US3766844A - Protective system for contaminated atmosphere - Google Patents

Protective system for contaminated atmosphere Download PDF

Info

Publication number
US3766844A
US3766844A US00210344A US3766844DA US3766844A US 3766844 A US3766844 A US 3766844A US 00210344 A US00210344 A US 00210344A US 3766844D A US3766844D A US 3766844DA US 3766844 A US3766844 A US 3766844A
Authority
US
United States
Prior art keywords
shelter
entrance
door
air
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00210344A
Inventor
T Donnelly
J Haueter
C Lind
W Krisko
D Schoen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Application granted granted Critical
Publication of US3766844A publication Critical patent/US3766844A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • F24F3/167Clean rooms, i.e. enclosed spaces in which a uniform flow of filtered air is distributed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/108Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using dry filter elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/158Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using active carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/12Details or features not otherwise provided for transportable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S135/00Tent, canopy, umbrella, or cane
    • Y10S135/904Separate storage means or housing for shelter

Definitions

  • ABSTRACT A system and method to provide protective shelter in contaminated atmosphere areas utilizing a protective shelter, a portable protective entrance, gas-particulate filter unit and associated components, pressure sensing network and associated components andcontrols, sliding-plate airflow valves, and a power distribution unit.
  • Our invention relates to a new method and system having utility for providing protective shelter in a contaminated atmosphere.
  • Our invention was conceived and reduced to practice to solve the aforementioned problem and to satisfy the long felt need for the aforementioned protective shelter and method.
  • a principal object of our invention is to provide an apparatus and method which is easily erected and simple to use to permit performance of decontamination procedures outside of a contaminatedatmosphere but prior to entering a protective shelter.
  • Another object of our invention is to provide an apparatus and method to permit personnel to enter and exit a protective shelter witout loss of compartment pressurized protection.
  • FIG. 1 is a view showing the utility of our apparatus.
  • FIG. 2 is a schematic top view of the apparatus shown in FIG. 1.
  • FIG. 3 is a view of the storage or transit package of our apparatus.
  • FIG. 4 is a cutaway view of our apparatus and the en-.
  • FIG. 5 is a view through 5-5 of our apparatus shown in FIG. 4.
  • FIG. 6 is a view of the pin locking means to connect our apparatus to a protective shelter as shown in FIG. 1.
  • FIG. 7 is an exploded view of the components shown in FIG. 6.
  • FIG. 8 is a view through 8-8 of our apparatus shown in FIG. 4.
  • FIG. 9 is a view through 99 of our apparatus shown in FIG. 4.
  • FIG. 10 is a view of the inlet airflow valve with dust cover for our apparatus.
  • FIG. 11 is a view of the top of our apparatus which also forms one half of the container means of the package shown in FIG. 3.
  • FIG. 12 is a view of the door for our apparatus in the assembled mode.
  • FIG. 13 is a view of the door for our apparatus in the unassembled mode.-
  • FIG. 14 is a view through 14-14 of FIG. 12.
  • FIG. 15 is a view through 15-15 of FIG. 12.
  • FIG. 16 is a partial view of the frame of the door shown in FIG. 12, wall, and a storage pocket of our apparatus.
  • FIG. 17 is a view of the door shown in FIG. 12 and a cover means for the door window.
  • FIG. 18 is a view of the pressure sensing module mounted within our apparatus.
  • FIG. 19 is a view of the asembly means for our apparatus to connect the supports to the top shown in FIG. I 1.
  • FIG. 20 is a view of the connector means shown in FIG. 19.
  • FIG. 21 is a view of the supports for our apparatus in the storage mode in the bottom of our apparatus.
  • FIG. 22 is a view of the sliding-plate airflow valve of our apparatus to control the protective shelter pressur ization.
  • FIG. 23 is a view of the supports for our apparatus in the folded or storage mode.
  • FIG. 24 is a view of the top, bottom and supports of our apparatus in the partially erected mode.
  • FIG. 25 is a view of the support brace for our apparatus.
  • FIG. 26 is a view of the support for our apparatus in the partially erected mode.
  • FIG. 27 is an enlarged view of the pull pin for the support for our apparatus shown in FIG. 26.
  • FIG. 28 is a side view of the support for our apparatus.
  • FIG. 29 is a front view of the support for our apparatus.
  • FIG. 30 is a view of the gas-particulate filter unit assembly of our apparatus.
  • FIG. 31 is a view of the control/pressure sensing module for our apparatus.
  • FIG. 32 is a view of the stand for the gas-particulate filter unit of our apparatus.
  • FIG. 33 is a view of the gas filter for our apparatus.
  • FIG. 34 is a view of the particulate filter for our apparatus.
  • FIG. 35 is a schematic view showing the air flow through our apparatus.
  • FIG. 36 is an end view of our apparatus shown in FIG. 30.
  • FIG. 37 is a view through 37-37 of our apparatu shown in FIG. 36. V
  • FIG. 38 is a top view ofthe outer access cover which retains the gas filter shown in FIG. 33 within the assembly for our apparatus shown in FIG. 30.
  • FIG. 39 is a view through 39-39 of FIG. 38.
  • FIG. 40 is a side view of the outer access cover with the bar retaining means in the open position.
  • FIG. 41 is a view of the inner access cover which retains the particulate filter shown in FIG. 34 within the assembly for our apparatus shown in FIG. 30.
  • FIG. 42 is a detail view of the latching means for the barretaining means shown in FIGS. 38, 39, and 40.
  • FIG; 43 is a view of the inner access cover securing means mounted within the bar retaining means shown in FIGS. 38,39, and 40.
  • FIG. 44 is a view of the hinge means which connects the bar retaining means to the outer access cover shown in FIGS. 38, 39, and 40.
  • FIG. 45 is a cutaway top view of our apparatus sliding-plate airflow valve showing the internal structure of the valve.
  • FIG. 46 is a side view of the sliding-plate airflow valve shown in FIG. 45. Y
  • FIG. 47 is a partial cutaway top view of the slidingplate airflow valve shown in FIG; 45 to show the sliding-plate structure.
  • FIG. 48 is an end view of the sliding-plate airflow valve shown in FIG. 45 to show the motor means which activates the sliding plate.
  • FIG. 49 is an exploded view of the sliding-plate airflow valve shown in FIG. 45 to show components in detail and motor gear track integral with the sliding plate.
  • FIG. 50 is a top view of the micro switch assembly limit stop means to control the travel of the slidingplate.
  • FIG. 51 is a side view of the switchmeans shown in FIG. 50.
  • FIG. 52 is an exploded view of the motor and motor mount means shown in FIG. 48.
  • FIG. 53 is an exploded view of the micro switch assembly shown in FIGS. 50 and 51.
  • FIG. 54 is a schematic electrical diagram of the control panel circuitry of our control/pressure sensing module. 7
  • FIG. 55 is a schematic electrical diagram to show the circuitry of our pressure sensing network to operate our sliding-plate valves.
  • FIG. 56 is a block diagram of the power distribution through our gas-particulate filter unit components for 28 volt-direct current input.
  • FIG. 57 is the same as FIG. 56 for a 208 volt alternating current, 60Hz, three phase input.
  • FIG. 58 is the same as FIG. 56 for a 208 volt alternating current, 4001-12, three phase input.
  • FIG. 59 is a graphical representation of a 250 cfm fan airflow resistance through our system.
  • FIG; 60 is a graphical representation of a 400 cfm fan airflow resistance through our system.
  • FIG. 61 is a graphical representation of a 600 cfmfan airflow resistance through our system.
  • FIG. 62 is a graphical representation of flexible duct airflow resistance in our system.
  • FIGS. 1 to 62 will now be described in detail as follows.
  • Our protective system can be applied to a wide variety of vans, vehicles or shelters.
  • Several application considerations must be evaluated, however, prior to selecting an appropriate system.
  • the considerations to be evaluated include operational structure, performancecharacteristics, and application of the system.
  • Our invention will be described in the light of the aforementioned considerations to permit those of ordinary skill in the art to determine the applicability of our system to any particular application.
  • FIG. 35 a flow diagram of the gas-particulate filter unit assembly shown at in FIG. 30 is shown in FIG. 35 to illustrate 'the gas particulate filter unit filtering operation.
  • Air enters the inlet shown at l in- FIG. 35 and is drawn into dust collector 2 where 90 percent of the airborne dust is separated and exhausted back to ambient through dust exhaust 3.
  • the partially cleaned air is then drawn through fan assembly 4 and forced through the particulate filter 5 and gas filter 6 which removes essentially all the particulate and gas contaminants, respectively.
  • the purified air then passes through outlet airflow valve 7 which controls the airflow quantity required for pressurization of protected shelter 8; air being exhausted from compartment 8 to ambient by conventional exhaust means 9.
  • a preferred arrangement of our system is schematically illustrated in FIG.
  • FIG. 2 which shows the gas-particulate filter unit, hereinafter referenced as GPFU, remotely placed outside of a protected shelter.
  • the GPFU is shown mounted in a ground stand 11 and provided with an air inlet protective cap 12. Purified air is pushed through the GPFU by the fan assembly and is ducted through the shelter 8 wall by means of duct 13 and entrance 17 by means of duct 76, as shown in FIG. 1. Electrical power is directed to the power distribution unit 14 mounted on the GPFU. From there, power is distributed through interconnecting cables 16, as shown in FIG. 36, to fan assembly 4, dust exhaust blower in the dust collector 2, GPFU outlet airflow valve 7, as shown in FIG. 35, and control/pressure sensing module 15, as shown in FIG. 30.
  • GPFU operation is controlled and monitored by control/pressure sensing module 15 which, installed within the shelter, senses the pressure differential between the shelter and ambient atmosphere and controls the GPFU outlet airflow valve 7 to maintain the predetermined pressure differential by varying the airflow.
  • the GPFU can be mounted outside or inside shelter 8 and can be operated in either a push-through" or a pull-through structure. When the GPFU is mounted outside of shelter 8, as shown in FIGS. 1, 2, and 35, fan assembly 4, as shown'in FIG. 35, is mounted inside the GPFU, and air through the primary filtering elements (gas and particulate filters) is pushed through.
  • fan assembly 4 is mounted downstream from the GPFU and is connected to the GPFU outlet airflow valve by a flexible duct. This is called a pull-through structure, because the fan assembly pulls the air through the primary filtering elements.
  • the GPFU can utilize a single, double, or triple filter to suit a given application and airflow requirement; the airflow range in cubic feet per minute for each filter arrangement being as set forth below.
  • GPFU Airflow Range (cfm) One-Filter Up to 200 Two-Filter Up to 400 Three-Filter Up to 600 TABLE 1 Primary Alternate GPFU Fan Assembly Fan A embly One-Filter 250 cfm ac None 250 cfm dc Two-Filter 400 cfm an 250 cfm ac 400 cfm do 250 cfm dc Three-Filter 600 cfm ac 400 cfm ac 600. cfm do.
  • the alternate fan assemblies provide lower flows and power consumptions for each size GPFU as shownin the Summary of GPFU Weight and Power of Table 2 below. Fan assemblies should not be used with GPFUs smaller than those designated in Table 1 above TABLE 2 28 V D.C. 400 Hz. A.C. 60117.. A.C. power source power source power source Fan Maximum assembly, airflow, Power Weight Power Weight; Power Weight (I PFU c.f.m. c.l'.in. (watts) (1b.) (watts) (1b.) (watts) (lb.)
  • Two-filter 250 300 1, 210 201. 3 l, 150 205. .l l, 370 281.
  • 3 Two'liltor 400 100 1,020 .200. .2 1,430 214. 2 l, 840 280. 2 'llu'oo-lillcr, 400 180 1,000 256. 8 l, 560 201. 8 l, 800 330. 8 'lliruo-liltoi' 000 000 1, 050 263. ll .2, 030 267. 3, 350 343. l)
  • RCFU 250 200 500 160. 4 470 165. 0 500 240. l
  • the power distribution units used on all arrangements of GPFUs must be selected to be compatible with the type of applied electrical power and fan size as indicated in Table 3 below.
  • FIGS. 56 to 58 show the power distribution through GPFU components for the different types of powers, and the legends thereon are self-explanatory.
  • Protective Entrance l7 and related hardware and airflow and pressure regulating controls is provided as an entry and exit means to shelter 8; the entrance structure being subsequently described in detail.
  • the protective entrance provides a place where personnel can don protective clothing before entering the contaminated environment and to perform decontamination procedures before entering the shelter.
  • the protective entrance is scavenged with purified air to provide a 1000: l reduction of a completely airborne contaminant concentration within minutes while retaining protective entrance int'ernal pressure between 0.4 0.8 inches wg.
  • the purified air may be supplied either by a one, two or three filter GPFU which simultaneously supplies purified air to pressurize shelter 8 or by a separate recir culating filter unit.
  • FIGS. 1 and 2 illustrate a remotelymounted GPFU in the push through configuration simultaneously supplying purified air to both shelter 8 and protective entrance 17.
  • FIGS. 59 through 61 illustrate the fan head and the airflow resistance of the GPFUs for push-through operation of a 250 cfm fan, 400 cfm fan, and 600 cfm fan respectively.
  • the difference between the fan head curve and the curve for. GPFU airflow resistance is the amount of reserve head available for particulate filter dust loading, duct losses and enclosure pressurization.
  • the pan provides approx- Airflow requirements for the user should be deterimately 17.6 in.
  • the GPFU size required is based on the maximum of the flow requirements and whether a protective entrance is employed. Application considerations of mounting location, personnel ventilation, equipment ventilation, leakage of the protected compartment, heaters, air conditioners, and protective entrances are disucssed below; and an example of a typical shelter analysis is included last.
  • Gas-particulate filter unit (GPFU) assembly 10 can be mounted in the interior of shelter 8, on the exterior wall of shelter 8, or ground-mounted externally of shelter 8.
  • the selection of location depends on several factors, such as weight distribution, space limitations, structural strength, shelter mobility, etc. Where m'obility and protection of the system are prime requirements and space is available, internal mounting is the most advantageous. Specific location of the unit within the enclosure will be dictated by possible restrictions of center of gravity, wall/ceiling structural strength, internal system equipment configuration, location of heaters, air conditions, etc. When internal space is not available, but mobility is critical, an external mounting to the shelter may provide the best solution.
  • weight, center of gravity and structural strength are of prime consideration, especially in regard to shelters mounted on trailers or' trucks.
  • FIG. 62 demonstrates the airflow resistance of a 6 in. diameter flexible duct 20 ft. long or a 6 in. diameter flexible duct 10 ft. long and curved in an 8 ft. radius.
  • a single GPFU of the appropriate size can be used for both shelters with the personnel shelter containing the controls and having priority on the airflow from the GPFU.
  • a modification to the GPFU application configurations is possbile, to extend filter life when a protective entrance is used, by using a recirculating duct from the protective entrance outlet to an adapter on the GPFU inlet. All applications of our system to shelters require air duct and electrical feedthrough in the shelter walls, as well as internal space for mounting of the control module(s). When an air conditioner is used, filtered air may be directed to an air makeup intake port through an adapter.
  • Personnel ventilation requirements for a given shelter are set by human engineering requirements, and the requirements are dependent on the number of people operating within the shelter and the types of activities that the personnel might be performing during their
  • the ventilation requirement defines the minimum re-' quirement for leakage from the shelter. For example, assume a situation where the shelter houses only personnel, with no heat generating equipment, and only wind and diffusion conditions are considered. The optimum condition would be an airflow into the shelter of a value just sufficient to meet the personnel ventilation requirements while maintaining shelter pressurization. The situation may arise where the shelter leakage is below the ventilation requirements of the personnel. In such a situation, leakage must be created in the shelter if it does not exceed make-up air requirements for an air conditioner.
  • the purified air should be ducted through the personnel door of the shelter and into the protective entrance, if used, to assist in the scavenging of the protective entrance.
  • a built-in leakage device should be designed so as to allow passage of the desired flow rate of air and also serve as a check valve to prevent flow of air from the protective entrance back into the shelter,
  • Equipment associated with the function of our system may be cooled by means of an air conditioner or with ambient air.
  • an air conditioner When cooled by an air conditioner, the equipment can be located within the same enclosure as the personnel.
  • the cooled air from the air conditioner is directed to the personnel area from which it is drawn through equipment cabinets and to the return up air is provided to satisfy personnel ventilation requirements.
  • the filtered air When protection equipment is used, the filtered air is introduced into the air conditioner outside air intake port.
  • the air conditioner should have sufficient capacity to cool the additional air required to pressurize the enclosure.
  • ambient air is used for cooling, the equipment can be located as an integral part of the personnel compartment or may be in a separate adjacent compartment with interconnecting cabinet doors.
  • the use of an air conditioner as compared with the large volume of filtered air required to cool the equipment should be considered.
  • the use of an air conditioner as compared with the large volume of filtered air required to cool the equipment should be considered. If the equipment is in of the air conditioner to be recirculated. Outside make a separate compartment and requires access through interconnecting cabinet doors during operation, the equipment should be cooled and pressurized with filtered air. The filtered air requirement may be high if an air conditioner is not added. If access to the adjacent compartment is not required during operation and the adjacent compartment is protected from direct contamination, filtered air is not essential. However, the cooling fan should be located so that the adjacent compartment is under negative static pressure. It should be noted in these considerations that air passing through the GPFU increases in temperature 10 to 15 F., depending upon the size unit and airflow rate.
  • the protection equipment In order to prevent the migration of contaminants into the shelter, the protection equipment must be caatmospheric pressure, is maintained in the shelter.
  • the pressure must be maintained above the pressures of any contaminated area in or around the shelter. Another consideration is the possibility of high pressure areas within environmental control equipment when this equipment is operating in contaminated air. The latter situation arises in the combustor/heat exchanger section of heaters or in the condenser section of air conditioning units. Leakage reduction measures may have to be performed on a particular shelter to keep the filter unit to a minimum capacity for air conditioner or heater make-up air and to keep the volume, weight and power requirements of the GPFU to a minimum. However, for non-environmental controlled shelters, the cost of reduction may surpass the additional cost of a larger filter unit that would accommodate the higher leakage. This condition must be considered when leakage reduction measures are evaluated.
  • the method used to determine magnitude is to pressurize the compartment to a constant pressure and monitor the air flow required to maintain pressure in the compartment when various areas in the shelter are covered with impermeable material. By recording the reduction in leakage after each major step in sealing leakage paths, all of the significant shelter leakages can be accounted for and the magnitude of leakage determined. Leakage areas can also be located visually in some cases, such as by introducing highly visible, persistent smoke into the pressurized compartment. Another method is to use an ultrasonic leak detector in conjunction with an ultrasonic sound generator.
  • the generator is placed on one side of the shelter, such as inside, and the detector is used on the opposite side of the shelter, such as outside the shelter, to locate the transmission of sound through leak passages.
  • Some common leakage shelter components are ceiling panels and filters, conventionally-hinged doors, bi-fold doors, door knobs, locks, handles, windows, hinges, heating ducts, heating plant, water pipes, wires, cables, light switches, fixtures, electrical receptacles, air exhausts, vents in eaves and roof, root hatches, air conditioners, etc. Sealing materials that minimize air leakage and provide protection against contamination must be impermeable to air, resistant to the contaminant and easily installed.
  • sealing materials must be durable enough to meet environmental extremes and field operation conditions, and they must have shelf lives compatible with normal procurement and usage practice. Use of toxic, flammable, or explosive compounds should be avoided. Many materials can be used for sealing leakage areas in shelters, eitherpermanently or temporarily, such as caulking compounds, non-hardening extruded tapes. non-hardening mastics, spray coatings, pressure sensitive tapes, gaskets, adhesives, plugs, fabrics, and films.
  • Air conditioning units must be carefully evaluated when installing protection equipment as their design and performance have considerable influence on the ize the shelter for protection, the air conditioner may not be able to sufficiently cool the shelter equipment under high ambient temperatures. If shelter leakage cannot be reduced, a larger air conditioner may be required.
  • Our system fan assembly is cooled by the filtered air and adds about l0 F to 15 F temperature to this air, depending on fan size and flow. This effectively increases the temperature of the make-up air to the air conditioner when the GPFU is operating and must be considered when sizing the air conditioner. An effective interface must be assured for compatible operation of the air conditioner and our system.
  • Two approaches are available, namely; duct the filtered air directly into the shelter and operate the air conditioner in the recirculation mode, or duct the filtered air into the air conditioner external make-up air port and operate the air conditioner with make-up air.
  • the two units are operated in parallel, and, in the second, they are in series.
  • the first method would be required; with the FPFU external, either method could be used.
  • the second method is preferred because it allows the air to be conditioned prior to entry into the personnel compartment. Provisions should always be made to ensure that air conditioner ambient make-up ports are sealed during system operation in either installation.
  • the following example demonstrates the preliminary analysis which one might make in selecting the proper protective system for a specific application.
  • the compartment type such as a S-280 shelter
  • the environmental control unit (heater/air conditioner): 18,000 Btu compact horizontal
  • personnel ventilation 3 men (1000 cu. ft./person/hr., per HEL- STD-S-3-65 protective entrance required
  • shelter leakage with equipment installed 130 cfm.
  • the airflows as follows can be determined from the foregoing known information.
  • the minimum required shelter flow is defined by the personnel ventilation requirement of 50 cfm. If the shelter leakage can be reduced by sealing to less than 90 cfm, the present air conditioner can be retained. A one-filter GPFU then can be used for the combined shelter and protective entrance protection. If shelter leakage cannot be reduced, a large air conditioner and larger or more GPFUs are necessary. This could be accomplished by providing the protective entrance with a recirculating filter unit or by using a two-filter GPFU. Should equipment cooling requirements exist, a larger GPFU and air conditioner are necessary.
  • shelter 8 is constructed in the conventional manner, but it is provided with an interface 18 fixedly attached around the perimeter of door 19.
  • the case shown at 20 in FIG. 3 is opened, as in FIG. 24, so that section 21 of case 20 forms the bottom and section 22 of case 20 forms the top of protective entrance l7.
  • Impermeable fabric, such as butyl coated cloth 101, which forms the walls of the protective entrance, as shown in FIGS. l and 4 for example, is not shown in FIG. 24 for clarity purposes, but the impermeable fabric is fixedly sealed to supports 23 and the door frame shown at 28 and stored in a folded posture in bottom 21.
  • door 24, shown in FIGS. 12, 13, and 17, is stored in bottom 21 in the folded position shown in FIG. 13.
  • Supports 23 are opened by hinge means 69 and 70, as shown in FIGS. 23, 26 to 29, and top mounts 25 are inserted within support 23 and secured therein by the thumb nut connection shown at 26, as shown in FIGS. 19 and 20.
  • Supports 23 are opened from the folded position shown in FIG. 26 to the open position shown in FIGS. 28 and 29 and maintained in the open position by knobs 68 in the same manner as discussed below regarding knobs 29.
  • Support braces 44 are opened, as shown in FIGS. 24 and 25, and the braces are held in open position by retaining pin 27.
  • Top 22 is supported on the side opposite to supports 23 by the door frame shown at 28 which is opened, as shown in FIG. 24, and locked in the open position by pushing down on knob 29 which causes a protrusion fixedly connected to knob 29 to be inserted within member 30 to lock member 30 to member 31.
  • Support braces 44 are similarly locked by pin 27.
  • Anchor means shown at 33 in FIG. 21 are utilized to store the supports in bottom 21 in the storage mode, and valve 34 is provided to eliminate any water that may accumulate in protective entrance 17.
  • Supports 23 are locked in the storage position by pull pins 35 held within retainer means 71 under tension by springs 36, as shown in FIGS. 23 and ing pin 41 through the mated holes, as shown in FIGS. 6 and 7.
  • Door 24 is assembled, as shown in FIGS.
  • Door 24 by opening from the folded position shown in FIG. 13 to the standard door mode position shown in FIG. 12 by means of hinges 42 mounted in the middle of the door and securing the door in the open position by thumb nut means 43 in the same manner discussed above regarding knob 29 for lokcing the door frame member 30 and 31 together.
  • Door 24 after assembly as described above, is hung in the door frame, shown at 28 in FIG. 24, in the conventional manner by means of hinges 45.
  • Door 24 is provided with conventional window 46, conventional door knob and latching mechanism 47, and a window cover 48 to use as desired;
  • window cover 48 being removably attached by means of conventional fabric fastener means member 49 sewed to cover 48 and conventional fabric fastener member 50 sewed to the butyl coated cloth fabric of the door, as shown in FIG. 17.
  • Cover 48 is held in the open position by fastening fabric fastener 59 to fabric fastener 60.
  • Pressure sensing module 52 and entrance light 53 are mounted within protective entrance 17, as
  • Light 53 is provided with a conventional three position switch 61 and a conventional white and red bulb, not shown in drawing, to permit use during blackout conditions; the light having electrical requirements of one ampere at 28 volts direct current.
  • Conventional pneumatic tube 62 is connected to control/pressure sensing module 15, mounted within shelter 8 in any convenient location, through feed through 57, as shown in FIG. 18.
  • Pressure sensing module 52 contains the pressure sensing electrical network shown in FIG. 55 which senses and controls the pressure differential between 17 and ambient to operate the sliding-plate -airflow valve shown at 64; module 52 pressure sensing network being adjusted to control the pressure within entrance 17 at 0.4 to 0.8 inches wg. and having an electrical power input of 28 volts direct current and a power consumption of less than one ampere.
  • Control/pressure sensing module 15 contains the main GPFU control panel having the electrical circuitry shown in FIG. 54 and the pressure sensing network shown in FIG. 55 which monitors the pressure differential between shelter 8 and ambient; the pressure sensing network of module 15 being present to maintain pressure in shelter 8 between 1.2 inches wg and 1.7 inches wg. The designations on,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ventilation (AREA)

Abstract

A system and method to provide protective shelter in contaminated atmosphere areas utilizing a protective shelter, a portable protective entrance, gas-particulate filter unit and associated components, pressure sensing network and associated components and controls, sliding-plate airflow valves, and a power distribution unit.

Description

United States Patent 1 Donnelly et al. 7 l
[ 1 PROTECTIVE SYSTEM Eon CONTAMINATED ATMOSPHERE [75] Inventors: Thomas GQDonnelly, Minneapolis;
James A. Haueter, Burnsville; William J. Krisko, Eden Prairie; Donald W. Schoen, Saint Paul; Chester S. Lind, Bloomington, all of Minn.
The United States of America as represented by the Secretary of the Army, Washington, DC.
[73] Assignee:
[22] Filed: Dec. 21, 1971 [21] Appl. No.: 210,344
[52] US. Cl 98/33 R, 98/1.5, 49/68,
52/66,135/1 [51] Int. Cl... F24f 13/00 [58] Field of Search 98/1.5, 33 R, 39, 98/40, 41, DIG. 7; 128/204; 135/1, 4; 52/66, 71; 49/68 1 Oct. 23, 1973 [56] References Cited UNITED STATES PATENTS 3,157,185 11/1964 Schoenike 135/4 R 3,501,213 3/1970 Trexler 49/68 3,629,875 12/1971 Dow 135/1 R 3,316,828 5/1967 Boehmer... 98/1.5
3,478,472 11/1969 Kwake 98/1.5
3,587,574 6/1971 Mercer..... 128/204 3,601,031 8/1971 Abel 98/33 Primary Examiner-Meyer Perlin Attorney-Harry M. Saragovitz et al.
[57] ABSTRACT A system and method to provide protective shelter in contaminated atmosphere areas utilizing a protective shelter, a portable protective entrance, gas-particulate filter unit and associated components, pressure sensing network and associated components andcontrols, sliding-plate airflow valves, and a power distribution unit.
13 Claims, 62 Drawing Figures PATENTEU HGT 2 3 \873 'SIEEI mar 13 l/Vl/E/VTORS Thomas G. flannel/y James A. Hauefer William J. Kriska Donald W. Schoen Chester 5'. L/nd Ma Fig. 2
ATT RNEYJ' PAIENIEDHBI 2a 1915 SHEET 0211f 13 "final,"
I/Vl/E/VTORS Thomas G. Donnel/y James A. hauefer William J. Kris/r0 Donald W. .Sclroen Chester 5'. Lind PAIENTEB 0U 23 I915 SHEET 03 0F 13 INVENTORS' 7' homes 6. Donne/I James A. Hauefer William J. lfrl'sko Donald W. Schoen Chester ATTO EYS PMENTEB 0B! 23 1975 SHEET 0'4 0F 13 IHI INVENTORS M m n e d OMMMM HKS W A w S de mnmwwW m mm M 1. TJWDC r ATTO EY5 PATENTEDBCI 23 4973 3 768,844
sum as or 13 Fig.30
//WE NT 0R5 Thomas 6. DonneI/y James A. Hauefer Wi/liam J. Krisko Donald W. .Schaen Chester 5. Lind PAIENIEUmtrza ms SHEEI DBUF I3 INVENTORS Thomas 6'. Donnel/y James AJHaue/er William J. Kris/r0 Dona/d W. Sc/men Chester .5. Lina PAIENIEUumza ms 3155 sum over 13 IWVE/VTORS Thomas 6. flannel/y James A. Haue/er William J. k'rl'sko Dana/a W. Sc/men Chester .5. Lina '72-, 2/2, I
mEmiuocraa ma 3,766,844
sum 08 or 13 Fig.54 4
IMPUT FROM TEST Powrc PRESSURE TRANSDUCER T0 AIRFLOW VALVE MOTOR *W r o R2 7 1 TEST PmfiTD TESTY TO AIRFLW POINT A VALVE W MOTOR l/VVE/VTURS' 7 Thomas 6. flannel/y TEST POINT B James A. Hauefer William J. Kr/sko Donald W. Sahoen ATTOR/V S PATIENIEBMII 23 III:
SIIEEI 09 [IF I3 Fig.56 I
POWER IN 28 V DC Fig. 57
DUST
EXHAUST BLOWER POWER DISTRIBUTION UNIT (DC) DC FAN ASSEMBLY CONTROL/PRESSURE SENSING MODULE DUST EXHAUST BLOWER TRANSFORMER/ RECTIFIER MODULE (GOHZ) POWER IN O-- 208 VAC,
POWER DC FAN DISTRIBUTION UNIT ASSEMBLY 60 HZ. IS-PHASE POWER IN ZOBVAC, 400 HZ,
POWER DISTRIBUTION UNIT (AC) CONTROL /PRESSURE 5 E N S I NG MO DULE FAN ASSEMBLY 5' PHASE Fig. 58
DUST EXHAUST. BLOW R TRANSFORMER] RE CTI FIE R MODULE(400 HZ) CONTROL/PRESSURE Dc SENSING MODULE INVENTORS Thomas 6. Donne/1y James A. Him/afar William J. Kris/r0 Donald W. Schaen Chester 5. .L/Ind Maw 6Mxfm ATTOR/V S PAIENTEDncr 23 ms STATIC PRESSURE (in. wg) AIRFLOW RESISTANCE (in. W9) 0 N a, 5 v6 3 6 6 3,766,844 SHEET 110? 13 Fig. 60
Fan Sfu'ric Pressure Two-Filter GPFU Resistance Three-Filter GPFU Resistance PRIMARY AIRFLOW (cfm) INVENTORS Thomas 6. flannel/y James A. Have/er William J. Krisko Donald W. Schoen Ghesfer .5; ind
A7705 EYS PROTECTIVE SYSTEM FOR CONTAMINATED ATMOSPHERE DEDICATORY CLAUSE The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to us of any royalty thereon.
Our invention relates to a new method and system having utility for providing protective shelter in a contaminated atmosphere.
A problem has long existed to provide an easily erected means and simple method for providing protective shelter in contaminated atmosphere areas; including means for personnel to perform necessary decontamination procedures before entering a protective shelter while not in a contaminated atmosphere and a means and method to permit personnel to enter and exit the protective shelter without loss of compartment pressurized protection. Our invention was conceived and reduced to practice to solve the aforementioned problem and to satisfy the long felt need for the aforementioned protective shelter and method.
A principal object of our invention is to provide an apparatus and method which is easily erected and simple to use to permit performance of decontamination procedures outside of a contaminatedatmosphere but prior to entering a protective shelter.
Another object of our invention is to provide an apparatus and method to permit personnel to enter and exit a protective shelter witout loss of compartment pressurized protection.
Other objects of our invention will be obvious or will appear from the specification hereinafter set forth.
FIG. 1 is a view showing the utility of our apparatus.
FIG. 2 is a schematic top view of the apparatus shown in FIG. 1.
FIG. 3 is a view of the storage or transit package of our apparatus.
FIG. 4 is a cutaway view of our apparatus and the en-.
trance to a protective shelter.
FIG. 5 is a view through 5-5 of our apparatus shown in FIG. 4.
FIG. 6 is a view of the pin locking means to connect our apparatus to a protective shelter as shown in FIG. 1.
FIG. 7 is an exploded view of the components shown in FIG. 6.
FIG. 8 is a view through 8-8 of our apparatus shown in FIG. 4.
FIG. 9 is a view through 99 of our apparatus shown in FIG. 4.
FIG. 10 is a view of the inlet airflow valve with dust cover for our apparatus.
FIG. 11 is a view of the top of our apparatus which also forms one half of the container means of the package shown in FIG. 3.
FIG. 12 is a view of the door for our apparatus in the assembled mode.
FIG. 13 is a view of the door for our apparatus in the unassembled mode.-
FIG. 14 is a view through 14-14 of FIG. 12.
FIG. 15 is a view through 15-15 of FIG. 12.
FIG. 16 is a partial view of the frame of the door shown in FIG. 12, wall, and a storage pocket of our apparatus.
FIG. 17 is a view of the door shown in FIG. 12 and a cover means for the door window.
FIG. 18 is a view of the pressure sensing module mounted within our apparatus.
FIG. 19 is a view of the asembly means for our apparatus to connect the supports to the top shown in FIG. I 1.
FIG. 20 is a view of the connector means shown in FIG. 19.
FIG. 21 is a view of the supports for our apparatus in the storage mode in the bottom of our apparatus.
FIG. 22 is a view of the sliding-plate airflow valve of our apparatus to control the protective shelter pressur ization.
FIG. 23 is a view of the supports for our apparatus in the folded or storage mode.
FIG. 24 is a view of the top, bottom and supports of our apparatus in the partially erected mode.
FIG. 25 is a view of the support brace for our apparatus.
FIG. 26 is a view of the support for our apparatus in the partially erected mode.
FIG. 27 is an enlarged view of the pull pin for the support for our apparatus shown in FIG. 26.
FIG. 28 is a side view of the support for our apparatus.
FIG. 29 is a front view of the support for our apparatus. FIG. 30 is a view of the gas-particulate filter unit assembly of our apparatus.
FIG. 31 is a view of the control/pressure sensing module for our apparatus.
FIG. 32 is a view of the stand for the gas-particulate filter unit of our apparatus.
FIG. 33 is a view of the gas filter for our apparatus.
FIG. 34 is a view of the particulate filter for our apparatus.
FIG. 35 is a schematic view showing the air flow through our apparatus.
FIG. 36 is an end view of our apparatus shown in FIG. 30.
FIG. 37 is a view through 37-37 of our apparatu shown in FIG. 36. V
4 FIG. 38 is a top view ofthe outer access cover which retains the gas filter shown in FIG. 33 within the assembly for our apparatus shown in FIG. 30.
FIG. 39 is a view through 39-39 of FIG. 38.
FIG. 40 is a side view of the outer access cover with the bar retaining means in the open position.
FIG. 41 is a view of the inner access cover which retains the particulate filter shown in FIG. 34 within the assembly for our apparatus shown in FIG. 30.
FIG. 42 is a detail view of the latching means for the barretaining means shown in FIGS. 38, 39, and 40.
FIG; 43 is a view of the inner access cover securing means mounted within the bar retaining means shown in FIGS. 38,39, and 40.
FIG. 44 is a view of the hinge means which connects the bar retaining means to the outer access cover shown in FIGS. 38, 39, and 40.
FIG. 45 is a cutaway top view of our apparatus sliding-plate airflow valve showing the internal structure of the valve.
FIG. 46 is a side view of the sliding-plate airflow valve shown in FIG. 45. Y
- FIG. 47 is a partial cutaway top view of the slidingplate airflow valve shown in FIG; 45 to show the sliding-plate structure.
FIG. 48 is an end view of the sliding-plate airflow valve shown in FIG. 45 to show the motor means which activates the sliding plate.
FIG. 49 is an exploded view of the sliding-plate airflow valve shown in FIG. 45 to show components in detail and motor gear track integral with the sliding plate.
FIG. 50 is a top view of the micro switch assembly limit stop means to control the travel of the slidingplate.
FIG. 51 is a side view of the switchmeans shown in FIG. 50.
FIG. 52 is an exploded view of the motor and motor mount means shown in FIG. 48.
FIG. 53 is an exploded view of the micro switch assembly shown in FIGS. 50 and 51.
FIG. 54 is a schematic electrical diagram of the control panel circuitry of our control/pressure sensing module. 7
FIG. 55 is a schematic electrical diagram to show the circuitry of our pressure sensing network to operate our sliding-plate valves.
FIG. 56 is a block diagram of the power distribution through our gas-particulate filter unit components for 28 volt-direct current input.
FIG. 57 is the same as FIG. 56 for a 208 volt alternating current, 60Hz, three phase input.
FIG. 58 is the same as FIG. 56 for a 208 volt alternating current, 4001-12, three phase input.
FIG. 59 is a graphical representation ofa 250 cfm fan airflow resistance through our system.
FIG; 60 is a graphical representation ofa 400 cfm fan airflow resistance through our system.
FIG. 61 is a graphical representation of a 600 cfmfan airflow resistance through our system.
FIG. 62 is a graphical representation of flexible duct airflow resistance in our system.
Our invention and FIGS. 1 to 62 will now be described in detail as follows.
Our protective system can be applied to a wide variety of vans, vehicles or shelters. Several application considerations must be evaluated, however, prior to selecting an appropriate system. The considerations to be evaluated include operational structure, performancecharacteristics, and application of the system. Our invention will be described in the light of the aforementioned considerations to permit those of ordinary skill in the art to determine the applicability of our system to any particular application.
Regarding operational structure, a flow diagram of the gas-particulate filter unit assembly shown at in FIG. 30 is shown in FIG. 35 to illustrate 'the gas particulate filter unit filtering operation. Air enters the inlet shown at l in- FIG. 35 and is drawn into dust collector 2 where 90 percent of the airborne dust is separated and exhausted back to ambient through dust exhaust 3. The partially cleaned air is then drawn through fan assembly 4 and forced through the particulate filter 5 and gas filter 6 which removes essentially all the particulate and gas contaminants, respectively. The purified air then passes through outlet airflow valve 7 which controls the airflow quantity required for pressurization of protected shelter 8; air being exhausted from compartment 8 to ambient by conventional exhaust means 9. A preferred arrangement of our system is schematically illustrated in FIG. 2 which shows the gas-particulate filter unit, hereinafter referenced as GPFU, remotely placed outside of a protected shelter. The GPFU is shown mounted in a ground stand 11 and provided with an air inlet protective cap 12. Purified air is pushed through the GPFU by the fan assembly and is ducted through the shelter 8 wall by means of duct 13 and entrance 17 by means of duct 76, as shown in FIG. 1. Electrical power is directed to the power distribution unit 14 mounted on the GPFU. From there, power is distributed through interconnecting cables 16, as shown in FIG. 36, to fan assembly 4, dust exhaust blower in the dust collector 2, GPFU outlet airflow valve 7, as shown in FIG. 35, and control/pressure sensing module 15, as shown in FIG. 30. GPFU operation is controlled and monitored by control/pressure sensing module 15 which, installed within the shelter, senses the pressure differential between the shelter and ambient atmosphere and controls the GPFU outlet airflow valve 7 to maintain the predetermined pressure differential by varying the airflow. The GPFU can be mounted outside or inside shelter 8 and can be operated in either a push-through" or a pull-through structure. When the GPFU is mounted outside of shelter 8, as shown in FIGS. 1, 2, and 35, fan assembly 4, as shown'in FIG. 35, is mounted inside the GPFU, and air through the primary filtering elements (gas and particulate filters) is pushed through. When the GPFU is mounted inside shelter 8, not shown in the drawing, fan assembly 4 is mounted downstream from the GPFU and is connected to the GPFU outlet airflow valve by a flexible duct. This is called a pull-through structure, because the fan assembly pulls the air through the primary filtering elements. The GPFU can utilize a single, double, or triple filter to suit a given application and airflow requirement; the airflow range in cubic feet per minute for each filter arrangement being as set forth below.
GPFU Airflow Range (cfm) One-Filter Up to 200 Two-Filter Up to 400 Three-Filter Up to 600 TABLE 1 Primary Alternate GPFU Fan Assembly Fan A embly One-Filter 250 cfm ac None 250 cfm dc Two-Filter 400 cfm an 250 cfm ac 400 cfm do 250 cfm dc Three-Filter 600 cfm ac 400 cfm ac 600. cfm do.
400 cfm dc The alternate fan assemblies provide lower flows and power consumptions for each size GPFU as shownin the Summary of GPFU Weight and Power of Table 2 below. Fan assemblies should not be used with GPFUs smaller than those designated in Table 1 above TABLE 2 28 V D.C. 400 Hz. A.C. 60117.. A.C. power source power source power source Fan Maximum assembly, airflow, Power Weight Power Weight; Power Weight (I PFU c.f.m. c.l'.in. (watts) (1b.) (watts) (1b.) (watts) (lb.)
Ono-filter 250 200 1, 050 158. 7 l, 010 103. 3 1, 100 .238. 7 Two-filter 250 300 1, 210 201. 3 l, 150 205. .l l, 370 281. 3 Two'liltor 400 100 1,020 .200. .2 1,430 214. 2 l, 840 280. 2 'llu'oo-lillcr, 400 180 1,000 256. 8 l, 560 201. 8 l, 800 330. 8 'lliruo-liltoi' 000 000 1, 050 263. ll .2, 030 267. 3, 350 343. l) RCFU 250 200 500 160. 4 470 165. 0 500 240. l
*Rccirculating filter unit.
The power distribution units used on all arrangements of GPFUs must be selected to be compatible with the type of applied electrical power and fan size as indicated in Table 3 below.
TABLE 3 Power Source Fan Assembly 208 V ac 400 Hz 250 cfm 208 V ac 400 Hz 400 cfm 208 V ac 400 Hz 600 cfm 28 V do or 208 V ac 60 Hz 250 cfm 28 V do or 208 V ac 60 Hz 400 cfm 28 V dc or 208 V ac 60 Hz 600 cfm FIGS. 56 to 58 show the power distribution through GPFU components for the different types of powers, and the legends thereon are self-explanatory. Protective Entrance l7 and related hardware and airflow and pressure regulating controls is provided as an entry and exit means to shelter 8; the entrance structure being subsequently described in detail. In addition to allowing entry or exit to shelter 8, the protective entrance provides a place where personnel can don protective clothing before entering the contaminated environment and to perform decontamination procedures before entering the shelter. 'The protective entrance is scavenged with purified air to provide a 1000: l reduction of a completely airborne contaminant concentration within minutes while retaining protective entrance int'ernal pressure between 0.4 0.8 inches wg. The purified air may be supplied either by a one, two or three filter GPFU which simultaneously supplies purified air to pressurize shelter 8 or by a separate recir culating filter unit. FIGS. 1 and 2 illustrate a remotelymounted GPFU in the push through configuration simultaneously supplying purified air to both shelter 8 and protective entrance 17. I
Regarding performance characteristics, FIGS. 59 through 61 illustrate the fan head and the airflow resistance of the GPFUs for push-through operation of a 250 cfm fan, 400 cfm fan, and 600 cfm fan respectively. The difference between the fan head curve and the curve for. GPFU airflow resistance is the amount of reserve head available for particulate filter dust loading, duct losses and enclosure pressurization. As an example, in FIG. 59, at 200 cfm, the pan provides approx- Airflow requirements for the user should be deterimately 17.6 in. wg fan head, and the airflow resistance mined initially for the ventilation requirement for personnel in the shelter per Human Factors guidelines, the equipment cooling requirements if ventilated with purified air, heater combustion air requirements, the flow necessary to pressurize the shelter to 1.2 in. wg minimum, and necessary scavenging for any internally generated noxious gases. The GPFU size required is based on the maximum of the flow requirements and whether a protective entrance is employed. Application considerations of mounting location, personnel ventilation, equipment ventilation, leakage of the protected compartment, heaters, air conditioners, and protective entrances are disucssed below; and an example of a typical shelter analysis is included last.
Gas-particulate filter unit (GPFU) assembly 10 can be mounted in the interior of shelter 8, on the exterior wall of shelter 8, or ground-mounted externally of shelter 8. The selection of location depends on several factors, such as weight distribution, space limitations, structural strength, shelter mobility, etc. Where m'obility and protection of the system are prime requirements and space is available, internal mounting is the most advantageous. Specific location of the unit within the enclosure will be dictated by possible restrictions of center of gravity, wall/ceiling structural strength, internal system equipment configuration, location of heaters, air conditions, etc. When internal space is not available, but mobility is critical, an external mounting to the shelter may provide the best solution. Here, again, weight, center of gravity and structural strength are of prime consideration, especially in regard to shelters mounted on trailers or' trucks. In addition, locating the GPFU on the outside of a trailer-mounted shelter may interfere with the vehicle which pulls the trailer. Here the various departure angles between the trailer and the vehicle must be considered. When mobility and quick reaction are secondary considerations or when no shelter mounting locations are available, ground mounting of the GPFU in a stand may be the best solution, as shown in FIGS. 1 and 2. When ground mounting a GPFU, the usual problems of weight and volume are not so severe. The location of the GPFU assembly 10 with reference to shelter 8 must also be considered as excessive duct lengths or bends will reduce the GPFU airflow capactiy due to increased airflow resistance. FIG. 62 demonstrates the airflow resistance of a 6 in. diameter flexible duct 20 ft. long or a 6 in. diameter flexible duct 10 ft. long and curved in an 8 ft. radius.
When using protective entrance 17, several GPFU application choices are available. If it is envisioned that shelter 8 may require protection at times when the protective entrance is not utilized, a standard GPFU shelter application could be used in any of the above GPFU locations, and a protective entrance and recirculating filter unit (for pressurization and scavenging of the protective entrance) could then be provided and used only when necessary. If the protective entrance is required under all operating conditions, one GPFU providing protection for both the protective entrance and shelter is the best selection; as shown in FIGS. 1 and 2. Appli-.
cation of our system to two shelters, one for personnel and one for equipment, is also possible. A single GPFU of the appropriate size can be used for both shelters with the personnel shelter containing the controls and having priority on the airflow from the GPFU. A modification to the GPFU application configurations is possbile, to extend filter life when a protective entrance is used, by using a recirculating duct from the protective entrance outlet to an adapter on the GPFU inlet. All applications of our system to shelters require air duct and electrical feedthrough in the shelter walls, as well as internal space for mounting of the control module(s). When an air conditioner is used, filtered air may be directed to an air makeup intake port through an adapter.
Personnel ventilation requirements for a given shelter are set by human engineering requirements, and the requirements are dependent on the number of people operating within the shelter and the types of activities that the personnel might be performing during their The ventilation requirement defines the minimum re-' quirement for leakage from the shelter. For example, assume a situation where the shelter houses only personnel, with no heat generating equipment, and only wind and diffusion conditions are considered. The optimum condition would be an airflow into the shelter of a value just sufficient to meet the personnel ventilation requirements while maintaining shelter pressurization. The situation may arise where the shelter leakage is below the ventilation requirements of the personnel. In such a situation, leakage must be created in the shelter if it does not exceed make-up air requirements for an air conditioner. In order not to waste purified air, the purified air should be ducted through the personnel door of the shelter and into the protective entrance, if used, to assist in the scavenging of the protective entrance. Such a built-in leakage device should be designed so as to allow passage of the desired flow rate of air and also serve as a check valve to prevent flow of air from the protective entrance back into the shelter,
Equipment associated with the function of our system may be cooled by means of an air conditioner or with ambient air. When cooled by an air conditioner, the equipment can be located within the same enclosure as the personnel. The cooled air from the air conditioner is directed to the personnel area from which it is drawn through equipment cabinets and to the return up air is provided to satisfy personnel ventilation requirements. When protection equipment is used, the filtered air is introduced into the air conditioner outside air intake port. The air conditioner should have sufficient capacity to cool the additional air required to pressurize the enclosure. When ambient air is used for cooling, the equipment can be located as an integral part of the personnel compartment or may be in a separate adjacent compartment with interconnecting cabinet doors. When protection equipment is used in a personnel compartment with integral equipment, the use of an air conditioner as compared with the large volume of filtered air required to cool the equipment should be considered. When protection equipment is used in a personnel compartment with integral equipment, the use of an air conditioner as compared with the large volume of filtered air required to cool the equipment should be considered. If the equipment is in of the air conditioner to be recirculated. Outside make a separate compartment and requires access through interconnecting cabinet doors during operation, the equipment should be cooled and pressurized with filtered air. The filtered air requirement may be high if an air conditioner is not added. If access to the adjacent compartment is not required during operation and the adjacent compartment is protected from direct contamination, filtered air is not essential. However, the cooling fan should be located so that the adjacent compartment is under negative static pressure. It should be noted in these considerations that air passing through the GPFU increases in temperature 10 to 15 F., depending upon the size unit and airflow rate.
In order to prevent the migration of contaminants into the shelter, the protection equipment must be caatmospheric pressure, is maintained in the shelter. The
range of internal pressures is dictated by the requirement that shelters must be protected under operational conditions of a 50 mph wind. Such air velocity value causes a stagnation pressure on the upstream face of the shelter of approximately 1.2 in. wg. Asecond consideration is the transfer of contaminants from the outside tothe inside of the shelter through gas diffusional forces. In this case, one must consider the velocity of the air through a given opening and ensure that the air velocity developed from the pressure gradient is greater than the diffusion velocity of the contaminants from the concentration gradients. The internal pressures necessary to overcome these gas diffusion forces are generally lower than the internal pressures required to exceed wind stagnation pressure. The two foregoing phenomena require that the pressure within a protected shelter be maintained in the range given. Further, the pressure must be maintained above the pressures of any contaminated area in or around the shelter. Another consideration is the possibility of high pressure areas within environmental control equipment when this equipment is operating in contaminated air. The latter situation arises in the combustor/heat exchanger section of heaters or in the condenser section of air conditioning units. Leakage reduction measures may have to be performed on a particular shelter to keep the filter unit to a minimum capacity for air conditioner or heater make-up air and to keep the volume, weight and power requirements of the GPFU to a minimum. However, for non-environmental controlled shelters, the cost of reduction may surpass the additional cost of a larger filter unit that would accommodate the higher leakage. This condition must be considered when leakage reduction measures are evaluated. In order to reduce leakages and locate the major sources thereof, one must first be able to detremine the magnitude of the leakage. The method used to determine magnitude is to pressurize the compartment to a constant pressure and monitor the air flow required to maintain pressure in the compartment when various areas in the shelter are covered with impermeable material. By recording the reduction in leakage after each major step in sealing leakage paths, all of the significant shelter leakages can be accounted for and the magnitude of leakage determined. Leakage areas can also be located visually in some cases, such as by introducing highly visible, persistent smoke into the pressurized compartment. Another method is to use an ultrasonic leak detector in conjunction with an ultrasonic sound generator. The generator is placed on one side of the shelter, such as inside, and the detector is used on the opposite side of the shelter, such as outside the shelter, to locate the transmission of sound through leak passages. Some common leakage shelter components are ceiling panels and filters, conventionally-hinged doors, bi-fold doors, door knobs, locks, handles, windows, hinges, heating ducts, heating plant, water pipes, wires, cables, light switches, fixtures, electrical receptacles, air exhausts, vents in eaves and roof, root hatches, air conditioners, etc. Sealing materials that minimize air leakage and provide protection against contamination must be impermeable to air, resistant to the contaminant and easily installed. Furthermore, sealing materials must be durable enough to meet environmental extremes and field operation conditions, and they must have shelf lives compatible with normal procurement and usage practice. Use of toxic, flammable, or explosive compounds should be avoided. Many materials can be used for sealing leakage areas in shelters, eitherpermanently or temporarily, such as caulking compounds, non-hardening extruded tapes. non-hardening mastics, spray coatings, pressure sensitive tapes, gaskets, adhesives, plugs, fabrics, and films.
Air conditioning units must be carefully evaluated when installing protection equipment as their design and performance have considerable influence on the ize the shelter for protection, the air conditioner may not be able to sufficiently cool the shelter equipment under high ambient temperatures. If shelter leakage cannot be reduced, a larger air conditioner may be required. Our system fan assembly is cooled by the filtered air and adds about l0 F to 15 F temperature to this air, depending on fan size and flow. This effectively increases the temperature of the make-up air to the air conditioner when the GPFU is operating and must be considered when sizing the air conditioner. An effective interface must be assured for compatible operation of the air conditioner and our system. Two approaches are available, namely; duct the filtered air directly into the shelter and operate the air conditioner in the recirculation mode, or duct the filtered air into the air conditioner external make-up air port and operate the air conditioner with make-up air. In the first case, the two units are operated in parallel, and, in the second, they are in series. With the FPFU mounted within the shelter, the first method would be required; with the FPFU external, either method could be used. The second method is preferred because it allows the air to be conditioned prior to entry into the personnel compartment. Provisions should always be made to ensure that air conditioner ambient make-up ports are sealed during system operation in either installation.
When using our protective entrance 17 with shelter 8, one must consider airflow capacity required for scavenging the protective entrance within the specified essential time limit of 5 minutes, space available around the personnel entry door for an interface, and provision for supporting the floor of the protective entrance when used on a shelter that has the entry door higher than 8.5 in. off of the ground. The minimum airflow required to scavenge the protective entrance within the specified 5 minutes is 150 cfm at 0.4 in. wg. and a maximum of 200 cfm at 0.9 in. wg. Consequently, when determining the GPFU size for'protecting both a compartment and the protective entrance at least 150 cfm must be allowed for the protective compartment. The alternative is to' use a recirculating filter unit for the protective entrance. Space must be allowed around the shelter door for a protective entrance interface. in some cases this cannot be done if there is equipment mounted close to the door hinges or in an area needed to mount the interface channel. It may be necessary to make provisions for supporting the floor of the protective entrance on some shelters. For example, the personnel door of the shelter that is trailer-mounted could be as much as 40 in. off of the ground. Our present interface design can accomodate a door which is 37 in. wide, 66- 7% in. high and whose lower edge is less than 8-; in. off of the ground. Should this door be off of the ground more than 8-% in., the interface will no longer align, unless the top of the door is an equal amount-shorter. A platform also precludes the need to level the ground under the protective entrance. However, there can be instances'where the protective entrance must be used directly on the ground. When the entrance is used directly on the ground, large projections under the floor, such as rocks, must be removed.
The following example demonstrates the preliminary analysis which one might make in selecting the proper protective system for a specific application. Assume that one knows the compartment type, such as a S-280 shelter; the environmental control unit (heater/air conditioner): 18,000 Btu compact horizontal; personnel ventilation: 3 men (1000 cu. ft./person/hr., per HEL- STD-S-3-65 protective entrance required; and shelter leakage with equipment installed: 130 cfm. The airflows as follows can be determined from the foregoing known information.
Required ltem Flow at 1.5 in. wg. Heater 0 (electric) Air Conditioner cfm (maximum) Personnel 50 cfm Protective Entrance 150 cfm Shelter Leakage f The minimum required shelter flow is defined by the personnel ventilation requirement of 50 cfm. If the shelter leakage can be reduced by sealing to less than 90 cfm, the present air conditioner can be retained. A one-filter GPFU then can be used for the combined shelter and protective entrance protection. If shelter leakage cannot be reduced, a large air conditioner and larger or more GPFUs are necessary. This could be accomplished by providing the protective entrance with a recirculating filter unit or by using a two-filter GPFU. Should equipment cooling requirements exist, a larger GPFU and air conditioner are necessary.
To assemble our system, shelter 8 is constructed in the conventional manner, but it is provided with an interface 18 fixedly attached around the perimeter of door 19. The case shown at 20 in FIG. 3 is opened, as in FIG. 24, so that section 21 of case 20 forms the bottom and section 22 of case 20 forms the top of protective entrance l7. Impermeable fabric, such as butyl coated cloth 101, which forms the walls of the protective entrance, as shown in FIGS. l and 4 for example, is not shown in FIG. 24 for clarity purposes, but the impermeable fabric is fixedly sealed to supports 23 and the door frame shown at 28 and stored in a folded posture in bottom 21. Also, door 24, shown in FIGS. 12, 13, and 17, is stored in bottom 21 in the folded position shown in FIG. 13. Supports 23 are opened by hinge means 69 and 70, as shown in FIGS. 23, 26 to 29, and top mounts 25 are inserted within support 23 and secured therein by the thumb nut connection shown at 26, as shown in FIGS. 19 and 20. There are two top mounts 25 fixedly connected to top 22, as shown in FIG. 24, at the side of protective entrance 17 which connects to shelter 8. Supports 23 are opened from the folded position shown in FIG. 26 to the open position shown in FIGS. 28 and 29 and maintained in the open position by knobs 68 in the same manner as discussed below regarding knobs 29. Support braces 44 are opened, as shown in FIGS. 24 and 25, and the braces are held in open position by retaining pin 27. Top 22 is supported on the side opposite to supports 23 by the door frame shown at 28 which is opened, as shown in FIG. 24, and locked in the open position by pushing down on knob 29 which causes a protrusion fixedly connected to knob 29 to be inserted within member 30 to lock member 30 to member 31. Support braces 44 are similarly locked by pin 27. Anchor means shown at 33 in FIG. 21 are utilized to store the supports in bottom 21 in the storage mode, and valve 34 is provided to eliminate any water that may accumulate in protective entrance 17. Supports 23 are locked in the storage position by pull pins 35 held within retainer means 71 under tension by springs 36, as shown in FIGS. 23 and ing pin 41 through the mated holes, as shown in FIGS. 6 and 7. Door 24 is assembled, as shown in FIGS. 12 and 13, by opening from the folded position shown in FIG. 13 to the standard door mode position shown in FIG. 12 by means of hinges 42 mounted in the middle of the door and securing the door in the open position by thumb nut means 43 in the same manner discussed above regarding knob 29 for lokcing the door frame member 30 and 31 together. Door 24, after assembly as described above, is hung in the door frame, shown at 28 in FIG. 24, in the conventional manner by means of hinges 45. Door 24 is provided with conventional window 46, conventional door knob and latching mechanism 47, and a window cover 48 to use as desired;
window cover 48 being removably attached by means of conventional fabric fastener means member 49 sewed to cover 48 and conventional fabric fastener member 50 sewed to the butyl coated cloth fabric of the door, as shown in FIG. 17. Cover 48 is held in the open position by fastening fabric fastener 59 to fabric fastener 60. Pressure sensing module 52 and entrance light 53 are mounted within protective entrance 17, as
shown in FIGS. 4 and 18. Electrical power is supplied to light 53 by electrically connecting, in the conventional manner, the light to module 52 by means of electrical cable 54, and module 52 is in turn electrically connected, in the conventional manner, to power distribution unit 14 by means of electrical cable 56 through conventional electrical feed through 57. Light 53 is provided with a conventional three position switch 61 and a conventional white and red bulb, not shown in drawing, to permit use during blackout conditions; the light having electrical requirements of one ampere at 28 volts direct current. Conventional pneumatic tube 62 is connected to control/pressure sensing module 15, mounted within shelter 8 in any convenient location, through feed through 57, as shown in FIG. 18.
Pressure sensing module 52 contains the pressure sensing electrical network shown in FIG. 55 which senses and controls the pressure differential between 17 and ambient to operate the sliding-plate -airflow valve shown at 64; module 52 pressure sensing network being adjusted to control the pressure within entrance 17 at 0.4 to 0.8 inches wg. and having an electrical power input of 28 volts direct current and a power consumption of less than one ampere. Control/pressure sensing module 15 contains the main GPFU control panel having the electrical circuitry shown in FIG. 54 and the pressure sensing network shown in FIG. 55 which monitors the pressure differential between shelter 8 and ambient; the pressure sensing network of module 15 being present to maintain pressure in shelter 8 between 1.2 inches wg and 1.7 inches wg. The designations on,
electrical component values in FIG. 55 are as set forth below.
ELECTRICAL COMPONENT VALUES (FIGURE 55) BIZ-330K

Claims (13)

1. A system to provide protection in a contaminated atmosphere area comprising: a protective shelter means; a portable protective entrance means adapted to be connected to the shelter means, said entrance means having a top and bottom and flexible, foldable sidewalls and adapted to contain all entrance structure members and to be closed into a suitcase-like container with the structure members therein for transport from place to place; a gas-particulate filter unit adapted to be connected to the shelter and entrance means to purify contaminated air for supply of pure air to the shelter and entrance means; conduit means adapted to connect the gas-particulate filter unit to the shelter and entrance means, a power distribution unit to supply electrical power to all electrical components of the system; a pressure sensing network adapted to sense and control the pressure differential between ambient and the shelter means and the entrance means and to transmit an electrical signal to activate a plurality of sliding-plate valves, and a plurality of sliding-plate valves adapted to control the air flow through the system.
2. The system of claim 1 wherein the entrance means structure members comprise a pair of support members adapted to be erected between said top and bottom; a door frame means adapted to be erected between the top and bottom opposite to the support members; a pair of brace means adapted to be erected between the midpoint of the support members and the bottom; means adapted to permit the support members, the door frame means, and the brace means to be folded for storage in the bottom; locking means adapted to maintain the support members, the door frame means, and the brace means in the erected position; a door adapted to be erected on the door frame means to provide an airtight seal for the entrance means, means adapted to permit the door to be folded for storage in the said bottom; means adapted to maintain the door in an erected mode; an opening defining means in the said top to permit a sliding-plate valve to be superimposed thereon; and wherein said side walls comprise a butyl coated cloth fixedly and sealingly attached to the top, bottom, support members, and door frame means and adapted to be folded and stored in the bottom, and sealing means to prevent contaminated air leakage into the entrance.
3. The system of claim 1 wherein the gas-particulate filter unit comprises a mount means, a housing means, an air inlet means integral with one end of the housing means, an air outlet means integral with a side of the housing means adapted to have a sliding-plate valve superimposed thereon, dust exhaust means integral with the air inlet means, dust collector means integral with an end of the air inlet means and within the housing means, fan means integral with the dust collector means at the end opposite to the air inlet means and within the housing means, gas filter means adjacent to the housing inner wall, particulate filter means nested within the gas filter means and surrounding the dust collector means and the fan means, a plenum chamber means located between the inner wall of the housing means and the outeR wall of the gas filter means, and access cover means to retain the gas filter means and the particulate filter means within the filter unit.
4. The system of claim 3 wherein the particulate filter means comprises a course material backing media to support a high efficiency filtering material, said particulate filter means having an airflow resistance of 2.0 inches wg at 200 cfm and 99.97 percent collection efficiency on 0.3 micron particles.
5. The system of claim 3 wherein the gas filter means contains activated impregnated charcoal and has an airflow resistance of 4.0 inches wg at 200 cfm.
6. The system of claim 1 wherein the power distribution unit is a 28 volt direct current source.
7. The system of claim 1 wherein the power distribution unit is a 208 volt alternating current, 60Hz, three phase source having a 60Hz transformer/rectifier system in combination therewith to convert the alternating source current to 28 volts direct current.
8. The system of claim 1 wherein the power distribution unit is a 208 volt alternating current, 400Hz, three phase source having a 400Hz transformer/rectifier system in combination therewith to convert the alternating source current to 28 volts direct current.
9. The system of claim 1 wherein the sliding-plate valves comprise a housing means; a pair of ports within the housing means; a pair of rail means fixedly mounted to the housing means adjacent to the ports to permit travel of a door means therebetween; a door means to travel between the rail means to open and close the ports; a gear rack fixedly mounted on the door means on the side thereof opposite to the ports; a motor means fixedly mounted within the housing means above the horizontal plane of the door means and adjacent thereto; a spur gear integral with the motor means adapted to engage the gear rack and activate the door means upon receipt of an electrical signal by the motor means from the pressure sensing network; a pair of limit stop switches fixedly mounted on a side of the housing, one switch being located adjacent to each end of the housing means; and a leaf spring fixedly mounted on each end of the housing means adjacent to the switches.
10. The system of claim 1 having a control panel in combination therewith, the panel comprising an electrical terminal board means; an electrical connector means; a main electrical power switch; an audible alarm means; an alarm means switch; an hour meter; a holding coil means; an indicator light means; a plurality of circuit breaker means; and an electrical filter means.
11. The system of claim 1 wherein the pressure sensing network comprises a pressure transducer means, a first electrical connector means to connect the transducer means to an electrical circuit means, an electrical circuit means to receive imput from the transducer means and to transmit an electrical signal to operate the sliding-plate valves, and a second electrical connector means to connect the electrical circuit means to the sliding-plate valves.
12. The system of claim 11 wherein the electrical circuit means comprises a plurality of capacitor means, a plurality of diode means, a plurality of resistor means, a plurality of transistor means, and a plurality of operational amplifier means.
13. A method of providing protection in a contaminated atmosphere area comprising the steps of: erecting a protective shelter, with an access way; providing a collapsed suitcase shaped entrance means having a top and bottom encasing joined folded support members and folded coated cloth walls connecting said top and bottom and the support members, said entrance means also having folded door and frame means and associated folded coated cloth covering said door; unfolding the support members and door frame thereby moving the said top and bottom away from each other to erected position while contemporaneously unfolding the associated said cloth and securing saId support members and door frame in the unfolded erected position; connecting the erected entrance means to the shelter at said access way in sealing engagement to prevent the entrance of contaminated air therein; connecting electrical component means of the shelter and the entrance to a power distribution unit, activating the power distribution unit, passing contaminated air through a gas-particulate filter unit to purify the air for supply to the shelter and the entrance, monitoring the pressure within the shelter and the entrance to control the airflow therein; transmitting the monitored pressure to an electrical circuit means to convert the pressure to an electrical signal to activate sliding-plate valves; transmitting an electrical signal from the electrical circuit means to the sliding-plate valves to activate the valves, and activating the valves to control the airflow through the shelter and the entrance.
US00210344A 1971-12-21 1971-12-21 Protective system for contaminated atmosphere Expired - Lifetime US3766844A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21034471A 1971-12-21 1971-12-21

Publications (1)

Publication Number Publication Date
US3766844A true US3766844A (en) 1973-10-23

Family

ID=22782535

Family Applications (1)

Application Number Title Priority Date Filing Date
US00210344A Expired - Lifetime US3766844A (en) 1971-12-21 1971-12-21 Protective system for contaminated atmosphere

Country Status (1)

Country Link
US (1) US3766844A (en)

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129426A (en) * 1976-08-10 1978-12-12 Flex Ake Wennberg Ab Device for cleaning workshop air
US4166343A (en) * 1977-01-26 1979-09-04 Brian Edward D O Collapsible structures
US4221575A (en) * 1979-04-05 1980-09-09 The United States Of America As Represented By The Secretary Of The Army Pneumatically operated airflow valve
US4354331A (en) * 1977-12-15 1982-10-19 Consort Project Developments Limited Collapsable structures
US4478001A (en) * 1981-06-22 1984-10-23 Martin Marietta Corporation Protective entranceway
US4492151A (en) * 1982-03-05 1985-01-08 Michele Mattei Eliane Air pressurizers/conditioners especially for work cabs in a polluted atmosphere
US4581986A (en) * 1984-03-14 1986-04-15 Brunswick Corporation Contamination reducing airlock and entry system
US4604111A (en) * 1981-11-23 1986-08-05 Anthony Natale Particulate contamination control method and filtration device
US4706551A (en) * 1984-09-20 1987-11-17 Schofield Paul S Enclosure
US4804392A (en) * 1987-09-17 1989-02-14 Spengler Charles W Clean air facility
US4838910A (en) * 1987-09-18 1989-06-13 Critical Systems, Inc. Air driven filtration system
US4869446A (en) * 1988-10-11 1989-09-26 The United States Of America As Represented By The Secretary Of The Air Force Cockpit atmosphere protection system
EP0352113A2 (en) * 1988-07-20 1990-01-24 Eagle, Military Gear Overseas Limited Forced-ventilation filtration device
US4900342A (en) * 1988-08-26 1990-02-13 Spengler Charles W Blower-filter assembly
US4902315A (en) * 1987-11-30 1990-02-20 Spicer R Christopher Negative pressure asbestos removal with localized make-up air
US4928581A (en) * 1988-11-30 1990-05-29 Jacobson Earl Bruce Negative air control unit and closure structure
US4934396A (en) * 1988-12-08 1990-06-19 Vitta Trust, C/O Michael F. Vitta, Trustee Disposable/portable decontamination unit
US4964899A (en) * 1988-05-02 1990-10-23 Griffis Steven C Apparatus for transporting a person from a contaminated area to a decontamination facility
US5010907A (en) * 1989-12-22 1991-04-30 General Dynamics Corporation Mobile enclosure for allowing access to a vehicle in an unsafe environment
US5042367A (en) * 1990-08-31 1991-08-27 Dwight Hopkins Revolving air lock
US5191909A (en) * 1991-04-03 1993-03-09 Griffin Environmental Co., Inc. Transit mix truck dust hood assembly
US5203644A (en) * 1991-08-29 1993-04-20 The United States Of America As Represented By The United States Department Of Energy System to control contamination during retrieval of buried TRU waste
US5277654A (en) * 1992-10-08 1994-01-11 John's Insulation, Inc. Method and apparatus for protectively transporting contaminated personnel and the like
US5331991A (en) * 1991-11-15 1994-07-26 Ab Ventilatorverken Ventilation method and means for the same
US5361550A (en) * 1993-12-08 1994-11-08 The United States Of America As Represented By The Secretary Of The Army Movable hardened air form dome-shaped structure for containing hazardous, toxic, or radioactive airborne releases
US5537784A (en) * 1994-08-15 1996-07-23 Baldwin; Gary L. Inflatable portable refuge structure
US5558112A (en) * 1995-03-27 1996-09-24 Southern Concepts, Inc. Portable isolation enclosure and process for cleaning environments
US5720658A (en) * 1992-02-11 1998-02-24 Belusa; Manfred L. Space pressurization control system for high containment laboratories
US5878529A (en) * 1993-08-27 1999-03-09 Boon Edam B.V. Entrance device
US5908043A (en) * 1992-02-03 1999-06-01 Bema, Inc. Portable tent assembly for use with a radio frequency shielded enclosure
WO2001005348A1 (en) 1999-07-16 2001-01-25 Inteledatics, Inc. Isolation apparatus
WO2001061252A1 (en) * 2000-02-16 2001-08-23 Battelle Memorial Institute Protective filtration system for enclosures within buildings
US6321764B1 (en) 1998-12-21 2001-11-27 Iit Research Institute Collapsible isolation apparatus
US6364923B1 (en) * 2000-07-14 2002-04-02 The University Of Chicago Method and apparatus for the clean replacement of contaminated HEPA filters
US6390110B1 (en) * 1999-10-08 2002-05-21 Louis Brown Transportable collective protection system
US6461290B1 (en) 1998-12-21 2002-10-08 Iit Research Institute Collapsible isolation apparatus
US6497738B2 (en) * 2001-01-10 2002-12-24 Yu-Yuan Lin Filter for indoor barbecue
US6554013B2 (en) * 1999-11-10 2003-04-29 1289309 Ontario Limited Transportable collective protection system
US6705242B2 (en) * 2002-01-08 2004-03-16 Ch2M Hill Constructors, Inc. Method and apparatus for hermetically sealing openings of an explosion containment chamber
US20040050008A1 (en) * 2002-07-26 2004-03-18 Mintie Kevin J. Environmental control unit
US20040074529A1 (en) * 2002-10-21 2004-04-22 Robert Levy Self-contained and ventilated temporary shelter
US20040092223A1 (en) * 2002-02-21 2004-05-13 Doescher Robert D. Cab environment warning and control method and apparatus
US20040149329A1 (en) * 2003-01-17 2004-08-05 Hess Daniel G. Scent elimination system for hunters
US20040154616A1 (en) * 2003-02-10 2004-08-12 Hollis Parker Risley Low pressure hyperbaric chamber and method of using the same
US20040177447A1 (en) * 2003-03-10 2004-09-16 Love Tommy L. System for isolating a patient from a surrounding environment
US20040261324A1 (en) * 2003-03-24 2004-12-30 Eugene Tewari Self contained living environment
US20050022656A1 (en) * 2002-01-08 2005-02-03 Donovan John L. Purging an airlock of an explosion containment chamber
US20050048908A1 (en) * 2002-08-21 2005-03-03 Samuel Koeger System and method for protection against nuclear, biological and chemical (nbc) contamination
US20050103370A1 (en) * 2003-11-15 2005-05-19 Napier James A. Climate controlled portable dwelling and method of use
US20050192472A1 (en) * 2003-05-06 2005-09-01 Ch2M Hill, Inc. System and method for treatment of hazardous materials, e.g., unexploded chemical warfare ordinance
US6948553B1 (en) * 2002-10-09 2005-09-27 Beutler Corporation Modular heat recovery ventilation system
DE4328810B4 (en) * 1993-08-27 2006-02-09 Weiss Umwelttechnik Gmbh Shelter
US20060107635A1 (en) * 2002-04-22 2006-05-25 Jane Homan Modular biosafety containment apparatus and system
US7188636B1 (en) * 2004-04-14 2007-03-13 Steve Kanne Containment cart
US20070220846A1 (en) * 2006-03-24 2007-09-27 Jeremy Ray Enclosed portable work station
US20080017027A1 (en) * 2006-09-18 2008-01-24 Oreck Holdings, Llc Electrical power disable in an air cleaner
US20080216389A1 (en) * 2007-03-06 2008-09-11 Tom Hoshall Subsurface insect detection and pesticide injection system
US20080264257A1 (en) * 2007-04-25 2008-10-30 Oreck Holdings, Llc Method and apparatus for illuminating and removing airborne impurities within an enclosed chamber
US20090120517A1 (en) * 2007-11-12 2009-05-14 Thomas Joseph Whitney Self regulating valve to obtain low differential air pressure control
US7547250B1 (en) * 2003-12-08 2009-06-16 O'neill Bethan Sleeve extending through a flexible material side wall of an outdoor enclosure for receiving an air conditioner
US20100058674A1 (en) * 2008-09-08 2010-03-11 Kelly Lewis Proctor Mobile environment containment unit
EP1798492A3 (en) * 2005-12-19 2010-10-13 M+W Zander Products GmbH Filtration and ventilation unit
US20110053486A1 (en) * 2009-08-16 2011-03-03 G-Con, Llc Modular, self-contained, mobile clean room
US7997004B1 (en) * 2001-08-10 2011-08-16 Taps, Llc Portable air heating system
US20110302800A1 (en) * 2010-06-15 2011-12-15 Tsan-Hsiung Cheng Air inlet and outlet passage module for desiccation
US20120276835A1 (en) * 2011-04-26 2012-11-01 Yoshihito Fukuda Isolation booth
US20120285944A1 (en) * 2011-05-11 2012-11-15 Joseph Anthony Bermudez Self-Inflating Heat Sanitizer
US20130303066A1 (en) * 2012-05-02 2013-11-14 Frank E. Waulters Portable saw enclosure featuring moisture and debris laden air extraction plus electrical control panel
US20140148089A1 (en) * 2012-11-23 2014-05-29 Shenzhen China Star Optoelectronics Technology Co Ltd. Moving Device and Dust Cover
US20160010883A1 (en) * 2014-07-11 2016-01-14 G-Con Manufacturing Inc Modular parts that supply utilities to cleanroom, isolation or containment cubicles, pods, or modules
US20160168847A1 (en) * 2013-07-05 2016-06-16 Reperes Foldable Sensory Isolation Booth
US9795957B2 (en) 2009-08-16 2017-10-24 G-Con Manufacturing, Inc. Modular, self-contained, mobile clean room
US9930950B1 (en) * 2015-03-02 2018-04-03 Kailyn Cage Device for drying
US20180335224A1 (en) * 2017-05-18 2018-11-22 Haier Us Appliance Solutions, Inc. System and method for operating a packaged terminal air conditioner unit based on room occupancy
US10161147B2 (en) 2013-10-14 2018-12-25 G-Con Manufacturing Inc. Method for connecting modular mobile rooms
US10612801B1 (en) * 2013-01-09 2020-04-07 Amazon Technologies, Inc. Environmentally controlled booth
US10697847B2 (en) * 2015-11-20 2020-06-30 Dürr Systems Ag Overpressure encapsulation system for explosion protection, and corresponding operating method
US10711484B2 (en) * 2018-01-02 2020-07-14 Charles Robert Justus Air handling unit and method of assembling the same
US11123678B2 (en) * 2021-05-04 2021-09-21 GPL Odorizers LLC Air filtration device
FR3109206A1 (en) * 2020-04-08 2021-10-15 Airinspace Clean room with mobile filtration unit
WO2021258445A1 (en) * 2020-06-24 2021-12-30 深圳市巨鼎医疗股份有限公司 Negative pressure system
US11231198B2 (en) * 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
US20220136275A1 (en) * 2020-08-14 2022-05-05 Jeffrey Julian Temporary shelter
US11492795B2 (en) 2020-08-31 2022-11-08 G-Con Manufacturing, Inc. Ballroom-style cleanroom assembled from modular buildings
US20220388046A1 (en) * 2019-11-04 2022-12-08 Daniel Ehrhardt Extraction system for polluted air
US11624182B2 (en) 2019-08-15 2023-04-11 G-Con Manufacturing, Inc. Removable panel roof for modular, self-contained, mobile clean room
EP4185757A4 (en) * 2020-07-23 2024-08-21 Fero Int Inc Improvements in and relating to mobile medical units

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3157185A (en) * 1961-07-21 1964-11-17 Schoenike John Collapsible ice shelter
US3316828A (en) * 1964-12-30 1967-05-02 Borg Warner Hyperbaric chambers
US3478472A (en) * 1967-11-29 1969-11-18 John P Kwake Means for constant pressurization of inflatable and other enclosures
US3501213A (en) * 1967-05-19 1970-03-17 Snyder Mfg Co Inc Isolator assembly and method of entering same
US3587574A (en) * 1969-04-14 1971-06-28 James B Mercer Hyperbaric treatment chamber
US3601031A (en) * 1969-09-22 1971-08-24 Litton Systems Inc Patient isolator room
US3629875A (en) * 1970-02-04 1971-12-28 Doris I Dow Portable inflatable enclosure for personal use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3157185A (en) * 1961-07-21 1964-11-17 Schoenike John Collapsible ice shelter
US3316828A (en) * 1964-12-30 1967-05-02 Borg Warner Hyperbaric chambers
US3501213A (en) * 1967-05-19 1970-03-17 Snyder Mfg Co Inc Isolator assembly and method of entering same
US3478472A (en) * 1967-11-29 1969-11-18 John P Kwake Means for constant pressurization of inflatable and other enclosures
US3587574A (en) * 1969-04-14 1971-06-28 James B Mercer Hyperbaric treatment chamber
US3601031A (en) * 1969-09-22 1971-08-24 Litton Systems Inc Patient isolator room
US3629875A (en) * 1970-02-04 1971-12-28 Doris I Dow Portable inflatable enclosure for personal use

Cited By (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129426A (en) * 1976-08-10 1978-12-12 Flex Ake Wennberg Ab Device for cleaning workshop air
US4166343A (en) * 1977-01-26 1979-09-04 Brian Edward D O Collapsible structures
US4354331A (en) * 1977-12-15 1982-10-19 Consort Project Developments Limited Collapsable structures
US4221575A (en) * 1979-04-05 1980-09-09 The United States Of America As Represented By The Secretary Of The Army Pneumatically operated airflow valve
US4478001A (en) * 1981-06-22 1984-10-23 Martin Marietta Corporation Protective entranceway
US4604111A (en) * 1981-11-23 1986-08-05 Anthony Natale Particulate contamination control method and filtration device
US4492151A (en) * 1982-03-05 1985-01-08 Michele Mattei Eliane Air pressurizers/conditioners especially for work cabs in a polluted atmosphere
US4581986A (en) * 1984-03-14 1986-04-15 Brunswick Corporation Contamination reducing airlock and entry system
US4706551A (en) * 1984-09-20 1987-11-17 Schofield Paul S Enclosure
US4804392A (en) * 1987-09-17 1989-02-14 Spengler Charles W Clean air facility
WO1989002306A1 (en) * 1987-09-17 1989-03-23 Spengler Charles W Clean air facility
US4838910A (en) * 1987-09-18 1989-06-13 Critical Systems, Inc. Air driven filtration system
US4902315A (en) * 1987-11-30 1990-02-20 Spicer R Christopher Negative pressure asbestos removal with localized make-up air
US4964899A (en) * 1988-05-02 1990-10-23 Griffis Steven C Apparatus for transporting a person from a contaminated area to a decontamination facility
US5022900A (en) * 1988-07-20 1991-06-11 Eagle, Military Gear Overseas Ltd. Forced ventilation filtration device
EP0352113A2 (en) * 1988-07-20 1990-01-24 Eagle, Military Gear Overseas Limited Forced-ventilation filtration device
EP0352113A3 (en) * 1988-07-20 1990-12-27 Eagle, Military Gear Overseas Limited Forced-ventilation filtration device
US4900342A (en) * 1988-08-26 1990-02-13 Spengler Charles W Blower-filter assembly
US4869446A (en) * 1988-10-11 1989-09-26 The United States Of America As Represented By The Secretary Of The Air Force Cockpit atmosphere protection system
US4928581A (en) * 1988-11-30 1990-05-29 Jacobson Earl Bruce Negative air control unit and closure structure
US4934396A (en) * 1988-12-08 1990-06-19 Vitta Trust, C/O Michael F. Vitta, Trustee Disposable/portable decontamination unit
US5010907A (en) * 1989-12-22 1991-04-30 General Dynamics Corporation Mobile enclosure for allowing access to a vehicle in an unsafe environment
US5042367A (en) * 1990-08-31 1991-08-27 Dwight Hopkins Revolving air lock
US5191909A (en) * 1991-04-03 1993-03-09 Griffin Environmental Co., Inc. Transit mix truck dust hood assembly
US5203644A (en) * 1991-08-29 1993-04-20 The United States Of America As Represented By The United States Department Of Energy System to control contamination during retrieval of buried TRU waste
US5331991A (en) * 1991-11-15 1994-07-26 Ab Ventilatorverken Ventilation method and means for the same
US5908043A (en) * 1992-02-03 1999-06-01 Bema, Inc. Portable tent assembly for use with a radio frequency shielded enclosure
US5720658A (en) * 1992-02-11 1998-02-24 Belusa; Manfred L. Space pressurization control system for high containment laboratories
US5277654A (en) * 1992-10-08 1994-01-11 John's Insulation, Inc. Method and apparatus for protectively transporting contaminated personnel and the like
US5878529A (en) * 1993-08-27 1999-03-09 Boon Edam B.V. Entrance device
DE4328810B4 (en) * 1993-08-27 2006-02-09 Weiss Umwelttechnik Gmbh Shelter
US5436385A (en) * 1993-12-08 1995-07-25 The United States Of America As Represented By The Secretary Of The Army Method of performing land reclamation at a hazardous wastework
US5361550A (en) * 1993-12-08 1994-11-08 The United States Of America As Represented By The Secretary Of The Army Movable hardened air form dome-shaped structure for containing hazardous, toxic, or radioactive airborne releases
US5537784A (en) * 1994-08-15 1996-07-23 Baldwin; Gary L. Inflatable portable refuge structure
US5558112A (en) * 1995-03-27 1996-09-24 Southern Concepts, Inc. Portable isolation enclosure and process for cleaning environments
WO1996030133A1 (en) * 1995-03-27 1996-10-03 Southern Concepts, Inc. Portable isolation enclosure for cleaning environments
US6461290B1 (en) 1998-12-21 2002-10-08 Iit Research Institute Collapsible isolation apparatus
US6321764B1 (en) 1998-12-21 2001-11-27 Iit Research Institute Collapsible isolation apparatus
WO2001005348A1 (en) 1999-07-16 2001-01-25 Inteledatics, Inc. Isolation apparatus
US6623351B2 (en) * 1999-10-08 2003-09-23 Louis Brown Transportable collective protection system
US6390110B1 (en) * 1999-10-08 2002-05-21 Louis Brown Transportable collective protection system
US6554013B2 (en) * 1999-11-10 2003-04-29 1289309 Ontario Limited Transportable collective protection system
US6383241B1 (en) 2000-02-16 2002-05-07 Battelle Memorial Institute Protective filtration system for enclosures within buildings
WO2001061252A1 (en) * 2000-02-16 2001-08-23 Battelle Memorial Institute Protective filtration system for enclosures within buildings
US6364923B1 (en) * 2000-07-14 2002-04-02 The University Of Chicago Method and apparatus for the clean replacement of contaminated HEPA filters
US6497738B2 (en) * 2001-01-10 2002-12-24 Yu-Yuan Lin Filter for indoor barbecue
US8819957B1 (en) 2001-08-10 2014-09-02 Taps, Llc Portable air heating system
US7997004B1 (en) * 2001-08-10 2011-08-16 Taps, Llc Portable air heating system
US6705242B2 (en) * 2002-01-08 2004-03-16 Ch2M Hill Constructors, Inc. Method and apparatus for hermetically sealing openings of an explosion containment chamber
US7418895B2 (en) 2002-01-08 2008-09-02 Demil International, Inc. Purging an airlock of an explosion containment chamber
US20050022656A1 (en) * 2002-01-08 2005-02-03 Donovan John L. Purging an airlock of an explosion containment chamber
US20040092223A1 (en) * 2002-02-21 2004-05-13 Doescher Robert D. Cab environment warning and control method and apparatus
US20060107635A1 (en) * 2002-04-22 2006-05-25 Jane Homan Modular biosafety containment apparatus and system
US7335243B2 (en) * 2002-04-22 2008-02-26 Jane Homan Modular biosafety containment apparatus and system
US20070094941A1 (en) * 2002-07-26 2007-05-03 Mintie Technologies, Inc. Environmental containment unit
US20040050008A1 (en) * 2002-07-26 2004-03-18 Mintie Kevin J. Environmental control unit
US7406978B2 (en) 2002-07-26 2008-08-05 Mintie Technologies, Inc. Environmental containment unit
US20080120924A1 (en) * 2002-07-26 2008-05-29 Mintie Technologies, Inc. Environmental containment unit
US7134444B2 (en) * 2002-07-26 2006-11-14 Mintie Technologies, Inc. Environmental containment unit
US20050048908A1 (en) * 2002-08-21 2005-03-03 Samuel Koeger System and method for protection against nuclear, biological and chemical (nbc) contamination
US6923716B2 (en) * 2002-08-21 2005-08-02 Beth-El Zikhron-Ya'aqov Industries Ltd. System and method for protection against nuclear, biological and chemical (NBC) contamination
US6948553B1 (en) * 2002-10-09 2005-09-27 Beutler Corporation Modular heat recovery ventilation system
US20040074529A1 (en) * 2002-10-21 2004-04-22 Robert Levy Self-contained and ventilated temporary shelter
US20040149329A1 (en) * 2003-01-17 2004-08-05 Hess Daniel G. Scent elimination system for hunters
US7222634B2 (en) * 2003-01-17 2007-05-29 Daniel G. Hess Scent elimination system for hunters
US7198045B2 (en) * 2003-02-10 2007-04-03 Hollis Parker Risley Low pressure hyperbaric chamber and method of using the same
US20040154616A1 (en) * 2003-02-10 2004-08-12 Hollis Parker Risley Low pressure hyperbaric chamber and method of using the same
US20040177447A1 (en) * 2003-03-10 2004-09-16 Love Tommy L. System for isolating a patient from a surrounding environment
US20040261324A1 (en) * 2003-03-24 2004-12-30 Eugene Tewari Self contained living environment
US20050192472A1 (en) * 2003-05-06 2005-09-01 Ch2M Hill, Inc. System and method for treatment of hazardous materials, e.g., unexploded chemical warfare ordinance
US20080089813A1 (en) * 2003-05-06 2008-04-17 Quimby Jay M System and method for treatment of hazardous materials, e.g., unexploded chemical warfare ordinance
US7700047B2 (en) 2003-05-06 2010-04-20 Ch2M Hill Constructors, Inc. System and method for treatment of hazardous materials, e.g., unexploded chemical warfare ordinance
US20050103370A1 (en) * 2003-11-15 2005-05-19 Napier James A. Climate controlled portable dwelling and method of use
US9410342B2 (en) 2003-11-15 2016-08-09 Outdoor Advantage Connection LLC Climate controlled portable dwelling and method of use
US7547250B1 (en) * 2003-12-08 2009-06-16 O'neill Bethan Sleeve extending through a flexible material side wall of an outdoor enclosure for receiving an air conditioner
US7188636B1 (en) * 2004-04-14 2007-03-13 Steve Kanne Containment cart
EP1798492A3 (en) * 2005-12-19 2010-10-13 M+W Zander Products GmbH Filtration and ventilation unit
US20070220846A1 (en) * 2006-03-24 2007-09-27 Jeremy Ray Enclosed portable work station
US20080017027A1 (en) * 2006-09-18 2008-01-24 Oreck Holdings, Llc Electrical power disable in an air cleaner
US7413594B2 (en) * 2006-09-18 2008-08-19 Oreck Holdings, Llc Electrical power disable in an air cleaner
US7451568B2 (en) * 2007-03-06 2008-11-18 Tom Hoshall Subsurface insect detection and pesticide injection system
US20080216389A1 (en) * 2007-03-06 2008-09-11 Tom Hoshall Subsurface insect detection and pesticide injection system
US20080264257A1 (en) * 2007-04-25 2008-10-30 Oreck Holdings, Llc Method and apparatus for illuminating and removing airborne impurities within an enclosed chamber
US20090120517A1 (en) * 2007-11-12 2009-05-14 Thomas Joseph Whitney Self regulating valve to obtain low differential air pressure control
US20100058674A1 (en) * 2008-09-08 2010-03-11 Kelly Lewis Proctor Mobile environment containment unit
US8234822B2 (en) * 2008-09-08 2012-08-07 Environment Of Care Resources Group Llc Mobile environment containment unit
US10654036B2 (en) 2009-08-16 2020-05-19 G-Con Manufacturing, Inc. Modular, self-contained, mobile clean room
US9795957B2 (en) 2009-08-16 2017-10-24 G-Con Manufacturing, Inc. Modular, self-contained, mobile clean room
US9765980B2 (en) 2009-08-16 2017-09-19 G-Con Manufacturing, Inc. Modular, self-contained, mobile clean room
US9518748B2 (en) * 2009-08-16 2016-12-13 G-Con Manufacturing Inc. Modular, self-contained, mobile clean room
US20110053486A1 (en) * 2009-08-16 2011-03-03 G-Con, Llc Modular, self-contained, mobile clean room
US20110302800A1 (en) * 2010-06-15 2011-12-15 Tsan-Hsiung Cheng Air inlet and outlet passage module for desiccation
US8359768B2 (en) * 2010-06-15 2013-01-29 Tsan-Hsiung Cheng Air inlet and outlet passage module for desiccation
US20120276835A1 (en) * 2011-04-26 2012-11-01 Yoshihito Fukuda Isolation booth
US20120285944A1 (en) * 2011-05-11 2012-11-15 Joseph Anthony Bermudez Self-Inflating Heat Sanitizer
US8742296B2 (en) * 2011-05-11 2014-06-03 Joseph Anthony Bermudez Self-inflating heat sanitizer
US9285132B2 (en) * 2012-05-02 2016-03-15 Frank E Waulters Portable saw enclosure featuring moisture and debris laden air extraction plus electrical control panel
US20130303066A1 (en) * 2012-05-02 2013-11-14 Frank E. Waulters Portable saw enclosure featuring moisture and debris laden air extraction plus electrical control panel
US20140148089A1 (en) * 2012-11-23 2014-05-29 Shenzhen China Star Optoelectronics Technology Co Ltd. Moving Device and Dust Cover
US9347680B2 (en) * 2012-11-23 2016-05-24 Shenzhen China Star Optoelectronics Technology Co., Ltd Moving device and dust cover
US10612801B1 (en) * 2013-01-09 2020-04-07 Amazon Technologies, Inc. Environmentally controlled booth
US9617727B2 (en) * 2013-07-05 2017-04-11 Reperes Foldable sensory isolation booth
US20160168847A1 (en) * 2013-07-05 2016-06-16 Reperes Foldable Sensory Isolation Booth
US10161147B2 (en) 2013-10-14 2018-12-25 G-Con Manufacturing Inc. Method for connecting modular mobile rooms
KR20170040255A (en) * 2014-07-11 2017-04-12 지-콘 메뉴팩츄어링 인코포레이티드 Modular parts that supply utilities to cleanroom, isolation or containment cubicles, pods, or modules
KR20190015612A (en) * 2014-07-11 2019-02-13 지-콘 메뉴팩츄어링 인코포레이티드 Modular parts that supply utilities to cleanroom, isolation or containment cubicles, pods, or modules
US10533758B2 (en) * 2014-07-11 2020-01-14 G-Con Manufacturing Inc. Modular parts that supply utilities to cleanroom, isolation or containment cubicles, pods, or modules
US20160010883A1 (en) * 2014-07-11 2016-01-14 G-Con Manufacturing Inc Modular parts that supply utilities to cleanroom, isolation or containment cubicles, pods, or modules
US9930950B1 (en) * 2015-03-02 2018-04-03 Kailyn Cage Device for drying
US10697847B2 (en) * 2015-11-20 2020-06-30 Dürr Systems Ag Overpressure encapsulation system for explosion protection, and corresponding operating method
US20180335224A1 (en) * 2017-05-18 2018-11-22 Haier Us Appliance Solutions, Inc. System and method for operating a packaged terminal air conditioner unit based on room occupancy
US10711484B2 (en) * 2018-01-02 2020-07-14 Charles Robert Justus Air handling unit and method of assembling the same
US11624182B2 (en) 2019-08-15 2023-04-11 G-Con Manufacturing, Inc. Removable panel roof for modular, self-contained, mobile clean room
US11231198B2 (en) * 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
US11971183B2 (en) 2019-09-05 2024-04-30 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
US20220388046A1 (en) * 2019-11-04 2022-12-08 Daniel Ehrhardt Extraction system for polluted air
FR3109206A1 (en) * 2020-04-08 2021-10-15 Airinspace Clean room with mobile filtration unit
WO2021258445A1 (en) * 2020-06-24 2021-12-30 深圳市巨鼎医疗股份有限公司 Negative pressure system
EP4185757A4 (en) * 2020-07-23 2024-08-21 Fero Int Inc Improvements in and relating to mobile medical units
US20220136275A1 (en) * 2020-08-14 2022-05-05 Jeffrey Julian Temporary shelter
US11492795B2 (en) 2020-08-31 2022-11-08 G-Con Manufacturing, Inc. Ballroom-style cleanroom assembled from modular buildings
US11123678B2 (en) * 2021-05-04 2021-09-21 GPL Odorizers LLC Air filtration device

Similar Documents

Publication Publication Date Title
US3766844A (en) Protective system for contaminated atmosphere
US11761703B2 (en) Parallel loop intermodal container
US4667580A (en) Clean room module
US6390110B1 (en) Transportable collective protection system
US5314377A (en) Clean air isolation enclosure
US20130032310A1 (en) Transportable, environmentally-controlled equipment enclosure
US6554013B2 (en) Transportable collective protection system
US6330771B1 (en) Safer school module and assembly
WO2001061252A1 (en) Protective filtration system for enclosures within buildings
EP3374703A1 (en) Series loop intermodal container
CN113246833A (en) On-vehicle extensible removes biological safety laboratory
US20240003586A1 (en) Integrated Energy Recovery Base or Roof-curb for Air-conditioning Unit
CN207080285U (en) A kind of Jing Yin mobile power vehicle
Broyan Jr et al. International space station USOS crew quarters development
Hales et al. Experimental verification of linear combination model for relating indoor-outdoor pollutant concentrations
US7094142B1 (en) Portable device with interchangeable air cleaning modules for cleaning the air outside of an existing enclosed space and delivering the cleaned air into the existing enclosed space
Berk Design of a mobile laboratory for ventilation studies and indoor air pollution monitoring
CN108488011A (en) Automobile-used air supply system and Special fire fighting vehicle
WO2004040084A1 (en) Protection system
KR20230066679A (en) Assembly type protective booth
JPH0354553U (en)
PROTECTION Distribution Restriction Statement
JPS58501295A (en) Improved data processing equipment enclosure
Veneri et al. System Overview of the Columbus APM Environmental Control “Design-to-Cost” Baseline
Milburn Space Station Freedom Node 2 Fire Detection and Suppression System Design and Performance