US3755766A - Bistable electromagnetic actuator - Google Patents

Bistable electromagnetic actuator Download PDF

Info

Publication number
US3755766A
US3755766A US00218770A US3755766DA US3755766A US 3755766 A US3755766 A US 3755766A US 00218770 A US00218770 A US 00218770A US 3755766D A US3755766D A US 3755766DA US 3755766 A US3755766 A US 3755766A
Authority
US
United States
Prior art keywords
armature
case
pole piece
coil
extending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00218770A
Inventor
R Read
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KRASOWSKY NICHOLAS
READ REGINALD A JR
REGDON SOLENOID Inc
Original Assignee
REGDON CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REGDON CORP filed Critical REGDON CORP
Application granted granted Critical
Publication of US3755766A publication Critical patent/US3755766A/en
Assigned to REGDON SOLENOID, INC. reassignment REGDON SOLENOID, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: READ, REGINALD A., JR., KRASOWSKY, NICHOLAS, LARSON, ROBERT K.
Assigned to LARSON, ROBERT K., READ, REGINALD A., JR., KRASOWSKY, NICHOLAS reassignment LARSON, ROBERT K. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: REGDON CORPORATION
Assigned to KRASOWSKY, NICHOLAS, LARSON, ROBERT KEITH, READ, REGINALD A. JR. reassignment KRASOWSKY, NICHOLAS ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: REGDON CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2209Polarised relays with rectilinearly movable armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1669Armatures actuated by current pulse, e.g. bistable actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/123Guiding or setting position of armatures, e.g. retaining armatures in their end position by ancillary coil

Definitions

  • ABSTRACT A bistable electromagnetic actuator has an armature maintained in one stable position magnetically, by means of a permanent magnet, and in a second stable position by means of a spring. Either position may be assumed by energization of a coil with current of the appropriate polarity or by application of mechanical force. A magnetic shunt maintains flux through the permanent magnet during energization of the coil.
  • the movable member has two stable states, and may be readily changed from either state to the other either by manually moving the armature, or by providing a short pulse of direct current of appropriate polarity, in which only a relatively low amplitude pulse is required to change between the states in one direction, with a greater amplitude needed to change states in the reverse direction.
  • Another object of the present invention is to provide such apparatus with means for holding the armature in either of its two stable positions, the armature being held in one of its stable positions by magnetic means.
  • Another object of the present invention is to provide such apparatus in which the magnetic holding force is generated by a permanent magnet, with means arranged for maintaining a relatively high remanence of the permanent magnet.
  • a further object of the present invention is to provide such apparatus which is of simple construction and is economical to fabricate.
  • a solenoid having an armature movable between inner and outer positions, a surrounding coaxial coil, and a case of relatively high magnetic permeability surrounding the coil with means at one end of the case for establishing a path for magnetic flux through the armature, a permanent magnet located within the case, aligned with an end of the-armature and adapted for completing a magnetic circuit through the armature and case when the armature is in its inner position, spring means interconnected between the armature and the case to hold the armature in its extended position, and a magnetic circuit in shunt with the magnet for maintaining a relatively high remanence of the magnet.
  • the attitude of the solenoid 9 illustrated in the draw- I ing is immaterial as it operates in an identical fashion however it may be positioned.
  • the solenoid 9 incorporates a circular cylindrical armature 10 formed of material having a relatively high magnetic permeability.
  • the armature 10 is preferably a body of revolution and has a flange 12 of increased cross section at its lower end, as shown in the drawing.
  • the armature 10 is supported for axial movement relative to a case 14.
  • the case is preferably U-shaped as shown, formed by bending a rectangular strip of ferromagnetic material.
  • the width of the strip is preferably approximately the same dimension as the distance between opposite legs of the U-shaped case, so that the interior of the case is approximately square.
  • the open end of the case 14 is closed by an end wall 16, having a central aperture for receiving the armature 10.
  • a sleeve 18 is disposed within the aperture and is designed to receive the armature 10 in sliding relation.
  • the sleeve 18 has an annular flange portion 20 adjacent the inner surface of the end wall 16, so that the sleeve 18 is retained in position, relative to the end wall 16, and the lower portion 22 of the sleeve 18 is designed to retain the armature 10 in position within the case 14 by bearing on the upper surface of the flange 12, when the armature is extended so that the lower surface of the flange 12 moves to the dashed line 12'.
  • the lower portion of the sleeve 20 is provided with an enlarged cross section so that it holds a coil form 36 in a coaxial relation with the armature.
  • the sleeve 18 fits closely around the armature 10 in order to minimize the air gap therebetween, but not so tight as to prevent free movement of the armature.
  • the armature 10 is preferably coated with a thin layer of chemically inert TEFLON to resist corrosion and ease the sliding action of the armature.
  • the sleeve 18 extends downwardly along the surface of the armature 10 for a distance, to provide a relatively great area of interface between the sleeve 18 and the armature 10, thereby to reduce reluctance therebetween.
  • the end wall 16 is secured to the case 14 by any suitable means such as by swagging or staking the end wall and the case together.
  • the case 14, the end wall 16, the sleeve 18 and the armature 10 are all formed of material having a relatively high magnetic permeability so that they can form various paths for magnetic flux, as described hereinafter.
  • the permanent magnet 24 is disposed, held in position by being cemented to the case with a thin layer of cement.
  • the magnet is preferably formed from material having a high magnetic remanence such as Alnico V or the like.
  • a pole piece 26 is secured to the top portion of magnet 24.
  • the pole piece 26 has a lower portion 28 of increased cross section adapted to match the cross section of the upper surface of the magnet 24, and an upper portion 30 of reduced cross section.
  • the pole piece 26 is preferably a body of revolution, so that its upper portion 30 has a circular cylindrical surface.
  • a shunt plate 32 Secured within the case 14 and in contact with the case is a shunt plate 32 having a centrally disposed circular aperture.
  • the shunt plate 32 is disposed at a position within the interior of the case 14 opposite the upper portion 30 of the pole piece 26.
  • the coil form 36 formed of low permeability material, separates the shunt plate 32 from the pole piece 26 to form an annular gap. This gap completes a magnetic circuit extending through the pole piece 26, the magnet 24, the lower portion of the case 14 and the shunt plate 32.
  • the diameter of the upper portion 30 of the pole piece 26 is chosen in relation to the inside diameter of the annular shunt plate 32 to give an air gap of the size required to permit a sufficient amount of flux to flow continuously through the magnetic circuit, in order to prevent demagnetization of the magnet 24.
  • a disk 33 formed of low permeability material, separates the lower portion 28 of the pole piece 26 from the shunt plate 32.
  • a coil 34 is wound on the circular cylindrical form 36, between flanges 35 and 37 which are pressed onto the coil form 36.
  • the flanges 35 and 37, as well as the coil form 36, are formed of low permeability material.
  • the coil 34 and the coil form 36 are held in position by a resilient spring washer 39, interposed between the upper flange 35 of the coil form 36 and the flange 20 of the sleeve 18.
  • the coil form 36 surrounds the lower portion of the sleeve 18, the lower portion of the annature 10, and the upper portion 30 of the pole piece 26.
  • the coil 34 comprises a solenoid coil formed in a conventional manner and terminating in a pair of wires passing out through appropriate apertures in the end wall 16 for connection to an external circuit.
  • the actuator 10 At a position spaced outwardly from the end wall 16, the actuator 10 is provided with an annular groove which accommodates an E-ring 31.
  • a compression spring 38, surrounding the armature 10, is disposed between the E-ring 31 and the end wall 16.
  • the solenoid is shown in the drawing with the armature 10 in its lowermost stable position. In this position there is formed a flux path extending from the magnet 24, through the entire case 14, the end wall 16, the bearing 18, the armature l and the pole piece 26. As there is no air gap in this path, the path has relatively little reluctance and, accordingly, a large amount of flux flows through this path. This flux holds the armature in its lower position, and any attempt to move the armature 10 upwardly relative to the pole piece 26, as by the spring 38, is resisted by magnetic force.
  • a second stable position for the armature 10 is with the armature moved upwardly from the position illustrated in the drawing so that the upper surface of the flange l2 abuts the lower edge of the sleeve 22, the lower surface of the flange 12 then being positioned at the dashed line 12'.
  • the armature When the armature is in this position there is a large air gap between the bottom of the armature l0 and the top of the pole piece 26, so that relatively little flux flows through the magnetic path therebetween, and, accordingly, there is little magnetic force attempting to return the armature to the lower position illustrated in the drawing.
  • the spring 38 supplies a sufficiently large force to hold the armature 10 in its upper position against the magnetic force.
  • the force of the spring 38 is even greater when the armature 10 is in its lower stable position, but the magnetic force maintaining the armature in this position is sufficiently great to overcome the force of the spring.
  • An aperture 40 is provided in the outer end of the armature 10 to permit a link or coupling to be connected to the armature 10.
  • the armature 10 may be moved from one position to another manually or by application of a mechanical force overcoming the spring or magnetic forces, as the case may be, after which the armature 10 remains in its new position after the mechanical force is removed.
  • the coil 34 is also operable to cause the armature 10 to move from one to the other of its stable positions by a pulse of magnetic force.
  • the armature When the armature is in the lower stable position, as illustrated, application of one voltage polarity to the terminals of the coil 34 produces a flux within the armature 10 which flows in the opposite direction as the flux generated by the magnet 24. This flux flows in a path including the armature 10, the end wall 16, the upper portion of the case 14, the shunt plate 32 and the upper portion of the pole piece 26.
  • the magnetic force acting between the flange l2 and the pole piece 26 is reduced below the level of the force applied in the other direction by the spring 38. Accordingly, the spring 38 becomes effective to move the armature upwardly to its upper stable position.
  • the armature is designed to have a A inch stroke with the spring urging the armature upwardly from its lower position with a force of 6 pounds, and in which the coil 34 has a resistance of 6.0 ohms and is constructed of 500 turns of number 31 wire, the armature is caused to move to its upper position by a pulse of 250 ma., or by the discharge of a 200 ufd. capacitor charged to l 1 volts.
  • the various electrical and mechanical characteristics of the apparatus may be modified as desired by establishing different values for some of the physical constants of the apparatus.
  • a spring having a smaller spring constant
  • a greater force is required to move the armature to its upper position and a lower force is required to move it to its lower position.
  • a spring is chosen with a larger spring constant, the opposite is true.
  • a relatively stiff spring is employed in order to enable the apparatus to change its state by application of a low energy pulse, especially when resetting to the other stable state is accomplished mechanically.
  • the length of the sleeve 18 is increased, to shorten the stroke of the armature 10, and thus to limit the maximum air gap, there is greater residual field across the air gap between the flange 12 and the pole piece 26 when the armature 10 is in its upper position, so that a weaker pulse applied to the coil 34 is effective to move the armature to its inward position. If the stroke is made greater, by raising the level of the bottom 22 of the sleeve 18, the opposite is true. In this event, the upper end of the sleeve should also be extended, relative to the flange 20, in order to avoid reducing the area of interface between the sleeve 18 and the armature 10.
  • the interface between the flange 12 and the pole piece 26 is shown as a plane in the drawing, but this may be modified if desired. If the interface is made conical, for example, a different current-force characteristic is obtained for the solenoid, as well known to those skilled in the art.
  • a particular advantage of the apparatus described in the foregoing is the retention of a large magnetic remanence by the magnet 24.
  • the flux produced by the coil 34 does not function to demagnetize the permanent magnet 24 since it is not required to pass through the permanent magnet 24 itself.
  • the flux passing through the magnet 24 is maintained at a high level, to assure high remanence.
  • the open sides of the case 14 may be closed with material having a high magnetic permeability, or alternatively the case 14 may be replaced by a hollow cup-shaped body.
  • the case l4, the end wall'16, and the other elements may all be made bodies of revolution.
  • a solenoid device comprising a case having first and second opposed end walls and side walls extending between said end walls, a permanent magnet element positioned within said case and interconnected at one end with one of said end walls, an armature extending into said case through the other of said end walls and in magnetic circuit with said other of said end walls, said armature being reciprocable axially of said armature toward and away from said magnet element in said case, coil means in said case surrounding the portion of said armature extending within said case, said coil means extending beyond said armature toward said magnet element, a pole piece interconnected with the inward end of said magnet element and extending into said coil in coaxial alignment with said armature, and a shunt member positioned to provide a magnetic flux path from said pole piece to said side walls between said magnet element and said coil with a gap of low magnetic permeability in said path, said armature contacting said pole piece within said coil at the inward end of such reciprocating movement of said armature to pass substantially all of the magnetic flux generated by said
  • a solenoid device comprising a case having first and second opposed end walls and side walls extending between said end walls; a permanent magnet element positioned within said case and interconnected at one end with one of said end walls; an armature extending into said case through the other of said end walls and in magnetic circuit with said other of said end walls, said armature being reciprocable axially of said armature toward and away from said magnet element in said case; coil means in said case surrounding the portion of said armature extending within said case; a pole piece having a first portion in contact with the inward end of said magnet element, a second portion of a lesser cross section than said first portion and extending toward said armature, and having an annular shoulder between said first and second portions; a disk of low magnetic permeability material on said shoulder; said coil means including a coil form of low magnetic permeability material which extends circumjacent said second portion of said pole piece; a shunt member contacting said case and circumscribing the portion of said coil form around said second portion and seated against said
  • a solenoid device comprising a case having side walls between two opposed ends of such case; a permanent magnet element positioned within said case adjacent one end thereof, said magnet being interconnected at one pole portion with one end of said side walls and having an opposite pole portion exposed within said case; an armature extending into said case through the other end of said case and in magnetic circuit with the respective adjacent end of said side walls, said armature being reciprocable axially of said annature toward and away from said exposed pole portion of said magnet element in said case; coil means in said case surrounding said armature; a pole piece interconnected with said exposed pole portion of said magnet element within said case and extending toward said armature in coaxial alignment with said armature; a shunt member contacting said side walls and extending closely adjacent to said pole piece to provide a magnetic flux path from said pole piece to said side walls between said magnet element and said coil, said shunt member being spaced from said pole piece to provide a gap of low magnetic permeability therebetween in said path; said armature contacting said pole piece at the in
  • said shunt member is an annular member having a central aperture of a cross section mating with the cross section of the adjacent portion of said pole piece, and said shunt member circumscribing said pole piece, whereby said gap is an annular gap between said pole piece and the surface of said shunt member defining said aperture.
  • Apparatus according to claim 3 including resilient means for urging said armature outwardly relative to said case.
  • Apparatus according to claim 5 including flange means secured to said armature at a location spaced outwardly from said case, and spring means surrounding said armature between said case and said flange means.
  • Apparatus according to claim 7, including a flange projecting outwardly from said sleeve, said flange being adapted to engage the inner surface of said other of said end walls, said resilient element being confined between said flange of said sleeve and said other end flange of said coil means.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

A bistable electromagnetic actuator has an armature maintained in one stable position magnetically, by means of a permanent magnet, and in a second stable position by means of a spring. Either position may be assumed by energization of a coil with current of the appropriate polarity or by application of mechanical force. A magnetic shunt maintains flux through the permanent magnet during energization of the coil.

Description

United States Patent [191 Read, Jr.
Aug. 28, 1973 IISTABLE ELECTROMAGNETIC ACTUATOR [75] lnventor: Reginald A. Read, Jr., La Grange, Ill.
[73] Assignee: Regdon Corporation, Brookfield, lll.
[22]v Filed: Jan. 18, 1972 [21] Appl. No.: 218,770
[52] US. Cl 335/229, 335/234, 335/236 [51] Int. Cl. 1101f 7/08 [58] Field of Search 335/229, 230, 234,
[56] References Cited UNITED STATES PATENTS 12/1959 Troy 335/299 X 2/1962 Chase 335/229 X 6/1962 Conrad 335/234 FOREIGN PATENTS OR APPLICATIONS 395,271 12/1965 Switzerland 335/229 Primary Examiner-George Harris Attorney-Albert H. Pendleton, Noel I. Smith and P. Phillips Connor et a1.
[5 7] ABSTRACT A bistable electromagnetic actuator has an armature maintained in one stable position magnetically, by means of a permanent magnet, and in a second stable position by means of a spring. Either position may be assumed by energization of a coil with current of the appropriate polarity or by application of mechanical force. A magnetic shunt maintains flux through the permanent magnet during energization of the coil.
9 Claims, 1 Drawing Figure 1 BISTABLE ELECTROMAGNETIC ACTUATOR BACKGROUND OF THE INVENTION This invention relates to bistable electromagnetic actuator and generally to any device having a rectilinearly movable member having two stable positions at opposite ends pf its movement.
It is frequently desirable to provide such apparatus for operating valves, circuit breakers, and other control mechanisms, with provision for having the movable member shift from one to another of its stable positions in response to an electrical pulse or the like. It is also desirable to provide such apparatus with means by which it may be mechanically moved from one to another of its stable positions, without a control pulse.
Accordingly, it is a principal object of the present invention to provide such apparatus in which the movable member has two stable states, and may be readily changed from either state to the other either by manually moving the armature, or by providing a short pulse of direct current of appropriate polarity, in which only a relatively low amplitude pulse is required to change between the states in one direction, with a greater amplitude needed to change states in the reverse direction.
Another object of the present invention is to provide such apparatus with means for holding the armature in either of its two stable positions, the armature being held in one of its stable positions by magnetic means.
Another object of the present invention is to provide such apparatus in which the magnetic holding force is generated by a permanent magnet, with means arranged for maintaining a relatively high remanence of the permanent magnet.
A further object of the present invention is to provide such apparatus which is of simple construction and is economical to fabricate.
These and other objects and advantages of the present invention will become manifest by an examination of the accompanying drawings and the following description.
SUMMARY OF THE INVENTION In one embodiment of the present invention there is provided a solenoid having an armature movable between inner and outer positions, a surrounding coaxial coil, and a case of relatively high magnetic permeability surrounding the coil with means at one end of the case for establishing a path for magnetic flux through the armature, a permanent magnet located within the case, aligned with an end of the-armature and adapted for completing a magnetic circuit through the armature and case when the armature is in its inner position, spring means interconnected between the armature and the case to hold the armature in its extended position, and a magnetic circuit in shunt with the magnet for maintaining a relatively high remanence of the magnet.
BRIEF DESCRIPTION OF THE DRAWINGS Reference will now be madeto the accompanying drawing which is a vertical elevation, partly in cross section of a solenoid incorporating an illustrative embodiment of the present invention.
DESCRIPTION OF THE INVENTION The attitude of the solenoid 9 illustrated in the draw- I ing is immaterial as it operates in an identical fashion however it may be positioned. The solenoid 9 incorporates a circular cylindrical armature 10 formed of material having a relatively high magnetic permeability. The armature 10 is preferably a body of revolution and has a flange 12 of increased cross section at its lower end, as shown in the drawing. The armature 10 is supported for axial movement relative to a case 14. The case is preferably U-shaped as shown, formed by bending a rectangular strip of ferromagnetic material. The width of the strip is preferably approximately the same dimension as the distance between opposite legs of the U-shaped case, so that the interior of the case is approximately square.
The open end of the case 14 is closed by an end wall 16, having a central aperture for receiving the armature 10. A sleeve 18 is disposed within the aperture and is designed to receive the armature 10 in sliding relation. The sleeve 18 has an annular flange portion 20 adjacent the inner surface of the end wall 16, so that the sleeve 18 is retained in position, relative to the end wall 16, and the lower portion 22 of the sleeve 18 is designed to retain the armature 10 in position within the case 14 by bearing on the upper surface of the flange 12, when the armature is extended so that the lower surface of the flange 12 moves to the dashed line 12'. The lower portion of the sleeve 20 is provided with an enlarged cross section so that it holds a coil form 36 in a coaxial relation with the armature. The sleeve 18 fits closely around the armature 10 in order to minimize the air gap therebetween, but not so tight as to prevent free movement of the armature. The armature 10 is preferably coated with a thin layer of chemically inert TEFLON to resist corrosion and ease the sliding action of the armature. The sleeve 18 extends downwardly along the surface of the armature 10 for a distance, to provide a relatively great area of interface between the sleeve 18 and the armature 10, thereby to reduce reluctance therebetween.
The end wall 16 is secured to the case 14 by any suitable means such as by swagging or staking the end wall and the case together. The case 14, the end wall 16, the sleeve 18 and the armature 10 are all formed of material having a relatively high magnetic permeability so that they can form various paths for magnetic flux, as described hereinafter.
At the bottom of the case 14, as shown in the drawing, the permanent magnet 24 is disposed, held in position by being cemented to the case with a thin layer of cement. The magnet is preferably formed from material having a high magnetic remanence such as Alnico V or the like. A pole piece 26 is secured to the top portion of magnet 24. The pole piece 26 has a lower portion 28 of increased cross section adapted to match the cross section of the upper surface of the magnet 24, and an upper portion 30 of reduced cross section. The pole piece 26 is preferably a body of revolution, so that its upper portion 30 has a circular cylindrical surface. Secured within the case 14 and in contact with the case is a shunt plate 32 having a centrally disposed circular aperture. The shunt plate 32 is disposed at a position within the interior of the case 14 opposite the upper portion 30 of the pole piece 26. The coil form 36, formed of low permeability material, separates the shunt plate 32 from the pole piece 26 to form an annular gap. This gap completes a magnetic circuit extending through the pole piece 26, the magnet 24, the lower portion of the case 14 and the shunt plate 32. The diameter of the upper portion 30 of the pole piece 26 is chosen in relation to the inside diameter of the annular shunt plate 32 to give an air gap of the size required to permit a sufficient amount of flux to flow continuously through the magnetic circuit, in order to prevent demagnetization of the magnet 24. A disk 33, formed of low permeability material, separates the lower portion 28 of the pole piece 26 from the shunt plate 32.
A coil 34 is wound on the circular cylindrical form 36, between flanges 35 and 37 which are pressed onto the coil form 36. The flanges 35 and 37, as well as the coil form 36, are formed of low permeability material. The coil 34 and the coil form 36 are held in position by a resilient spring washer 39, interposed between the upper flange 35 of the coil form 36 and the flange 20 of the sleeve 18. The coil form 36 surrounds the lower portion of the sleeve 18, the lower portion of the annature 10, and the upper portion 30 of the pole piece 26. The coil 34 comprises a solenoid coil formed in a conventional manner and terminating in a pair of wires passing out through appropriate apertures in the end wall 16 for connection to an external circuit.
At a position spaced outwardly from the end wall 16, the actuator 10 is provided with an annular groove which accommodates an E-ring 31. A compression spring 38, surrounding the armature 10, is disposed between the E-ring 31 and the end wall 16.
The assembly of all of the members thus far described provides a unit which is axially symmetric, so that orientation of the parts during assembly is not critical.
When the coil 34 is energized by a d.c. current, a magneto-motive force is produced in one direction or the other in the armature 10, in accordance with the polarity of the source connected to the coil 34, and this causes magnetic flux to flow through the various magnetic circuits.
The solenoid is shown in the drawing with the armature 10 in its lowermost stable position. In this position there is formed a flux path extending from the magnet 24, through the entire case 14, the end wall 16, the bearing 18, the armature l and the pole piece 26. As there is no air gap in this path, the path has relatively little reluctance and, accordingly, a large amount of flux flows through this path. This flux holds the armature in its lower position, and any attempt to move the armature 10 upwardly relative to the pole piece 26, as by the spring 38, is resisted by magnetic force.
A second stable position for the armature 10 is with the armature moved upwardly from the position illustrated in the drawing so that the upper surface of the flange l2 abuts the lower edge of the sleeve 22, the lower surface of the flange 12 then being positioned at the dashed line 12'. When the armature is in this position there is a large air gap between the bottom of the armature l0 and the top of the pole piece 26, so that relatively little flux flows through the magnetic path therebetween, and, accordingly, there is little magnetic force attempting to return the armature to the lower position illustrated in the drawing. The spring 38, supplies a sufficiently large force to hold the armature 10 in its upper position against the magnetic force.
The force of the spring 38 is even greater when the armature 10 is in its lower stable position, but the magnetic force maintaining the armature in this position is sufficiently great to overcome the force of the spring.
An aperture 40 is provided in the outer end of the armature 10 to permit a link or coupling to be connected to the armature 10. By means of such link or coupling, the armature 10 may be moved from one position to another manually or by application of a mechanical force overcoming the spring or magnetic forces, as the case may be, after which the armature 10 remains in its new position after the mechanical force is removed.
The coil 34 is also operable to cause the armature 10 to move from one to the other of its stable positions by a pulse of magnetic force. When the armature is in the lower stable position, as illustrated, application of one voltage polarity to the terminals of the coil 34 produces a flux within the armature 10 which flows in the opposite direction as the flux generated by the magnet 24. This flux flows in a path including the armature 10, the end wall 16, the upper portion of the case 14, the shunt plate 32 and the upper portion of the pole piece 26. As the flux is increased, by increasing the current through the coil 34, the magnetic force acting between the flange l2 and the pole piece 26 is reduced below the level of the force applied in the other direction by the spring 38. Accordingly, the spring 38 becomes effective to move the armature upwardly to its upper stable position.
In a configuration of the present invention like that shown in the drawing, in which the armature is designed to have a A inch stroke with the spring urging the armature upwardly from its lower position with a force of 6 pounds, and in which the coil 34 has a resistance of 6.0 ohms and is constructed of 500 turns of number 31 wire, the armature is caused to move to its upper position by a pulse of 250 ma., or by the discharge of a 200 ufd. capacitor charged to l 1 volts.
After the armature is moved to its upper position, deenergization of the coil 34 does not bring about return of the armature 10 to its lower position because of the increased length of the air gap between the pole piece 26 and the armature 10. The magnetic force between these elements is not sufficient to overcome the force of the spring 38, and the armature 10 is thus held in its upper position by the spring 38. The spring force varies linearly with displacement of the armature 10, while the magnetic force varies expotentially with the length of the air gap. 7
When the armature 10 is in its upper stable position, application of a voltage of opposite polarity tends to produce flux flowing through the same path as heretofore described, but in the reverse direction. This flux adds to magnet-produced flux already present across the relatively large air gap between the flange 12 and the pole piece 26. When the current applied to the coil 24 is sufiiciently large, the combined flux across the air gap gives rise to a magnetic force large enough to overcome the force of the spring 38, and returns the armature 10 to its lower stable position, where it is again retained by the magnetic force of the magnet 24. In the configuration of the invention referred to above, a short pulse of approximately 12.5 amps is operative to return the armature to its lower position.
From the foregoing it will be evident to those skilled in the art that the various electrical and mechanical characteristics of the apparatus may be modified as desired by establishing different values for some of the physical constants of the apparatus. For example, if another spring, having a smaller spring constant, is substituted for the spring 38, a greater force is required to move the armature to its upper position and a lower force is required to move it to its lower position. On the contrary, if a spring is chosen with a larger spring constant, the opposite is true. Preferably a relatively stiff spring is employed in order to enable the apparatus to change its state by application of a low energy pulse, especially when resetting to the other stable state is accomplished mechanically.
If the length of the sleeve 18 is increased, to shorten the stroke of the armature 10, and thus to limit the maximum air gap, there is greater residual field across the air gap between the flange 12 and the pole piece 26 when the armature 10 is in its upper position, so that a weaker pulse applied to the coil 34 is effective to move the armature to its inward position. If the stroke is made greater, by raising the level of the bottom 22 of the sleeve 18, the opposite is true. In this event, the upper end of the sleeve should also be extended, relative to the flange 20, in order to avoid reducing the area of interface between the sleeve 18 and the armature 10.
The interface between the flange 12 and the pole piece 26 is shown as a plane in the drawing, but this may be modified if desired. If the interface is made conical, for example, a different current-force characteristic is obtained for the solenoid, as well known to those skilled in the art.
A particular advantage of the apparatus described in the foregoing is the retention of a large magnetic remanence by the magnet 24. The flux produced by the coil 34 does not function to demagnetize the permanent magnet 24 since it is not required to pass through the permanent magnet 24 itself. Thus the flux passing through the magnet 24 is maintained at a high level, to assure high remanence.
It will be appreciated by those skilled in the art that various modifications can be made in the apparatus described. For example, the open sides of the case 14 may be closed with material having a high magnetic permeability, or alternatively the case 14 may be replaced by a hollow cup-shaped body. In the latter case, the case l4, the end wall'16, and the other elements may all be made bodies of revolution.
It will be seen that improvements have been provided which achieve the aforesaid objects of the present invention.
What is claimed is:
l. A solenoid device comprising a case having first and second opposed end walls and side walls extending between said end walls, a permanent magnet element positioned within said case and interconnected at one end with one of said end walls, an armature extending into said case through the other of said end walls and in magnetic circuit with said other of said end walls, said armature being reciprocable axially of said armature toward and away from said magnet element in said case, coil means in said case surrounding the portion of said armature extending within said case, said coil means extending beyond said armature toward said magnet element, a pole piece interconnected with the inward end of said magnet element and extending into said coil in coaxial alignment with said armature, and a shunt member positioned to provide a magnetic flux path from said pole piece to said side walls between said magnet element and said coil with a gap of low magnetic permeability in said path, said armature contacting said pole piece within said coil at the inward end of such reciprocating movement of said armature to pass substantially all of the magnetic flux generated by said coil through the area of contact between said armature and said pole piece; and said pole piece, said case, said armature and said shunt member being formed of material having high magnetic permeability.
2. A solenoid device comprising a case having first and second opposed end walls and side walls extending between said end walls; a permanent magnet element positioned within said case and interconnected at one end with one of said end walls; an armature extending into said case through the other of said end walls and in magnetic circuit with said other of said end walls, said armature being reciprocable axially of said armature toward and away from said magnet element in said case; coil means in said case surrounding the portion of said armature extending within said case; a pole piece having a first portion in contact with the inward end of said magnet element, a second portion of a lesser cross section than said first portion and extending toward said armature, and having an annular shoulder between said first and second portions; a disk of low magnetic permeability material on said shoulder; said coil means including a coil form of low magnetic permeability material which extends circumjacent said second portion of said pole piece; a shunt member contacting said case and circumscribing the portion of said coil form around said second portion and seated against said disk, whereby such portion of said coil form and said disk define a low magnetic permeability gap between said pole piece and said shunt member; said coil means including a pair of end flanges and being positioned with one of said end flanges adjacent said shunt member and the other of said end flanges adjacent to said other of said end walls; and a resilient element confined between said other end flange and said other of said end walls for retaining said coil means, shunt member and disk in their respective assembled positions; and said pole piece, said case, said armature and said shunt member being formed of material having high magnetic penneability.
3. A solenoid device comprising a case having side walls between two opposed ends of such case; a permanent magnet element positioned within said case adjacent one end thereof, said magnet being interconnected at one pole portion with one end of said side walls and having an opposite pole portion exposed within said case; an armature extending into said case through the other end of said case and in magnetic circuit with the respective adjacent end of said side walls, said armature being reciprocable axially of said annature toward and away from said exposed pole portion of said magnet element in said case; coil means in said case surrounding said armature; a pole piece interconnected with said exposed pole portion of said magnet element within said case and extending toward said armature in coaxial alignment with said armature; a shunt member contacting said side walls and extending closely adjacent to said pole piece to provide a magnetic flux path from said pole piece to said side walls between said magnet element and said coil, said shunt member being spaced from said pole piece to provide a gap of low magnetic permeability therebetween in said path; said armature contacting said pole piece at the inward end of such reciprocating movement of said armature to pass substantially all of the magnetic flux generated by said coil through the area of contact between said armature and said pole piece; and said pole piece, said case, said armature and said shunt member being formed of material having high magnetic permeability.
4. A solenoid device as in claim 3 wherein said shunt member is an annular member having a central aperture of a cross section mating with the cross section of the adjacent portion of said pole piece, and said shunt member circumscribing said pole piece, whereby said gap is an annular gap between said pole piece and the surface of said shunt member defining said aperture.
5. Apparatus according to claim 3, including resilient means for urging said armature outwardly relative to said case.
6. Apparatus according to claim 5, including flange means secured to said armature at a location spaced outwardly from said case, and spring means surrounding said armature between said case and said flange means.
7. Apparatus according to claim 2 wherein said other of said end walls has an aperture therein, and a cylindrical sleeve disposed within said aperture and adapted to receive said armature in sliding relationship therewith, said sleeve formed of material having a high magnetic permeability.
8. Apparatus according to claim 7, including a flange projecting outwardly from said sleeve, said flange being adapted to engage the inner surface of said other of said end walls, said resilient element being confined between said flange of said sleeve and said other end flange of said coil means.
9. Apparatus according to claim 8, wherein said armature has a flange portion of enlarged cross section at said inward end, said flange portion adapted to cooperate with the inwardmost end of said sleeve to limit the movement of said armature in an outward direction.
I l I l

Claims (9)

1. A solenoid device comprising a case having first and second opposed end walls and side walls extending between said end walls, a permanent magnet element positioned within said case and interconnected at one end with one of said end walls, an armature extending into said case through the other of said end walls and in magnetic circuit with said other of said end walls, said armature being reciprocable axially of said armature toward and away from said magnet element in said case, coil means in said case surrounding the portion of said armature extending within said case, said coil means extending beyond said armature toward said magnet element, a pole piece interconnected with the inward end of said magnet element and extending into said coil in coaxial alignment with said armature, and a shunt member positioned to provide a magnetic flux path from said pole piece to said side walls betWeen said magnet element and said coil with a gap of low magnetic permeability in said path, said armature contacting said pole piece within said coil at the inward end of such reciprocating movement of said armature to pass substantially all of the magnetic flux generated by said coil through the area of contact between said armature and said pole piece; and said pole piece, said case, said armature and said shunt member being formed of material having high magnetic permeability.
2. A solenoid device comprising a case having first and second opposed end walls and side walls extending between said end walls; a permanent magnet element positioned within said case and interconnected at one end with one of said end walls; an armature extending into said case through the other of said end walls and in magnetic circuit with said other of said end walls, said armature being reciprocable axially of said armature toward and away from said magnet element in said case; coil means in said case surrounding the portion of said armature extending within said case; a pole piece having a first portion in contact with the inward end of said magnet element, a second portion of a lesser cross section than said first portion and extending toward said armature, and having an annular shoulder between said first and second portions; a disk of low magnetic permeability material on said shoulder; said coil means including a coil form of low magnetic permeability material which extends circumjacent said second portion of said pole piece; a shunt member contacting said case and circumscribing the portion of said coil form around said second portion and seated against said disk, whereby such portion of said coil form and said disk define a low magnetic permeability gap between said pole piece and said shunt member; said coil means including a pair of end flanges and being positioned with one of said end flanges adjacent said shunt member and the other of said end flanges adjacent to said other of said end walls; and a resilient element confined between said other end flange and said other of said end walls for retaining said coil meAns, shunt member and disk in their respective assembled positions; and said pole piece, said case, said armature and said shunt member being formed of material having high magnetic permeability.
3. A solenoid device comprising a case having side walls between two opposed ends of such case; a permanent magnet element positioned within said case adjacent one end thereof, said magnet being interconnected at one pole portion with one end of said side walls and having an opposite pole portion exposed within said case; an armature extending into said case through the other end of said case and in magnetic circuit with the respective adjacent end of said side walls, said armature being reciprocable axially of said armature toward and away from said exposed pole portion of said magnet element in said case; coil means in said case surrounding said armature; a pole piece interconnected with said exposed pole portion of said magnet element within said case and extending toward said armature in coaxial alignment with said armature; a shunt member contacting said side walls and extending closely adjacent to said pole piece to provide a magnetic flux path from said pole piece to said side walls between said magnet element and said coil, said shunt member being spaced from said pole piece to provide a gap of low magnetic permeability therebetween in said path; said armature contacting said pole piece at the inward end of such reciprocating movement of said armature to pass substantially all of the magnetic flux generated by said coil through the area of contact between said armature and said pole piece; and said pole piece, said case, said armature and said shunt member being formed of material having high magnetic permeability.
4. A solenoid device as in claim 3 wherein said shunt member is an annular member having a central aperture of a cross section mating with the cross section of the adjacent portion of said pole piece, and said shunt member circumscribing said pole piece, whereby said gap is an annular gap between said pole piece and the surface of said shunt member defining said aperture.
5. Apparatus according to claim 3, including resilient means for urging said armature outwardly relative to said case.
6. Apparatus according to claim 5, including flange means secured to said armature at a location spaced outwardly from said case, and spring means surrounding said armature between said case and said flange means.
7. Apparatus according to claim 2 wherein said other of said end walls has an aperture therein, and a cylindrical sleeve disposed within said aperture and adapted to receive said armature in sliding relationship therewith, said sleeve formed of material having a high magnetic permeability.
8. Apparatus according to claim 7, including a flange projecting outwardly from said sleeve, said flange being adapted to engage the inner surface of said other of said end walls, said resilient element being confined between said flange of said sleeve and said other end flange of said coil means.
9. Apparatus according to claim 8, wherein said armature has a flange portion of enlarged cross section at said inward end, said flange portion adapted to cooperate with the inwardmost end of said sleeve to limit the movement of said armature in an outward direction.
US00218770A 1972-01-18 1972-01-18 Bistable electromagnetic actuator Expired - Lifetime US3755766A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21877072A 1972-01-18 1972-01-18

Publications (1)

Publication Number Publication Date
US3755766A true US3755766A (en) 1973-08-28

Family

ID=22816440

Family Applications (1)

Application Number Title Priority Date Filing Date
US00218770A Expired - Lifetime US3755766A (en) 1972-01-18 1972-01-18 Bistable electromagnetic actuator

Country Status (1)

Country Link
US (1) US3755766A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792390A (en) * 1973-05-29 1974-02-19 Allis Chalmers Magnetic actuator device
US3893052A (en) * 1974-09-26 1975-07-01 Gen Electric Shock-resistant indicating device
US3944957A (en) * 1974-12-23 1976-03-16 General Electric Company Flux-transfer trip device for a circuit breaker
US3946851A (en) * 1972-02-18 1976-03-30 Burroughs Corporation Electromagnetic assembly for actuating a stylus in a wire printer
US3995243A (en) * 1974-10-17 1976-11-30 North American Philips Corporation Fault detection indicator
US4072918A (en) * 1976-12-01 1978-02-07 Regdon Corporation Bistable electromagnetic actuator
US4127835A (en) * 1977-07-06 1978-11-28 Dynex/Rivett Inc. Electromechanical force motor
US4251789A (en) * 1979-09-04 1981-02-17 General Electric Company Circuit breaker trip indicator and auxiliary switch combination
US4259653A (en) * 1977-11-22 1981-03-31 Magnetic Laboratories, Inc. Electromagnetic reciprocating linear actuator with permanent magnet armature
US4288771A (en) * 1979-02-16 1981-09-08 Minolta Camera Kabushiki Kaisha Electromagnetic driven device
US4442418A (en) * 1981-05-01 1984-04-10 Ledex, Inc. Trip solenoid
US4462013A (en) * 1977-10-13 1984-07-24 Minolta Camera Kabushiki Kaisha Electromagnetic device with dust-tight enclosure
US4470030A (en) * 1983-05-18 1984-09-04 Ledex, Inc. Trip solenoid
US4641117A (en) * 1985-07-29 1987-02-03 General Electric Company Combined accessory and trip actuator unit for electronic circuit breakers
US4660012A (en) * 1984-11-22 1987-04-21 Merlin Gerin Polarized electromagnetic relay with magnetic latching for an electric circuit breaker trip release
US4683452A (en) * 1986-06-30 1987-07-28 Regdon Solenoid, Inc. Bi-stable electromagnetic actuator
US4737750A (en) * 1986-12-22 1988-04-12 Hamilton Standard Controls, Inc. Bistable electrical contactor arrangement
GB2201291A (en) * 1987-02-13 1988-08-24 Lectron Products Bistable solenoid actuator for a vehicle fuel filler flap
USRE33325E (en) * 1985-02-01 1990-09-04 Matsushita Electric Works, Ltd. Remotely controllable circuit breaker
AU624029B2 (en) * 1989-10-31 1992-05-28 Eaton Electric N.V. A trip device for an electric switch
US5275065A (en) * 1992-10-02 1994-01-04 Grand Haven Stamped Products, Div. Of Jsj Corporation Vehicle transmission shifter with park lock controlled by magnetic latch
DE4332960A1 (en) * 1993-03-31 1994-10-06 Schrott Harald Bistable electromagnet, especially solenoid valve
US5364252A (en) * 1992-08-26 1994-11-15 General Motors Corporation Gas injector with retractable nozzle for assist of plastics injection molding
US5428330A (en) * 1992-07-31 1995-06-27 Nippondenso Co., Ltd. Magnet switch
US5497135A (en) * 1993-03-31 1996-03-05 Harald Schrott Bistable electromagnet, particularly an electromagnetic valve
US6646529B1 (en) * 1999-06-24 2003-11-11 Abb Patent Gmbh Electromagnetic release
US6791442B1 (en) 2003-11-21 2004-09-14 Trombetta, Llc Magnetic latching solenoid
US20050024174A1 (en) * 2003-08-01 2005-02-03 Kolb Richard P. Single coil solenoid having a permanent magnet with bi-directional assist
US20070025046A1 (en) * 2002-12-23 2007-02-01 Christophe Maerky Electromagnetic dual-coil valve actuator with permanent magnet
WO2009030664A1 (en) 2007-09-03 2009-03-12 Siemens Aktiengesellschaft Magnetic drive system for a switchgear
US20110168813A1 (en) * 2010-01-08 2011-07-14 Caterpillar Inc. Solenoid actuated device and methods
US20130049904A1 (en) * 2009-09-25 2013-02-28 Eaton Industries (Netherlands) B.V. Trip unit
US20130169387A1 (en) * 2011-12-30 2013-07-04 Lsis Co., Ltd. Shortage voltage trip device of molded case circuit breaker
US20130321971A1 (en) * 2012-05-31 2013-12-05 Eaton Corporation Electronically-Controlled Solenoid
US8669836B2 (en) * 2009-06-24 2014-03-11 Johnson Electric Dresden Gmbh Magnetic trigger mechanism
US9046188B2 (en) 2011-12-23 2015-06-02 Techspace Aero S.A. Solenoid actuator with magnetic sleeving
US20160118174A1 (en) * 2013-06-28 2016-04-28 Hydac Electronic Gmbh Electromagnetic actuating apparatus
US9368266B2 (en) 2014-07-18 2016-06-14 Trumpet Holdings, Inc. Electric solenoid structure having elastomeric biasing member
DE102017004105A1 (en) 2016-04-29 2017-11-02 Luitpold Greiner Magnetically bistable axisymmetric linear actuator with pole contour, device with this and switching matrix for tactile applications
WO2018197052A1 (en) 2017-04-29 2018-11-01 Luitpold Greiner Tactile display having a magnetically bistable axially symmetrical linear actuator having a pole contour and switching matrix, and optical-tactile seeing aid having same
WO2019057401A1 (en) * 2017-09-21 2019-03-28 Kendrion (Villingen) Gmbh Adjusting device with a sealed guide cylinder
US20210057178A1 (en) * 2018-05-07 2021-02-25 Tdk Electronics Ag Switching Device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915681A (en) * 1957-11-20 1959-12-01 Indiana Steel Products Co Magnet assemblies
US3022450A (en) * 1958-09-15 1962-02-20 Bendix Corp Dual position latching solenoid
US3040217A (en) * 1959-08-10 1962-06-19 Clary Corp Electromagnetic actuator
CH395271A (en) * 1961-05-12 1965-07-15 Felten & Guilleaume Ag Oester Residual current circuit breaker or residual current relay with a release containing a permanent magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915681A (en) * 1957-11-20 1959-12-01 Indiana Steel Products Co Magnet assemblies
US3022450A (en) * 1958-09-15 1962-02-20 Bendix Corp Dual position latching solenoid
US3040217A (en) * 1959-08-10 1962-06-19 Clary Corp Electromagnetic actuator
CH395271A (en) * 1961-05-12 1965-07-15 Felten & Guilleaume Ag Oester Residual current circuit breaker or residual current relay with a release containing a permanent magnet

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946851A (en) * 1972-02-18 1976-03-30 Burroughs Corporation Electromagnetic assembly for actuating a stylus in a wire printer
US3792390A (en) * 1973-05-29 1974-02-19 Allis Chalmers Magnetic actuator device
US3893052A (en) * 1974-09-26 1975-07-01 Gen Electric Shock-resistant indicating device
US3995243A (en) * 1974-10-17 1976-11-30 North American Philips Corporation Fault detection indicator
US3944957A (en) * 1974-12-23 1976-03-16 General Electric Company Flux-transfer trip device for a circuit breaker
US4072918A (en) * 1976-12-01 1978-02-07 Regdon Corporation Bistable electromagnetic actuator
US4127835A (en) * 1977-07-06 1978-11-28 Dynex/Rivett Inc. Electromechanical force motor
US4462013A (en) * 1977-10-13 1984-07-24 Minolta Camera Kabushiki Kaisha Electromagnetic device with dust-tight enclosure
US4259653A (en) * 1977-11-22 1981-03-31 Magnetic Laboratories, Inc. Electromagnetic reciprocating linear actuator with permanent magnet armature
US4288771A (en) * 1979-02-16 1981-09-08 Minolta Camera Kabushiki Kaisha Electromagnetic driven device
US4251789A (en) * 1979-09-04 1981-02-17 General Electric Company Circuit breaker trip indicator and auxiliary switch combination
US4442418A (en) * 1981-05-01 1984-04-10 Ledex, Inc. Trip solenoid
US4470030A (en) * 1983-05-18 1984-09-04 Ledex, Inc. Trip solenoid
US4660012A (en) * 1984-11-22 1987-04-21 Merlin Gerin Polarized electromagnetic relay with magnetic latching for an electric circuit breaker trip release
USRE33325E (en) * 1985-02-01 1990-09-04 Matsushita Electric Works, Ltd. Remotely controllable circuit breaker
US4641117A (en) * 1985-07-29 1987-02-03 General Electric Company Combined accessory and trip actuator unit for electronic circuit breakers
US4683452A (en) * 1986-06-30 1987-07-28 Regdon Solenoid, Inc. Bi-stable electromagnetic actuator
US4737750A (en) * 1986-12-22 1988-04-12 Hamilton Standard Controls, Inc. Bistable electrical contactor arrangement
GB2201291A (en) * 1987-02-13 1988-08-24 Lectron Products Bistable solenoid actuator for a vehicle fuel filler flap
AU624029B2 (en) * 1989-10-31 1992-05-28 Eaton Electric N.V. A trip device for an electric switch
US5166653A (en) * 1989-10-31 1992-11-24 Holec Systemen & Componenten B.V. Trip device for an electric switch
US5428330A (en) * 1992-07-31 1995-06-27 Nippondenso Co., Ltd. Magnet switch
US5364252A (en) * 1992-08-26 1994-11-15 General Motors Corporation Gas injector with retractable nozzle for assist of plastics injection molding
US5275065A (en) * 1992-10-02 1994-01-04 Grand Haven Stamped Products, Div. Of Jsj Corporation Vehicle transmission shifter with park lock controlled by magnetic latch
DE4332960A1 (en) * 1993-03-31 1994-10-06 Schrott Harald Bistable electromagnet, especially solenoid valve
US5497135A (en) * 1993-03-31 1996-03-05 Harald Schrott Bistable electromagnet, particularly an electromagnetic valve
US6646529B1 (en) * 1999-06-24 2003-11-11 Abb Patent Gmbh Electromagnetic release
US20070025046A1 (en) * 2002-12-23 2007-02-01 Christophe Maerky Electromagnetic dual-coil valve actuator with permanent magnet
US8274348B2 (en) 2003-08-01 2012-09-25 Woodward, Inc. Single coil solenoid having a permanent magnet with bi-directional assist
US20050024174A1 (en) * 2003-08-01 2005-02-03 Kolb Richard P. Single coil solenoid having a permanent magnet with bi-directional assist
US7280019B2 (en) * 2003-08-01 2007-10-09 Woodward Governor Company Single coil solenoid having a permanent magnet with bi-directional assist
US6791442B1 (en) 2003-11-21 2004-09-14 Trombetta, Llc Magnetic latching solenoid
WO2009030664A1 (en) 2007-09-03 2009-03-12 Siemens Aktiengesellschaft Magnetic drive system for a switchgear
CN101796605B (en) * 2007-09-03 2013-03-27 西门子公司 Magnetic drive system for a switchgear
US8669836B2 (en) * 2009-06-24 2014-03-11 Johnson Electric Dresden Gmbh Magnetic trigger mechanism
US20130049904A1 (en) * 2009-09-25 2013-02-28 Eaton Industries (Netherlands) B.V. Trip unit
US20110168813A1 (en) * 2010-01-08 2011-07-14 Caterpillar Inc. Solenoid actuated device and methods
US8690118B2 (en) 2010-01-08 2014-04-08 Caterpillar Inc. Solenoid actuated device and methods
US9046188B2 (en) 2011-12-23 2015-06-02 Techspace Aero S.A. Solenoid actuator with magnetic sleeving
US20130169387A1 (en) * 2011-12-30 2013-07-04 Lsis Co., Ltd. Shortage voltage trip device of molded case circuit breaker
US8749328B2 (en) * 2011-12-30 2014-06-10 Lsis Co., Ltd. Shortage voltage trip device of molded case circuit breaker
CN104364859A (en) * 2012-05-31 2015-02-18 伊顿公司 Electronically-controlled solenoid
US9496079B2 (en) * 2012-05-31 2016-11-15 Eaton Corporation Electronically-controlled solenoid
US20130321971A1 (en) * 2012-05-31 2013-12-05 Eaton Corporation Electronically-Controlled Solenoid
US20160118174A1 (en) * 2013-06-28 2016-04-28 Hydac Electronic Gmbh Electromagnetic actuating apparatus
US9941042B2 (en) * 2013-06-28 2018-04-10 Hydac Electronic Gmbh Electromagnetic actuating apparatus
US9368266B2 (en) 2014-07-18 2016-06-14 Trumpet Holdings, Inc. Electric solenoid structure having elastomeric biasing member
DE102017004105B4 (en) 2016-04-29 2024-04-11 Luitpold Greiner Magnetically bistable axially symmetric linear actuator with pole contour, device with this and switching matrix for tactile applications
DE102017004105A1 (en) 2016-04-29 2017-11-02 Luitpold Greiner Magnetically bistable axisymmetric linear actuator with pole contour, device with this and switching matrix for tactile applications
WO2018197052A1 (en) 2017-04-29 2018-11-01 Luitpold Greiner Tactile display having a magnetically bistable axially symmetrical linear actuator having a pole contour and switching matrix, and optical-tactile seeing aid having same
CN111094707A (en) * 2017-09-21 2020-05-01 肯德隆(菲林根)有限公司 Adjusting device with sealing guide cylinder
US10941678B2 (en) 2017-09-21 2021-03-09 Kendrion (Villingen) Gmbh Adjusting device with sealed guide cylinder
WO2019057401A1 (en) * 2017-09-21 2019-03-28 Kendrion (Villingen) Gmbh Adjusting device with a sealed guide cylinder
US20210057178A1 (en) * 2018-05-07 2021-02-25 Tdk Electronics Ag Switching Device
US11551898B2 (en) * 2018-05-07 2023-01-10 Tdk Electronics Ag Switching device

Similar Documents

Publication Publication Date Title
US3755766A (en) Bistable electromagnetic actuator
US4306207A (en) Self-sustaining solenoid
US5272458A (en) Solenoid actuator
US3814376A (en) Solenoid operated valve with magnetic latch
JPH0134326Y2 (en)
US4072918A (en) Bistable electromagnetic actuator
US3332045A (en) Permanent magnet and electromagnetic actuator
US3950718A (en) Electromagnetic device
US3569890A (en) Bistable magnetic latching relay
US4563663A (en) Core member for an electromagnetic relay
US2916584A (en) Electrically-operated latching relays
US4774485A (en) Polarized magnetic drive for electromagnetic switching device
US8866349B2 (en) Solenoid
US3289126A (en) Mercury switch employing magnetizable fluid
GB2227608A (en) Solenoid actuators
US3848206A (en) Electromagnetic solenoid with improved contact antibounce means
US4512549A (en) Magnetic valve
JP2001291461A (en) Electromagnetic switch
US3348178A (en) Solenoid actuated device
US3134867A (en) Multiple-flux electrical reed relay
US2802078A (en) Magnetic latch bi-stable relay
US3868611A (en) Magnetically actuated sealed contact
US3153178A (en) Magnetic lock-up relay
KR20220079674A (en) Bistable Mechanical Latch with Positioning Sphere
US3185902A (en) Anti-chatter solenoid

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: READ, REGINALD A. JR., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:REGDON CORPORATION;REEL/FRAME:005408/0104

Effective date: 19861231

Owner name: REGDON SOLENOID, INC., A CORP. OF IL.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:READ, REGINALD A. JR.;KRASOWSKY, NICHOLAS;LARSON, ROBERT K.;REEL/FRAME:004682/0091;SIGNING DATES FROM 19861203 TO 19861231

Owner name: KRASOWSKY, NICHOLAS, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:REGDON CORPORATION;REEL/FRAME:005397/0389

Effective date: 19861231

Owner name: READ, REGINALD A., JR., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:REGDON CORPORATION;REEL/FRAME:005397/0389

Effective date: 19861231

Owner name: LARSON, ROBERT KEITH, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:REGDON CORPORATION;REEL/FRAME:005408/0104

Effective date: 19861231

Owner name: KRASOWSKY, NICHOLAS, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:REGDON CORPORATION;REEL/FRAME:005408/0104

Effective date: 19861231

Owner name: LARSON, ROBERT K., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:REGDON CORPORATION;REEL/FRAME:005397/0389

Effective date: 19861231