aluminum are raised to within the range of 57 percent to 64 percent IACS, and of commercial purity aluminum to the range of 62.5 to 64 percent IACS.
  • the alloy may then be further deformed, or reduced, to the desired gage at room temperature in order to develop the requisite tensile strength e.g., to a range of 37,000 to 55,000 psi., since the alloy is now essentially annealed.
  • the present invention thus provides for a high conductivity material more nearly comparable to high pu-' rity aluminum and, if desired, coupled with improved strength for application wherein high strength is requisite.
  • EXAMPLE I A 2 X 2 X 7 inches billet containing 0.49 percent copper, 0.17 percent iron, 0.06 percent silicon by analysis in weight percent, was cast, solution heat treated at 1150F for 2 hours and water quenched.
  • the as-cast solution heat treated billet had a conductivity of 57.5 percent IACS measured on a Magnatest FM-lOO Conductivity Meter.
  • the as-cast solution heat treated billet was then processed to determine the properties attainable by normal processing, i.e., the billet was then cold rolled down to inch diameter redraw rod with the only heating being that which is normally evolved during cold working, and then drawn durther to 0.145 inch diameter wire-a total reduction of 99.6 percent from the casting. At this reduction the wire had a conductivity of only 56.67 percent IACS (measured on a Kelvin Bridge) and a UTS of 47,000 psi.
  • EXAMPLE Ill A 2 X 2 X 7 inches billet containing 0.48 percent copper, 0.15 percent iron, 0.06 percent silicon by analysis in weight percent, was cast, solution heat treated at 1150F for 2 hours and water quenched.
  • the as-cast solution heat treated billet had a conductivity of 57.5 percent IACS measured on a Magnatest FM-lOO Conductivity Meter.
  • the as-cast solution heat treated billet was processed according to the invention as follows: the billet was cold rolled 77 percent in four passes to a hexagonal-shaped rod with a cross sectional area equivalent to a diameter of 1.08 inch. The cold work reduced the conductivity to 55.7 percent IACS. The cold worked rod was then heat treated at 525F for 25 hours and water quenched. This treatment caused the conductivity to increase to 59.4 percent IACS. After cooling, the alloy was then cold rolled to inch diameter redraw rod with the only heating being that which is normally evolved during cold working, and then drawn to 0.145 inch diameter wire and tested.
  • This wire had a conductivity of 59.96 percent IACS (measured on a Kelvin Bridge) and a UTS of 37,600 psi at this gage.
  • EXAMPLE III A 2 X 2 X 7 inches billet containing 0.40 percent magnesium, 0.10 silicon, 0.18 percent iron by analysis in weight percent, was solution heat treated at l F. 2 hours and water quenched.
  • the as cast solution heat treated billet had a conductivity of 56.1 percent IACS measured on a Magnatest FM-l00 Conductivity Meter.
  • the as-cast solution heat treated billet was then processed to determine the porperties attainable by normal processing, i.e., the billet was cold rolled to inch diameter redraw rod with the only heating being that which is normally evolved during cold working, and then a section was drawn to 0.145 inch diameter wire (a reduction of 99.6 percent) and tested. it had a conductivity of only 55.9 percent IACS (measured on a Kelvin Bridge) and a UTS of 42,400 psi.
  • EXAMPLE IV A section of the inch diameter redraw rod as described in Example 111 was then drawn to 0.325 inch diameter rod (97.9 percent reduction from the casting).
  • the drawn 0.325 inch diameter rod had conductivity of 56.40 percent lACS (measured on a Kelvin Bridge).
  • the rod was then further processes according to the invention as follows: the rod was given an intermediate temperature heat treatment of 650F for 100 minutes and water quenched. This treatment raised the conductivity to 60.12 percent IACS.
  • the rod was then drawn to fine wire (between 0.145 inch and 0.064 inch diameters) and tested. The interpolated data indicates that for a 99.6 percent reduction, the alloy would have a conductivity of 58.7 percent lACS and a UTS of 45,600 psi.
  • EXAMPLE V A 2 X 2 X 7 inches ingot containing 0.18 percent iron, 0.06 percent silicon, 0.015 percent boron, nominal composition in weight percent, balance essentially aluminum was heat treated at 740F for 4 hours and air cooled before processing according to this invention. After this treatment the ingot had a conductivity of 62.8 percent lACS when measured on a Magnatest FM-100 conductivity meter. The heat treated ingot was then cold rolled to 1.08 inch diameter rod. The conductivity after this 77 percent reduction was 62.3 percent IACS. The rod was then heated at 540F for 24 hours and cooled. The conductivity was found to increase to 63.9 percent IACS.
  • EXAMPLE VI A 2 X 2 X 7 inches ingot containing 0.10 percent copper, 0.18 percent iron, 0.06 percent silicon nominal composition, in weight percent, balance essentially alu minum, had a conductivity of 60.0 percent IACS in the cast condition, measured on a Magnatest FM-100 conductivity meter. The ingot was homogenized at 1 150F for 2 hours and water quenched. The conductivity after this treatment was 59.8 percent IACS. According to this invention the heat treated ingot was then cold rolled to 1.08 inch diameter rod (a reduction of 77 percent) in which condition it had a conductivity of 59.2 percent lACS. The cold rolled rod was then heat treated at 540 F for 24 hours. The rod was subsequently rolled and drawn 90 percent to 0.325 inch diameter rod when it had a conductivity of 61.8 percent lACS measured on a Kelvin Bridge.
  • EXAMPLE Vll A 2 X 2 X 7 inches ingot containing 0.20 percent magnesium, 0.18 percent iron, 0.6 percent silicon nominal composition in weight percent, balance essentially aluminum, had a conductivity of 58.3 percent measured on Magnatest FM-100 conductivity meter in the cast condition. The conductivity after the ingot was homogenized at 940F 8 hours and air cooled was 59.1 percent IACS. The heat treated ingot in accordance with this invention was then cold rolled 77 percent to 1.08 inches diameter after which the conductivity was reduced to 59.1 percent IACS. The cold rolled rod was then heat treated at 517F for 24 hours and subsequently conventionally rolled and drawn 98 percent to 0.145 inch diameter wire where the conductivity was 61.5 percent IACS measured on a Kelvin Bridge.
  • EXAMPLE Vlll As an example of the prior art for comparison to Example V, a 2 X 2 X 7 inches ingot of the composition of Example V was heat treated at 750F for hour and then hot rolled in 13 passes without further heating to %inch diameter redraw rod. At this diameter the alloy had a conductivity of 62.4 percent lACS measured on a Kelvin Bridge.
  • the present invention readily provides for surprisingly increased electrical conductivity values which more closely approximate that of high pu-' rity aluminum as well as high strength, if desired.
  • a process for forming a high conductivity commercial purity aluminum or aluminum alloy conductor comprising:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

A process for obtaining a high conductivity material comprising the providing of a material from the group consisting of commercial purity aluminum and aluminum alloys wherein the alloy contains at least one alloying element in an amount of from 0.1 to 1.5 percent weight, the total not exceeding 3.0 weight percent, cold deforming the material at least 15 percent below 500* F, heating for at least 20 minutes in the range of 400* to 800* F and cooling.

Description

United States Patent [1 1 Besel Nov. 6, 1973 HIGH CONDUCTIVITY ALUMINUM ALLOYS OTHER PUBLICATIONS Metal Progress, May 1953; CondAl"-a Tailor-Made Aluminum Alloy of High Creep Strength and Conductivity; Harrington et al., pp. 90-93.
Primary ExaminerW. W. Stallard AttorneyRobert H. Bachman [57] ABSTRACT A process for obtaining a high conductivity material comprising the providing of a material from the group consisting of commercial purity aluminum and aluminum alloys wherein the alloy contains at least one alloying element in an amount of from 0.1 to 1.5 percent weight, the total not exceeding 3.0 weight percent, cold deforming the material at least 15 percent below 500F, heating for at least 20 minutes in the range of 400 to 800F and cooling.
7 Claims, No Drawings 1 HIGH CONDUCTIVITY ALUMINUM ALLOYS This is a continuation, of application Ser. No. 885,315 filed Dec. 15, 1969 now abandoned, which application is a continuation-in-part of co-pending application Ser. No. 715,552, filed Mar. 25, 1968 now abandoned.
The present invention relates to a new and improved electrical conductor. More particularly, the present invention resides in a new and improved aluminum alloy or commercial purity aluminum characterized by improved and surprisingly high electrical conductivity.
High electrical conductivity is essential in electrical conductors since electrical conductivity is the key characteristic of an aluminum conductor.
Specifically, with respect to aluminum conductors, high purity aluminum has an electrical conductivity somewhat in excess of 64 percent lACS; whereas, the industrial minimum conductivity requirement for a commercial purity aluminum, such as EC grade, is about 61 percent IACS, which is substantially lower than for high purity aluminum.
Aluminum'base electrical conductor alloys containing varying alloying elements are well-known, such as, for example, aluminum alloy 6201 containing 0.50 to 0.9 percent silicon, 0.6 to 0.9 percent magnesium, and a maximum of 0.06 percent boron, a maximum of 0.50 percent iron, 0.10 percent copper, 0.03 percent manganese, 0.03 percent chromium and 0.10 percent zinc as impurities, other-impurities each not exceeding 0.03 percent and totaling less than 0.10 percent, the balance aluminum, and aluminum alloy 5005 containing 0.50 to 1.1 percent magnesium and a maximum of 0.40 percent silicon, 0.7 percent iron, 0.20 percent manganese 0.20 percent copper, 0.10 percent chromium and 0.25 percent zinc as impurities, other impurities each not exceeding 0.05 percent and totaling less than 0.15 percent, the balance aluminum.
These alloys however are in general characterized by electrical conductivity values considerably lower than high purity aluminum. For example, aluminum alloy 620] wire possesses an electrical conductivity of only about 53 to 55 percent lACS.
llt is therefore, highly desirable to conveniently obtain high electrical conductivity values more favorably comparable to high purity aluminum. Conventional mill processing of the aluminum base alloys employed as electrical conductors, e.g., conductor wire, bus bar etc. does not achieve the aforementioned increased conductivity however, and so it is highly desirable that a process be accomplished which meets this goal.
It is also highly desirable to conveniently obtain high electrical conductivity valuesin combination with high strength in electrical conductors such as wire and strip, for use as, for example, overhead electrical transmission lines in order to reduce the number of supporting line poles or towers. At present it is necessary to employ, for example, strands of EC H-l9 temper aluminum wire reinforced with a high strength steel core, or to include additions of varying alloying elements in aluminum in order to achieve the requisite tensile strength but with an attendant loss in electrical conductivity.
It is therefore a principal object of the present invention to provide a process for obtaining commercial purity aluminum or an aluminum alloy with increased electrical conductivity, and the alloy produced thereby.
It is a further object of the present invention to provide a process for obtaining an aluminum alloy having increased electrical conductivity as well as increased strength, and the alloy produced thereby.
it is a further object of the present invention to provide a process to achieve the foregoing objectives simply and conveniently at relatively low cost.
It has now been found that in accordance with the present invention the foregoing objectives may be readily achieved.
In general, the present invention is applicable to the broad class of aluminum alloys in which:
A. the equilibrium solid solubility of the alloying additions is relatively small at room temperature with increasing solubility thereof with increasing temperature;
B. the amounts of the alloying additions in the alloy are above the solubility limit thereof at room temperature The present invention is also equally applicable to commercial purity aluminum, i.e., at least 99.3 purity, as aforementioned, wherein the electrical conductivity is substantially increased to a value more closely approximating that for high purity aluminum.
Briefly, the process of the present invention comprises:
A. providing a material selected from the group consisting of commercial purity aluminum and aluminum alloys, wherein said alloys contain at least one alloying addition in an amount from 0.1 to 1.5 weight percent, the total thereof not exceeding 3.0
-weight percent, wherein said alloying addition is soluble in an amount greater than 0.25 percent in said alloy, and wherein there is no eutectic transformation in said aluminum alloy below 400F;
B. cold deforming said material to at least 15 percent reduction;
C. heating said material to 400 to 800F for at least 20 minutes; and
D. cooling said material.
For applications requiring increased strength as well as increased electrical conductivity the alloy, as distinguished from commercial purity aluminum, is further deformed following step(D) at a temperature of from that of room to less than 500F. This may be accomplished after cooling to room temperature and reheating, or upon or after cooling down from the temperature range of step C. The amount of deformation is naturally dependent upon the strength required and may range up to 99.8 percent or more.
Generally, the more common alloying additions employed in the alloys of the invention are copper, magnesium, silicon, cadmium, antimony, bismuth, tin, zirconium, tantalum, titanium, and/or chromium, although others may also be employed and naturally various elements as impurities may also be present.
The alloy provided may contain the alloying additions substantially in solution prior to the cold deforming step (B), should a direct chill of the billet after casting be employed, although the present invention is equally applicable to alloys wherein the alloying additions are to a degree not in solution. That is, it is immaterial to the present invention whether the alloying substituents are substantially in solution, and hence a direct chill or normal air cool of the casting may be readily employed after casting and/or after homogenizing,
should homogenizing be required prior to the practicing of the present invention.
in addition the material provided may readily be in the cast condition or in the wrought condition, i.e., the casting may first be reduced prior to the cold deforming of step (B). v
The cold deforming of step (B) normally refers to deformation carried out at room temperature although deformation may also be carried out at higher temperatures so long as the temperature remains below the recrystallization temperatureof the particular alloy being deformed and in general ranges from room up to less than about 500F. Deforming at temperatures above that of room however, requires amount of reduction in order to provide the requisite internal deformation of the alloy. Although the maximum amount of cold reduction is not critical and may range up to 99.8 percent or more, the minimum amount of reduction required is at percent.
The purpose of the cold deforming of Step (B) and subsequent heating of Step(C) is to effect precipitation of those alloying constituents and impurities which exceed their solubility limit in the alloy at room temperature, and which a portion thereof has remained in solution after a normal air cool, or wherein the substituents have remained substantially in solution due to a rapid cool of the material. Cold deformation of the alloy produces an unstable alloy structure containing these alloying constituents in solid solution. Subsequent heating of the deformed structure at the temperature range of 400 to 800F of Step (C) and preferably from 400 to 600F, allows nucleation to occur in the unstable alloy and precipitation to approach equilibrium, whereby electrical conductivity increases.
The initial degree of cold deformation of Step (B) will effect the requisite temperature and the time of the intermediate heat treatment of Step (C) required for any particular alloy and will also determine the resultant level of electrical conductivity and strength. For example, a severely cold deformed alloy will respond at a lower temperature, but will require a longer time at said temperature in order to develop electrical conductivity substantially equal to that of an alloy having a lesser amount of cold deformation and a correspondingly lesser time at a higher heat treating temperature. Although the heating of Step (C) must be for at least minutes the maximum time of heating is not especially critical but generally, although not necessarily, is about 48 hours.
In general, in accordance with the present invention, electrical conductivity values of the alloys of aluminum are raised to within the range of 57 percent to 64 percent IACS, and of commercial purity aluminum to the range of 62.5 to 64 percent IACS.
Following the aforementioned heat treatment of Step (C) and cooling of step (D) the alloy may then be further deformed, or reduced, to the desired gage at room temperature in order to develop the requisite tensile strength e.g., to a range of 37,000 to 55,000 psi., since the alloy is now essentially annealed.
The present invention thus provides for a high conductivity material more nearly comparable to high pu-' rity aluminum and, if desired, coupled with improved strength for application wherein high strength is requisite.
The present invention will be more readily apparent from a consideration of the following illustrative examples:
EXAMPLE I A 2 X 2 X 7 inches billet containing 0.49 percent copper, 0.17 percent iron, 0.06 percent silicon by analysis in weight percent, was cast, solution heat treated at 1150F for 2 hours and water quenched. The as-cast solution heat treated billet had a conductivity of 57.5 percent IACS measured on a Magnatest FM-lOO Conductivity Meter. The as-cast solution heat treated billet was then processed to determine the properties attainable by normal processing, i.e., the billet was then cold rolled down to inch diameter redraw rod with the only heating being that which is normally evolved during cold working, and then drawn durther to 0.145 inch diameter wire-a total reduction of 99.6 percent from the casting. At this reduction the wire had a conductivity of only 56.67 percent IACS (measured on a Kelvin Bridge) and a UTS of 47,000 psi.
EXAMPLE Ill A 2 X 2 X 7 inches billet containing 0.48 percent copper, 0.15 percent iron, 0.06 percent silicon by analysis in weight percent, was cast, solution heat treated at 1150F for 2 hours and water quenched. The as-cast solution heat treated billet had a conductivity of 57.5 percent IACS measured on a Magnatest FM-lOO Conductivity Meter. The as-cast solution heat treated billet was processed according to the invention as follows: the billet was cold rolled 77 percent in four passes to a hexagonal-shaped rod with a cross sectional area equivalent to a diameter of 1.08 inch. The cold work reduced the conductivity to 55.7 percent IACS. The cold worked rod was then heat treated at 525F for 25 hours and water quenched. This treatment caused the conductivity to increase to 59.4 percent IACS. After cooling, the alloy was then cold rolled to inch diameter redraw rod with the only heating being that which is normally evolved during cold working, and then drawn to 0.145 inch diameter wire and tested.
This wire had a conductivity of 59.96 percent IACS (measured on a Kelvin Bridge) and a UTS of 37,600 psi at this gage.
Additional wire was drawn to 0.064 inch diameter and tested. This data indicates that for a cold reduction of 99.6 percent, i.e., that achieved in reducing a 2.25 inch diameter casting to 0.145 inch diameter wire, the wire had a conductivity of 59.5 percent IACS and a UTS of 47,000 psi.
EXAMPLE III A 2 X 2 X 7 inches billet containing 0.40 percent magnesium, 0.10 silicon, 0.18 percent iron by analysis in weight percent, was solution heat treated at l F. 2 hours and water quenched. The as cast solution heat treated billet had a conductivity of 56.1 percent IACS measured on a Magnatest FM-l00 Conductivity Meter. The as-cast solution heat treated billet was then processed to determine the porperties attainable by normal processing, i.e., the billet was cold rolled to inch diameter redraw rod with the only heating being that which is normally evolved during cold working, and then a section was drawn to 0.145 inch diameter wire (a reduction of 99.6 percent) and tested. it had a conductivity of only 55.9 percent IACS (measured on a Kelvin Bridge) and a UTS of 42,400 psi.
EXAMPLE IV A section of the inch diameter redraw rod as described in Example 111 was then drawn to 0.325 inch diameter rod (97.9 percent reduction from the casting). The drawn 0.325 inch diameter rod had conductivity of 56.40 percent lACS (measured on a Kelvin Bridge). The rod was then further processes according to the invention as follows: the rod was given an intermediate temperature heat treatment of 650F for 100 minutes and water quenched. This treatment raised the conductivity to 60.12 percent IACS. The rod was then drawn to fine wire (between 0.145 inch and 0.064 inch diameters) and tested. The interpolated data indicates that for a 99.6 percent reduction, the alloy would have a conductivity of 58.7 percent lACS and a UTS of 45,600 psi.
EXAMPLE V A 2 X 2 X 7 inches ingot containing 0.18 percent iron, 0.06 percent silicon, 0.015 percent boron, nominal composition in weight percent, balance essentially aluminum was heat treated at 740F for 4 hours and air cooled before processing according to this invention. After this treatment the ingot had a conductivity of 62.8 percent lACS when measured on a Magnatest FM-100 conductivity meter. The heat treated ingot was then cold rolled to 1.08 inch diameter rod. The conductivity after this 77 percent reduction was 62.3 percent IACS. The rod was then heated at 540F for 24 hours and cooled. The conductivity was found to increase to 63.9 percent IACS.
EXAMPLE VI A 2 X 2 X 7 inches ingot containing 0.10 percent copper, 0.18 percent iron, 0.06 percent silicon nominal composition, in weight percent, balance essentially alu minum, had a conductivity of 60.0 percent IACS in the cast condition, measured on a Magnatest FM-100 conductivity meter. The ingot was homogenized at 1 150F for 2 hours and water quenched. The conductivity after this treatment was 59.8 percent IACS. According to this invention the heat treated ingot was then cold rolled to 1.08 inch diameter rod (a reduction of 77 percent) in which condition it had a conductivity of 59.2 percent lACS. The cold rolled rod was then heat treated at 540 F for 24 hours. The rod was subsequently rolled and drawn 90 percent to 0.325 inch diameter rod when it had a conductivity of 61.8 percent lACS measured on a Kelvin Bridge.
EXAMPLE Vll A 2 X 2 X 7 inches ingot containing 0.20 percent magnesium, 0.18 percent iron, 0.6 percent silicon nominal composition in weight percent, balance essentially aluminum, had a conductivity of 58.3 percent measured on Magnatest FM-100 conductivity meter in the cast condition. The conductivity after the ingot was homogenized at 940F 8 hours and air cooled was 59.1 percent IACS. The heat treated ingot in accordance with this invention was then cold rolled 77 percent to 1.08 inches diameter after which the conductivity was reduced to 59.1 percent IACS. The cold rolled rod was then heat treated at 517F for 24 hours and subsequently conventionally rolled and drawn 98 percent to 0.145 inch diameter wire where the conductivity was 61.5 percent IACS measured on a Kelvin Bridge.
EXAMPLE Vlll As an example of the prior art for comparison to Example V, a 2 X 2 X 7 inches ingot of the composition of Example V was heat treated at 750F for hour and then hot rolled in 13 passes without further heating to %inch diameter redraw rod. At this diameter the alloy had a conductivity of 62.4 percent lACS measured on a Kelvin Bridge.
It is thus seen that the present invention readily provides for surprisingly increased electrical conductivity values which more closely approximate that of high pu-' rity aluminum as well as high strength, if desired.
This inventon may be embodied in other forms or carried out in other ways without departing from the spirit or essential characteristics thereof. The present embodiment is therefore to be considered as in all respects illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and all changes which come within the meaning and range of .equivalency are intended to be embraced therein.
What is claimed is:
l. A process for forming a high conductivity commercial purity aluminum or aluminum alloy conductor comprising:
A. providing a material selected from the group consisting of commercial purity aluminum and aluminum alloys containing at least one alloying addition in an amount from 0.1 to 1.5 percent, said alloying addition being selected from the group consisting of magnesium, copper, silicon and mixtures thereof, the total amount of said alloying additions not exceeding 3 percent;
B. cold deforming said material to rod at least 15 percent at a temperature below 500F;
C. heating said material for at least 20 minutes at a temperature from 400F to 800F, whereby nucleation occurs in the alloy and electrical conductivity is increased;
1). cooling said material; and
E. further deforming said alloy to wire at a temperature less than 500F.
2. A process according to claim 1 wherein said material is an aluminum alloy containing magnesium.
3. A process according to claim 1 wherein said material is an aluminum alloy containing copper.
4. A process according to claim 1 wherein said material is an aluminum alloy containing silicon.
5. A process according to claim 1 wherein said material is commercial purity aluminum.
6. A process according to claim 1 wherein said heating step (C) allows precipitation to approach equilibnum.
7. A process according to claim 1 wherein the resultant product has an electrical conductivity of from 57 to 64 IACS.

Claims (6)

  1. 2. A process according to claim 1 wherein said material is an aluminum alloy containing magnesium.
  2. 3. A process according to claim 1 wherein said material is an aluminum alloy containing copper.
  3. 4. A process according to claim 1 wherein said material is an aluminum alloy containing silicon.
  4. 5. A process according to claim 1 wherein said material is commercial purity aluminum.
  5. 6. A process according to claim 1 wherein said heating step (C) allows precipitation to approach equilibrium.
  6. 7. A process according to claim 1 wherein the resultant product has an electrical conductivity of from 57 to 64 IACS.
US00253335A 1972-05-15 1972-05-15 High conductivity aluminum alloys Expired - Lifetime US3770515A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US25333572A 1972-05-15 1972-05-15

Publications (1)

Publication Number Publication Date
US3770515A true US3770515A (en) 1973-11-06

Family

ID=22959855

Family Applications (1)

Application Number Title Priority Date Filing Date
US00253335A Expired - Lifetime US3770515A (en) 1972-05-15 1972-05-15 High conductivity aluminum alloys

Country Status (1)

Country Link
US (1) US3770515A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2289035A1 (en) * 1974-08-29 1976-05-21 Trefimetaux ELECTRICAL CONDUCTORS IN ALUMINUM ALLOYS AND PROCESS FOR OBTAINING
US4042424A (en) * 1975-05-28 1977-08-16 Societe De Vente De L'aluminium Electrical conductors of aluminum-based alloys
US4065326A (en) * 1975-05-28 1977-12-27 Societe De Vente De L'aluminium Pechiney Electrical conductors of aluminum-based alloys and process for the manufacture thereof
US4192693A (en) * 1971-11-01 1980-03-11 Southwire Company Aluminum copper alloy electrical conductor and method
US4407679A (en) * 1980-11-19 1983-10-04 National Steel Corporation Method of producing high tensile aluminum-magnesium alloy sheet and the products so obtained
EP0254698A1 (en) * 1986-06-20 1988-01-27 A/S Raufoss Ammunisjonsfabrikker Aluminium alloy, a method of making it and an application of the alloy
US20080196923A1 (en) * 2005-02-08 2008-08-21 The Furukawa Electric Co., Ltd. Aluminum conducting wire
EP2657359A1 (en) * 2010-12-20 2013-10-30 Furukawa-Sky Aluminum Corp. Aluminum alloy foil for electrode current collectors and manufacturing method thereof
US8999079B2 (en) 2010-09-08 2015-04-07 Alcoa, Inc. 6xxx aluminum alloys, and methods for producing the same
US9587298B2 (en) 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
US9926620B2 (en) 2012-03-07 2018-03-27 Arconic Inc. 2xxx aluminum alloys, and methods for producing the same
US10796821B1 (en) * 2019-06-03 2020-10-06 Mi-Song Ku Method of manufacturing polygonal shaped Al alloy wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2572562A (en) * 1948-04-01 1951-10-23 Gen Electric Aluminum alloy
US3697260A (en) * 1969-12-30 1972-10-10 Aluminum Co Of America Aluminum conductor wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2572562A (en) * 1948-04-01 1951-10-23 Gen Electric Aluminum alloy
US3697260A (en) * 1969-12-30 1972-10-10 Aluminum Co Of America Aluminum conductor wire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Metal Progress, May 1953; Cond Al a Tailor Made Aluminum Alloy of High Creep Strength and Conductivity; Harrington et al., pp. 90 93. *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192693A (en) * 1971-11-01 1980-03-11 Southwire Company Aluminum copper alloy electrical conductor and method
FR2289035A1 (en) * 1974-08-29 1976-05-21 Trefimetaux ELECTRICAL CONDUCTORS IN ALUMINUM ALLOYS AND PROCESS FOR OBTAINING
US4042424A (en) * 1975-05-28 1977-08-16 Societe De Vente De L'aluminium Electrical conductors of aluminum-based alloys
US4065326A (en) * 1975-05-28 1977-12-27 Societe De Vente De L'aluminium Pechiney Electrical conductors of aluminum-based alloys and process for the manufacture thereof
US4407679A (en) * 1980-11-19 1983-10-04 National Steel Corporation Method of producing high tensile aluminum-magnesium alloy sheet and the products so obtained
EP0254698A1 (en) * 1986-06-20 1988-01-27 A/S Raufoss Ammunisjonsfabrikker Aluminium alloy, a method of making it and an application of the alloy
US5067994A (en) * 1986-06-20 1991-11-26 Raufoss As Aluminium alloy, a method of making it and an application of the alloy
US7550675B2 (en) * 2005-02-08 2009-06-23 The Furukawa Electric Co., Ltd. Aluminum conducting wire
US20080196923A1 (en) * 2005-02-08 2008-08-21 The Furukawa Electric Co., Ltd. Aluminum conducting wire
US8999079B2 (en) 2010-09-08 2015-04-07 Alcoa, Inc. 6xxx aluminum alloys, and methods for producing the same
US9194028B2 (en) 2010-09-08 2015-11-24 Alcoa Inc. 2xxx aluminum alloys, and methods for producing the same
US9249484B2 (en) 2010-09-08 2016-02-02 Alcoa Inc. 7XXX aluminum alloys, and methods for producing the same
US9359660B2 (en) 2010-09-08 2016-06-07 Alcoa Inc. 6XXX aluminum alloys, and methods for producing the same
EP2657359A1 (en) * 2010-12-20 2013-10-30 Furukawa-Sky Aluminum Corp. Aluminum alloy foil for electrode current collectors and manufacturing method thereof
EP2657359A4 (en) * 2010-12-20 2014-08-13 Furukawa Sky Aluminum Corp Aluminum alloy foil for electrode current collectors and manufacturing method thereof
US10050257B2 (en) 2010-12-20 2018-08-14 Uacj Corporation Aluminum alloy foil for electrode current collectors and manufacturing method thereof
US9926620B2 (en) 2012-03-07 2018-03-27 Arconic Inc. 2xxx aluminum alloys, and methods for producing the same
US9587298B2 (en) 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
US10796821B1 (en) * 2019-06-03 2020-10-06 Mi-Song Ku Method of manufacturing polygonal shaped Al alloy wire

Similar Documents

Publication Publication Date Title
US3418177A (en) Process for preparing aluminum base alloys
US4028141A (en) Aluminum iron silicon alloy
US4042424A (en) Electrical conductors of aluminum-based alloys
US3770515A (en) High conductivity aluminum alloys
WO2020182506A1 (en) Method of manufacturing a 5xxx-series sheet product
US4305762A (en) Copper base alloy and method for obtaining same
US5045131A (en) Contact conductor for electric vehicles
US4067750A (en) Method of processing copper base alloys
US4140549A (en) Method of fabricating an aluminum alloy electrical conductor
US3843418A (en) Aluminum alloys for electrical conductors and method thereof
US3320055A (en) Magnesium-base alloy
CN112522552B (en) Corrosion-resistant aluminum alloy and preparation method and application thereof
US3958987A (en) Aluminum iron cobalt silicon alloy and method of preparation thereof
US5383986A (en) Method of improving transverse direction mechanical properties of aluminum-lithium alloy wrought product using multiple stretching steps
US3464866A (en) Process for obtaining aluminum alloy conductors
JPH086161B2 (en) Manufacturing method of high strength A1-Mg-Si alloy member
US3346371A (en) Aluminum base alloy
US4007039A (en) Copper base alloys with high strength and high electrical conductivity
US3241953A (en) Aluminum conductor and process for obtaining same
US3763686A (en) Process for obtaining aluminum alloy conductor
US3773501A (en) Aluminum alloys for electrical conductor
US3923555A (en) Processing copper base alloys
US4397696A (en) Method for producing improved aluminum conductor from direct chill cast ingot
US4213800A (en) Electrical conductivity of aluminum alloys through the addition of yttrium
US4213799A (en) Improving the electrical conductivity of aluminum alloys through the addition of mischmetal

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALCAN ALUMINUM CORPORATION

Free format text: MERGER;ASSIGNORS:ALCAN ALUMINUM CORPORATION A CORP. OF NY (MERGED INTO);ALCAN PROPERTIES, INC., A CORP OF OHIO (CHANGED TO);REEL/FRAME:004536/0724

Effective date: 19860220