US3759144A - Hydraulic actuating system for hydraulically operated bending machine - Google Patents
Hydraulic actuating system for hydraulically operated bending machine Download PDFInfo
- Publication number
- US3759144A US3759144A US00170876A US3759144DA US3759144A US 3759144 A US3759144 A US 3759144A US 00170876 A US00170876 A US 00170876A US 3759144D A US3759144D A US 3759144DA US 3759144 A US3759144 A US 3759144A
- Authority
- US
- United States
- Prior art keywords
- conduit
- tank
- chamber
- fluid
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005452 bending Methods 0.000 title abstract description 19
- 239000012530 fluid Substances 0.000 claims abstract description 59
- 238000004891 communication Methods 0.000 claims description 10
- 230000005484 gravity Effects 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 abstract description 5
- 238000007599 discharging Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 235000018453 Curcuma amada Nutrition 0.000 description 1
- 241001512940 Curcuma amada Species 0.000 description 1
- 241001562081 Ikeda Species 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/16—Control arrangements for fluid-driven presses
- B30B15/161—Control arrangements for fluid-driven presses controlling the ram speed and ram pressure, e.g. fast approach speed at low pressure, low pressing speed at high pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D5/00—Bending sheet metal along straight lines, e.g. to form simple curves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/024—Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/021—Valves for interconnecting the fluid chambers of an actuator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/024—Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
- F15B2011/0243—Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits the regenerative circuit being activated or deactivated automatically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30505—Non-return valves, i.e. check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30525—Directional control valves, e.g. 4/3-directional control valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/3056—Assemblies of multiple valves
- F15B2211/30565—Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
- F15B2211/3058—Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/315—Directional control characterised by the connections of the valve or valves in the circuit
- F15B2211/31552—Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line
- F15B2211/31558—Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line having a single output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/315—Directional control characterised by the connections of the valve or valves in the circuit
- F15B2211/3157—Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
- F15B2211/31576—Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/32—Directional control characterised by the type of actuation
- F15B2211/321—Directional control characterised by the type of actuation mechanically
- F15B2211/324—Directional control characterised by the type of actuation mechanically manually, e.g. by using a lever or pedal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/32—Directional control characterised by the type of actuation
- F15B2211/329—Directional control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/75—Control of speed of the output member
Definitions
- a hydraulic actuating system for a hydraulically operated bending machine which is so designed and con- Foreign Application Priority Data structed that, by using an automatically operable pres- Aug. 17, 1970 Japan 45171412 sure-sensitive valve, the hydraulic ram and driving apron is caused to move at an increased speed during [52] U.S. C1. 91/436, 91/437 its idle movement towards the workpiece by bypassing [51'] Int. Cl. .(FlSb 11/08, Fl5b 13/042 fluid from the discharge chamber of the ram to the [58] Field of Search 91/436, 437 drive chamber and at a decreased speed but increased force during the bending operation by passing fluid [56] References Cited from the discharge chamber to the tank.
- HYDRAULIC ACTUATING SYSTEM FOR HYDRAULICALLY OPERATED BENDING MACHINE DESCRIPTION OF THE INVENTION The known conventional hydraulic bending machines are usually provided with a hydraulic ram having variable strokes and the capability of being brought to a halt during its advancing movement.
- the speed of the upward idle movement of the hydraulic ram for such bending machines can not be increased considerably as in the case of mechanically operated system's, thus resulting in a lowered operating efficiency.
- Various complicated systems have been attempted to obviate this drawback.
- a plurality of hydraulic rams have been employed in a particular operation in order to achieve different operating speeds for the hydraulic ram.
- hydraulic pumps with a lower output and a higher pressure or conversely with a higher output and a lower pressure has been utilized selectively for the particular operation.
- a plurality of hydraulic cylinders have been provided in conjunction with the hydraulic ram sothatthe single cylinder situtated in the position of gravity is actuated for attaining a higher ram speed and the cylinders are actuated as a whole for feeding the ram at a decreased speed in the course of the bending operation.
- a hydraulically operated bending machine with one operating cylinder and simplified construction including a hydraulic circuit in which the upward stroke of the hydraulic ram from its starting position to the position of abutment with the work for deforming the same is attainable within a short period of time, and the maximum force developed by the hydraulic pump is fully utilized for deforming the work in the course of the bending operation, and the energy of a single motor of small capacity is used most effectively for the entire operation.
- FIG. 1 is a front view of a bending press in which the hydraulic ram is actuated by a hydraulic circuit embodying the concepts of the present invention
- FIG. 2 is a schematic diagram showing the inventive hydraulic circuit
- FIG. 3 is an enlarged sectional view of a sequence valve.
- the'bending press has a base 1 and a pair of guide tracks 3,3 secured to the left-hand and right-hand sides of the base 1.
- a lower movable apron or ram 7 is slidably mounted on tracks 3,3 and driven by a driving hydraulic cylinder 5.
- An upper fixed apron 9 is secured to the upper ends of the tracks 3,3.
- a piston 11 slidably received inside the driving hydraulic'cylinder 5, the latter having an upper port 13 and a lower port 15.
- the lower port 15 is connected to a hydraulic conduit 21,21 through which hydraulic fluid is conveyed from a tank 19 by means of a hydraulic pump 17.
- the upper oil port 13 is connected to another conduit 25,25 which includes a check valve 23 and which is also connected to the tank 19.
- a sequence valve assembly 29 is provided as shown. Assembly 29 is connected to conduits 25 and 21 by means of intermediate conduits 26 and 27.
- a further conduit 33 is provided between valve assembly 29 and conduit 25.
- a three-way valve 37 adapted for switching to a conduit 35 and returning the fluid supplied under pressure back into tank 19.
- a relief valve 39 is inserted in a conduit 41 connecting conduit 21' to conduit 33.
- the sequence valve assembly shown generally at 29 is formed with a spool chamber 43 having reduced diameter sections 43a and 43b and receiving slidably therein a spool-like member 45, and a cylindrica chamber 47 communicating with the reduced diameter section of the spool chamber 43.
- the spool-like member 45 is formed, at its right-hand end as viewed in FIG. 3, with a piston 49 which is slidably received in the reduced diameter portion 43a of the spool chamber 43 and which is formed with a circular larged opening at the other end of the spool chamber 43.
- the valve assembly has an oil port 57 which is hydraulically connected with the spool chamber 43 and with conduit 25 via conduit 26, and a further port 61, the latter being formed with a pilot duct 59 communicating with the cylindrical chamber 47 and being hydraulically-connected with conduit 21 via conduit 27.
- the valve assembly also has a further port 63 connected to conduit 33 and adapted for hydraulic connection with the spool chamber 43 when the spool 45 is urged to move leftwards in the drawing.
- Numeral 65 in FIG. 2 denotes a suction element and numeral 67 in FIG. 3 denotes a packing.
- the present device operates as follows: First, the three-way valve 37 is manipulated so as to interrupt conduit 35 and provide a hydraulic communication between conduit 21,21 and the hydraulic pump 17. At this time, the hydraulic pump 17 is made to communicate with both chambers a and b of the hydraulic driving cylinder 5 and hydraulic fluid in the circuit acts on both sides of the piston 11. However, since the lower side of the piston 11 is larger in area than the upper side of the same by the cross-sectional area of the piston rod, the pressure acting on the underside is greater and the piston is moved upwardly. Therefor, pressurized hydraulic fluid is supplied from the hydraulic pump 17 into the driving chamber a of the hydraulic driving cylinder 5 for urging the piston 11 and thereby the lower movable apron 7 to move upwards.
- Hydraulic fluid discharging from chamber b of the driving cylinder 5 flows through conduit 25 via port 13 as said piston 11 is elevated in its position.
- the fluid thus discharged into conduit 25,25 is checked by the check valve 23 from returning into the tank 19 and is forced into spool chamber. 43 of valve assembly 29 via conduit 26 and flows through conduit 27 to be united with the fluid delivered through conduit 21,21.
- the fluid from the pump and the discharging chamber of the hydrualic cylinder is supplied together into the driving chamber a of the hydraulic driving cylinder 5 and acts on the lower end of the piston 11.
- the hydraulic fluid is supplied into the driving chamber a in an amount equal to the output of the hydraulic pump 17 added to the fluid already supplied into the discharging chamber b of the driving cylinder 5.
- piston 11 is moved upwards at an increased speed, and the lower movable apron 7 is brought near to the workpiece (not shown) equally at an increased speed and in a shorter period of time.
- the pressure prevailing in the driving chamber a of the hydraulic driving cylinder 5 is elevated as a result of the bending operation.
- the hydraulic fluid is conveyed into port 61 of the valve assembly 29 by way of conduit 27.
- Fluid thus conveyed into port 61 is delivered therefrom into cylindrical chamber 47 by way of pilot duct 59, resulting in the leftward sliding of the piston 49 and the spool-like member 45 against the action of the spring 55 and establishing a hydraulic communication between said spool chamber 43 and the port 63.
- the hydraulic communication is established in this way between the spool chamber 43 and the oil port 63, the fluid accumulated in the discharging chamber b of the hydraulic driving cylinder 5 is returned to the tank 19 through conduit 33.
- the chamber b on the discharge side of the hydraulic driving cylinder 5 is thus opened to atmospheric pressure and the fluid accumulated on the side of the discharging chamber b of the hydraulic driving cylinder 5 is no longer united with the fluid delivered through conduit 21,21 but instead is freely returned to the tank.
- the hydraulic fluid on the side of the discharge chamber b of cylinder 5, being opened to atmospheric pressure, does not prevent the piston 1 1 from being raised any longer and the hydraulic pressure developed by the pump 17 acts fully on the lower surface of the piston 11.
- the piston 11 is moved at a decreased speed and at an increased effective pressure and therefor the lower apron 7 acts on the workpiece at a correspondingly reduced speed and an enhanced pressure.
- the three-way valve 37 is manipulated for closing the conduit 21' and establishing a hydraulic communication between conduit 21 and conduit 35.
- the driving chamber a of the hydraulic driving cylinder 5 is thus opened to atmospheric pressure and the piston 11 is lowered as a result of the weight of the lower movable apron 7, the pressure oil delivered to and accumulated in the driving chamber a of the hydraulic driving cylinder 5 being then returned to the tank 19.
- a negative pressure in the discharging chamber b of the cylinder 5 and the hydraulic fluid is thus delivered under suction effect caused by the weight of the lower apron 7 into said chamber b from the tank 19 through conduit 25,25 and check valve 23.
- no additional energy is required for supplying hydraulic fluid into the discharge chamber b in preparation for the next bending operation and therefore a pump motor of small capacity does well for the whole operation.
- Excess fluid delivered in this way from the pump 17 is circulated through relief valve 39 and returned to the tank 19.
- a flow adjusting valve means may be provided in the conduit 35 for regulating the speed of the downward movement of the lower apron.
- the device according to the present invention is designed and constructed so that the chamber of the hydraulic driving cylinder for driving the movable lower apron is divided by a piston into two chambers, i.e., drive and discharge chambers each having port means for pressure liquid and that when pressure liquid is delivered into the two chambers chamber from a hydraulic pump, the hydraulic pressure in the diacharge chamber containing the piston rod and therefore having a smaller piston area is overcome by the pressure in the drive chamber containing no piston rod and accordingly, having a larger piston area, and the pressure liquid in the discharge chamber is discharged and delivered into the drive chamber through duct means for enhancing the speed of the upward movement of the movable lower apron, and that when the latter encounters a suddenly enhanced resistance as a result of start of the bending operation, the pressure liquid from the side of said other chamber is returned to the tank by operation of an automatic valving means provided halfway in said conduit means.
- the present invention provides a hydraulic actuating system which is reasonable and safe in operation as a result of the highly simplified but effective overall construction and hydraulic piping arrangement.
- a hydraulic motor of the reciprocating type which includes a vertically extending cylinder divided interiorly by a movable piston into a drive chamber and a discharge chamber, means for controlling the operation of said motor comprising: a tank adapted to contain a supply of hydraulic fluid; a feed conduit connecting the drive chamber to a pump, the latter being operative to pump hydraulic fluid from said tank through said feed conduit into the drive chamber to cause relative movement of the piston in one direction relative to the cylinder; a bleed conduit leading from the discharge chamber to said tank; check valve means in said bleed conduit for preventing the flow of hydraulic fluid in one direction from the discharge chamber to said tank while permitting flow of hydraulic fluid in the opposite direction through said bleed conduit; self-acting control valve means connected by means of intermediate conduits to said bleed conduit, feed conduit and said tank, said self-acting control valve means being movable in response to fluid pressure in said feed conduit between a a first position establishing a connection between the discharge chamber and said feed conduit and drive chamber, and a second position establishing a connection
- a hydraulic motor which includes a vertically extending cylinder divided by means of a piston into drive and discharge chambers, a piston rod extending from the piston through the discharge chamber and the cylinder end wall, means for controlling the operation of said motor comprising: a tank for containing a supply of hydraulic fluid; a pump for pumping hydraulic fluid from said tank through a feed conduit to the drive chamber; a bleed conduit leading from the discharge chamber to said tank; a check valve in said bleed conduit for preventing fluid flow from the discharge chamber back through said bleed conduit to said tank; an operating valve in said feed conduit; a bypass conduit connected at one end to said operating valve and having its'other end in communication with saidtank, said operatingvalve being adjustable between a feed position permitting flow of fluid from said pump through said feed conduit to the drive chamber, and a by-pass position permitting flow of fluid from said pump through said by-pass conduit back to said tank while simultaneously permitting flow of fluid from the drive chamber back through said feed conduit to said tank; self-acting control valve means having a valve housing with
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Press Drives And Press Lines (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
- Fluid-Pressure Circuits (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7141270 | 1970-08-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3759144A true US3759144A (en) | 1973-09-18 |
Family
ID=13459763
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00170876A Expired - Lifetime US3759144A (en) | 1970-08-17 | 1971-08-11 | Hydraulic actuating system for hydraulically operated bending machine |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3759144A (enrdf_load_stackoverflow) |
| DE (1) | DE2140183A1 (enrdf_load_stackoverflow) |
| FR (1) | FR2102291B1 (enrdf_load_stackoverflow) |
| GB (1) | GB1347725A (enrdf_load_stackoverflow) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3916768A (en) * | 1972-02-24 | 1975-11-04 | Poclain Sa | Hydraulic cylinder for providing reciprocation of a hydraulic jack |
| US3981228A (en) * | 1973-11-13 | 1976-09-21 | Robert Bosch G.M.B.H. | Hydraulic control system |
| US4152970A (en) * | 1975-07-07 | 1979-05-08 | Smiths Industries Limited | Fluid pressure supply apparatus |
| US4216702A (en) * | 1978-05-01 | 1980-08-12 | Eaton Yale Ltd. | Pressure sensing regenerative hydraulic system |
| WO1981000249A1 (en) * | 1979-07-11 | 1981-02-05 | J Muntjanoff | Self adjusting actuator system |
| DE3031282A1 (de) * | 1979-08-20 | 1981-03-19 | Nl Industries, Inc., New York, N.Y. | Differentialdruck-regelventileinrichtung fuer bohrlochabsperrvorrichtungen oder preventer |
| US4313633A (en) * | 1979-07-11 | 1982-02-02 | Caterpillar Tractor Co. | Self adjusting actuator system |
| US4411189A (en) * | 1977-07-18 | 1983-10-25 | The Scott And Fetzer Company | Fluid flow controlling device |
| US4509405A (en) * | 1979-08-20 | 1985-04-09 | Nl Industries, Inc. | Control valve system for blowout preventers |
| US4614148A (en) * | 1979-08-20 | 1986-09-30 | Nl Industries, Inc. | Control valve system for blowout preventers |
| US4836088A (en) * | 1985-08-21 | 1989-06-06 | Rome Industries, Inc. | Directional control valve and regeneration valve |
| EP1136147A3 (en) * | 2000-03-14 | 2002-05-08 | Crc-Evans Pipeline International, Inc. | Variable-speed pipe bending |
| US6477936B2 (en) * | 2000-02-17 | 2002-11-12 | Hoerbiger Hydraulik Gmbh | Actuation arrangement for displaceable components on vehicles |
| EP1213486A3 (en) * | 2000-12-05 | 2004-01-07 | Bell S.R.L. | Hydraulic unit with automatic regenerative system typically for log splitting machines operated by a single-acting cylinder-piston unit |
| US20100212521A1 (en) * | 2007-09-12 | 2010-08-26 | Markus Resch | Drive device for a bending press |
| CN103615576A (zh) * | 2013-12-02 | 2014-03-05 | 黎维 | 一种多功能组合阀 |
| CN104863909A (zh) * | 2015-04-18 | 2015-08-26 | 浙江大学 | 带有容积、压力和泄漏检测功能的弹簧增压闭式液压油箱 |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DD207298A3 (de) * | 1981-12-23 | 1984-02-22 | Kurt Seidel | Hydraulische presse |
| US4672831A (en) * | 1983-09-21 | 1987-06-16 | Amada Company, Limited | Bending press |
| FR2562611A1 (fr) * | 1984-04-09 | 1985-10-11 | Alberti Rosette | Procede d'alimentation des verins hydrauliques et verins hydrauliques mettant en oeuvre le procede |
| CN103470815B (zh) * | 2013-09-30 | 2015-08-26 | 常德中联重科液压有限公司 | 平衡阀 |
| CN112196853B (zh) * | 2020-11-05 | 2022-08-16 | 上海航天控制技术研究所 | 液压能源控制阀块 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US25643A (en) * | 1859-10-04 | bourgnon | ||
| GB863701A (en) * | 1959-04-03 | 1961-03-22 | Caterpillar Tractor Co | Control for hydraulic jack circuits |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR1023703A (fr) * | 1949-08-23 | 1953-03-23 | Keelavite Co Ltd | Perfectionnements aux béliers hydrauliques |
| FR1530770A (fr) * | 1967-06-20 | 1968-06-28 | M U C Schiffer O H G | Dispositif d'actionnement hydraulique d'outils ou analogue, notamment d'éléments mobiles de moules de presses à injecter la matière plastique |
-
1971
- 1971-08-11 FR FR7129344A patent/FR2102291B1/fr not_active Expired
- 1971-08-11 US US00170876A patent/US3759144A/en not_active Expired - Lifetime
- 1971-08-11 DE DE19712140183 patent/DE2140183A1/de active Pending
- 1971-08-13 GB GB3802871A patent/GB1347725A/en not_active Expired
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US25643A (en) * | 1859-10-04 | bourgnon | ||
| GB863701A (en) * | 1959-04-03 | 1961-03-22 | Caterpillar Tractor Co | Control for hydraulic jack circuits |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3916768A (en) * | 1972-02-24 | 1975-11-04 | Poclain Sa | Hydraulic cylinder for providing reciprocation of a hydraulic jack |
| US3981228A (en) * | 1973-11-13 | 1976-09-21 | Robert Bosch G.M.B.H. | Hydraulic control system |
| US4152970A (en) * | 1975-07-07 | 1979-05-08 | Smiths Industries Limited | Fluid pressure supply apparatus |
| US4411189A (en) * | 1977-07-18 | 1983-10-25 | The Scott And Fetzer Company | Fluid flow controlling device |
| US4216702A (en) * | 1978-05-01 | 1980-08-12 | Eaton Yale Ltd. | Pressure sensing regenerative hydraulic system |
| WO1981000249A1 (en) * | 1979-07-11 | 1981-02-05 | J Muntjanoff | Self adjusting actuator system |
| US4313633A (en) * | 1979-07-11 | 1982-02-02 | Caterpillar Tractor Co. | Self adjusting actuator system |
| US4349041A (en) * | 1979-08-20 | 1982-09-14 | Nl Industries, Inc. | Control valve system for blowout preventers |
| DE3031282A1 (de) * | 1979-08-20 | 1981-03-19 | Nl Industries, Inc., New York, N.Y. | Differentialdruck-regelventileinrichtung fuer bohrlochabsperrvorrichtungen oder preventer |
| US4509405A (en) * | 1979-08-20 | 1985-04-09 | Nl Industries, Inc. | Control valve system for blowout preventers |
| US4614148A (en) * | 1979-08-20 | 1986-09-30 | Nl Industries, Inc. | Control valve system for blowout preventers |
| US4836088A (en) * | 1985-08-21 | 1989-06-06 | Rome Industries, Inc. | Directional control valve and regeneration valve |
| US6477936B2 (en) * | 2000-02-17 | 2002-11-12 | Hoerbiger Hydraulik Gmbh | Actuation arrangement for displaceable components on vehicles |
| EP1136147A3 (en) * | 2000-03-14 | 2002-05-08 | Crc-Evans Pipeline International, Inc. | Variable-speed pipe bending |
| EP1213486A3 (en) * | 2000-12-05 | 2004-01-07 | Bell S.R.L. | Hydraulic unit with automatic regenerative system typically for log splitting machines operated by a single-acting cylinder-piston unit |
| US20100212521A1 (en) * | 2007-09-12 | 2010-08-26 | Markus Resch | Drive device for a bending press |
| US8342086B2 (en) | 2007-09-12 | 2013-01-01 | Trumpf Maschinen Austria Gmbh & Co. Kg. | Drive device for a bending press |
| CN103615576A (zh) * | 2013-12-02 | 2014-03-05 | 黎维 | 一种多功能组合阀 |
| CN104863909A (zh) * | 2015-04-18 | 2015-08-26 | 浙江大学 | 带有容积、压力和泄漏检测功能的弹簧增压闭式液压油箱 |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2102291A1 (enrdf_load_stackoverflow) | 1972-04-07 |
| GB1347725A (en) | 1974-02-27 |
| DE2140183A1 (de) | 1972-02-24 |
| FR2102291B1 (enrdf_load_stackoverflow) | 1974-08-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3759144A (en) | Hydraulic actuating system for hydraulically operated bending machine | |
| US2803110A (en) | Hydraulic power drive for reciprocating members | |
| US5048292A (en) | Dual pump traverse and feed system | |
| GB1027184A (en) | Hydraulic forming press | |
| US3613365A (en) | Hydraulic driving device for bending presses | |
| US1930155A (en) | Hydraulic press | |
| US3824896A (en) | Hydraulic compression circuits | |
| US3170379A (en) | Hydraulic system | |
| US3257810A (en) | Hydraulic drive system for press brakes | |
| US3192718A (en) | Multiple piston distributive pump with hydraulic system for the synchronized operation of a plurality of working cylinders | |
| US3807175A (en) | Fluid system having positive vertical hold means | |
| CN107850093B (zh) | 液压机组以及操作该液压机组的方法 | |
| US3033170A (en) | Hydraulic ram apparatus | |
| US2683966A (en) | Hydraulic press | |
| GB2115492A (en) | Drive for a mass which is movable by a hydraulic motor | |
| JPH10501182A (ja) | 分断する工作機械のための液圧制御装置 | |
| US2274226A (en) | Broaching machine | |
| US3744375A (en) | Fluid system | |
| US3252381A (en) | Rapid response hydraulic system | |
| US2790305A (en) | Control valves for hydraulic presses | |
| US1700363A (en) | Hydraulic press | |
| US3824897A (en) | Multispeed hydraulic or pneumatic device | |
| JPS6145998Y2 (enrdf_load_stackoverflow) | ||
| US1980514A (en) | Hydraulic press | |
| US2071781A (en) | Hydraulic transmission |