US3755037A - Method of making a fiber reinforced racket - Google Patents

Method of making a fiber reinforced racket Download PDF

Info

Publication number
US3755037A
US3755037A US3755037DA US3755037A US 3755037 A US3755037 A US 3755037A US 3755037D A US3755037D A US 3755037DA US 3755037 A US3755037 A US 3755037A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
core
casing
tubular member
binder
racket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
N Staub
J Erwin
A Staub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dayton Scale Model Co
Original Assignee
Dayton Scale Model Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B49/00Stringed rackets, e.g. for tennis
    • A63B49/02Frames
    • A63B49/08Frames with special construction of the handle
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B49/00Stringed rackets, e.g. for tennis
    • A63B49/02Frames
    • A63B49/10Frames made of non-metallic materials, other than wood
    • A63B49/11Frames made of non-metallic materials, other than wood with inflatable tubes, e.g. inflatable during fabrication
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • A63B60/14Coverings specially adapted for handles, e.g. sleeves or ribbons
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • A63B2209/02Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
    • A63B2209/023Long, oriented fibres, e.g. wound filaments, woven fabrics, mats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S273/00Amusement devices: games
    • Y10S273/07Glass fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina

Abstract

Racket having frame including an oval head portion and a handle portion integrally formed by a tubular member composed of helically wound fibers of high tensile strength embedded in a hardened binder and having a pre-formed reinforcing member defining the base of the oval head portion and bonded on opposite sides to the tubular member, the handle portion being defined in part by generally parallel extending portions of the tubular member surrounded by a grip. Method of making a tubular article by helically winding high tensile strength fibers about a core provided with a substantially fluid tight casing; the core is removed and the wound casing is placed in a mold, a binder for the fibers is added, the interior of the casing is supplied with fluid under pressure, and the binder is hardened.

Description

United States Patent [191 Erwin et a1.

[451 Aug. 28, 1973 METHOD OF MAKING A FIBER REINFORCED RACKET [76] Inventors: John R. Erwin, 6634 E. Sonnyvale Rd., Paradise Valley, Ariz. 85253; Anthony F. Staub; Norman T. Staub,

both of Dayton Scale Model Company 2661 Culver Ave., Dayton, Ohio 45429 [22] Filed: Jan. 18, 1971 [21] App]. No.: 107,304

[52] US. Cl 156/185, 156/189, 156/190, 156/196, 156/245, 156/285, 264/313,

[51] Int. Cl. B65h 81/00, A63b 49/00 [58] Field of Search 156/162, 173, 175, 156/184, 189-190, 196, 285, 156, 191, 245,

[56] References Cited UNITED STATES PATENTS 2,054,354 9/1936 Alderfer... 156/162 X 3,202,560 8/1965 Michael 156/162 X 3/1969 Michael 156/162 X 2,878,020 3/1959 Robinson 273/73 F 2,838,435 6/1958 Hewitt 264/314 X 3,483,055 12/1969 Eshbaugh 156/190 X Primary Examiner-George F. Lesmes Assistant Examiner-M. E. McCamish Attorney-Melville, Strasser, Foster & Hoffman 57] ABSTRACT Racket having frame including an oval head portion and a handle portion integrally formed by a tubular member composed of helically wound fibers of high tensile strength embedded in a hardened binder and having a pre-formed reinforcing member defining the base of the oval head portion and bonded on opposite sides to the tubular member, the handle portion being defined in part by generally parallel extending portions of the tubular member surrounded by a grip.

Method of making a tubular article by helically winding high tensile strength fibers about a core provided with a substantially fluid tight casing; the core is removed and the wound casing is placed in a mold, a binder for the fibers is added, the interior of the casing is supplied with fluid under pressure, and the binder is hardened.

4 Claims, 8 Drawing Figures Patented Aug. 28, 1973 3,755,037

2 Sheets-Sheet 2 lNVENTOR/S JOHN R ERWIN ANTHONY F. STAUD NORMAN T. STAUD BY #4, $926,446,, 9 4;, W W

ATTO RN EYS METHOD OF MAKING A FIBER REINFORCED RACKET BACKGROUND OF THE INVENTION This invention relates to a racket for various games such as tennis, squash, and the like. While the description will primarily be in terms of a tennis racket, it should be understood that the principles taught are applicable to any type of strong racket, and to the production of other curved, tubular articles.

Until relatively recently, all good rackets were made substantially of wood, generally in the form of a plurality of curved pieces laminated together by glue or the like. These rackets possessed many desirable qualities from the standpoint of strength, lightweight, etc. However, by the same token, these rackets were subject to certain disadvantages.

In the first place, wood is always subject to warping, particularly under the stress of tightly stretched strings.

In addition, and more importantly, the manufacturing process was by necessity largely a hand operation. It therefore follows that this construction is both expensive and time consuming. Comparatively recently, various workers in the art have produced rackets wherein the frame is constructed of steel or aluminum. Obviously, a racket frame of such a material does not warp, and possesses a very high degree of strength. Unfortunately, none of the steel and aluminum rackets developed to date can be strung originally, or perhaps more importantly, repaired in the conventional manner wherein a pick is inserted in ahole in the racket frame to hold the string while it is being threaded through the next hold. Thus, the stringing of a steel or aluminum racket is difficult and very time consuming. Furthermore, the initial cost of materials, as well as the cost of the equipment for forming the metal racket frames is high, thereby making the consumer cost of such a racket very high.

The use of glass reinforced plastic materials has become widespread during this same period of time. It is well known that the glass reinforced plastics have a very high strength, they have a good modulus of elasticity, the raw materials are inexpensive, and it can be readily formed and otherwise handled.

Yet in spite of this knowledge, the art has been unable to develop a satisfactory racket frame formed of a fiber reinforced plastic material.

SUMMARY OF THE INVENTION The method of this invention, generally considered, includes the following steps. First of all, a fluid tight casing is provided with a core. The core and easing must have sufficient rigidity that they can be' covered by a helically wound fiber or fibers having the neces- I sary tensile strength. This core will be removed at any convenient stage in the process, leaving the fluid tight casing in place. The wound casing and a suitable binder are then placed in a mold having a cavity configured to form a racket frame. Any necessary reinforcing elements an/or additional fibers and binder are added. The mold is then closed, and fluid under pressure is supplied to the interior of the casing, thereby forcing the helically wound fibers and the binder to the extremes of the mold cavity. Suitable conditions are provided so that the binder is hardened, and at a predetermined time the basic frame is removed from the mold.

It will be apparent from the foregoing discussion that the racket frame according to this invention is integrally formed by a tubular member composed of helically wound fibers of high tensile strength embedded in a hardened binder. The tubular member is curved to define an oval head portion with parallel extending portions of the tubular member defining a handle. Added reinforcements complete the oval head and strengthen the handle, which may be provided with a grip of the desired size and configuration. the more The resulting racket possesses high strength, a good modulus of elasticity, and can be produced at low cost. Additionally, the racket of this invention can be strung and repaired by using the conventional pick and awl technique. Even when strung with a synthetic material such as nylon, the performance of the racket is comparable to that of a racket having themore expensive natural gut strings.

DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a finished racket according to this invention.

FIG. 2 is a fragmentary perspective view showing the core, the casing, and a portion of the helically wound fibers.

FIG. 3 is a perspective view of the reinforcing member.

FIG. 4 is a plan view of the mold showing additional reinforcing fibers in place.

FIG. 5 is a plan view showing the tubular member as placed in the mold.

FIG. 6 is a perspective -view showing a modified racket frame.

FIG. 7 is a plan view showing diagrammatically the opposite hand, helical winding step.

FIG. 8 is a cross sectional view along the line 8-8 of FIG. 5 on a greatly enlarged scale.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring first to FIG. 1, a tennis racket according to this invention is shown in perspective. The frame includes a generally oval shaped head portion indicated .generally at I0 and a handle portion indicated generally at 12. The head 10 is provided with strings l4 and the handle 12 is provided with a grip 16, both of which can be regarded as substantially conventional.

The head and handle portions are integrally formed by a tubular member 18. The tubular member 18 is formed in a mold to provide an open oval or loop 18a, and the spaced apart, parallel handle portions 18b and 18c (See FIG. 5)

The reinforcing member 20 (see separately in FIG. 3) has the neck portion 200 adapted to extend across the open base of the oval defined by the tubular member 18a, and the handle portion 20b disposed between the portions 18b and 18c of the tubular member.

In the embodiment shown in FIG. 1, the handle portion 12 is molded about the parallel extending portions 18b and of the tubular member and the handle portion 20b of the reinforcing member. 5).

The racket frame just described may be produced by the following process. A core seen in FIG. 2 at 30 is provided. In this Figure, the core is shown as comprising a plurality of wires. These wires may be of any material which if flexible, is capable of being placed under sufficient tension to provide a relatively rigid core for the helical winding step to be discussed in a moment. A bundle of steel and/or aluminum wires has been proved in experimental practice to be satisfactory.

The core 30 is surrounded by a casing 32 which must be expandable, and fluid tight or impermeable. As will be apparent hereinafter, the strength requirements of the casing 32 are not great. Hence any thin and somewhat elastic material can be used. Preferably, the casing 32 will be a thin rubber material.

The casing and core just described will be placed under sufficient tension to form a relatively rigid structure, about which a plurality of layers of fiber or fiber material can be helically wound. Present practice has indicated that the most suitable material for the helical winding is a strip or ribbon of glass cloth substantially 1 inch wide shown at 34. This material is wound back and forth over the core and casing described above in a helical pattern. This winding can be continued until the desired wall thickness is achieved. Analytical and empirical investigations have established that a wall thickness on the order of 0.050 to 0.100 inches is satisfactory from the strength and weight standpoint's, and this is accomplished by helically winding six to eight layers of the glass strips.

The preferred winding pattern contemplates that the strip or ribbon be at an angle of approximately 45 to the tube axis. The fibers of one layer are thus at right angles to the fibers of the adjacent layers. This contributes to torsional stiffness and resistance to splitting.

The winding process may be facilitated by simultaneously winding two layers from opposite sides of the core and casing during each pass as shown diagrammatically in FIG. 7. This procedure provides opposed tensions during winding making it easier to holdthe core I straight, and cuts winding time in half. During the winding process, additional windings may be added for reinforcement in zones of high stress.

After winding, the core 30 which is surrounded by the casing32 and the helically wound fibers 34 is released from tension. The core 30 is preferably removed at this time, although it may be left in place until later if desired. The casing 32 and fibers 34 are then ready to be laid in a mold half such as seen in FIG. 4.

It will be observed that the mold half has a cavity indicated generally at 40 shaped to produce the finished racket. (While only one mold half is shown, it will be understood that the two mold halves are identical.) Generally considered, the casing and helically wound fibers, the reinforcing member, any additional reinforcing fibers, and a suitable binder are placed in the mold half. The mold is then closed, fluid under pressure is introduced to the interior of the casing, so as to expand the casing and force the binder impregnated helical windings into contact with all portions of the mold cavity 40. The binder is then cured and the racket frame is removed from the mold. Within this general framework, the precise order of steps may be varied as desired.

A desirable cross sectional configuration for the head portion of the mold cavity is seen in FIG. 8, it again being understood that the cavities in the two mold halves are identical. The cavity shown in FIG. 8 includes the semi-cylindrical portion 41, and the flat bottomed groove 41a cut out at the lowermost portion. The groove 41a is utilized to carry longitudinal reinforcing fibers as will be explained hereinafter. The

groove 41a should extend around at least the entire head portion 10.

An exemplary process contemplates that the entire mold cavity 40 is first coated with a surface coat of resin (pigmented, if desired) in order to provide an improved surface finish to the completed racket. Longitudinal reinforcing fibers 42 are laid in the groove 41a. Any suitable high strength fiber will be satisfactory. Excellent rackets have been made using both glass fiber strand or carbon fibers. Neck reinforcing strips 43 may then be laid on each side of each of the mold halves and coated with additional. resin binder. The handle rein forcing strips 44 (which may be precut to the desired configuration) are then laid in one mold half and coated with additional binder. At this time, the casing 32 and helically wound fibers 34, and the reinforcing member are laid in position in the mold. The impregnating of the helically wound fibers 34 may conveniently be accomplished by soaking the entire strand in a resin filled trough ahead of time, or the resin-may be added later. In any event, the helically wound fibers are laid into the shape described earlier, with. the reinforcing member 20 in place defining the base of the oval and disposed between the portions 18b and 18c of the tubular member. The other end of the handle reinforcing strips 44 are then folded backover the reinforcing member 20, and portions 18b and 18c of the tubular member, and the mold is ready to be closed.

It will be seen in FIG. 5 that the ends of the portions 18b and 18c of the tubular member 18 extend beyond the end of the handle of the racket and to the edge of the mold. Fluid under pressure is then introduced to the interior. of the casing 32. This may be accomplished by closing off one end of the casing (for example at the free end of the portion 180) and introducing air under pressurethrough conventional fittings to the other end. Pressures on the order of'50 to 100 psi have been found entirely satisfactory. As indicated earlier, this pressure is effective to expand the casing and force the binder impregnated helical windings into contact with all portions of the mold cavity 40. If desired, a heated fluid can be utilized in order to expedite the hardening of a heat settable binder.

Once the binder has hardened, the mold halves are separated and the racket frame removed for further processing. The fluid tight casing 32 may be removed for reuse.

Completion of the racket frame of course requires formation of apertures for receiving the strings l4. These'apertures may be formed during the molding process by movable pins in the mold, or by drilling with conventional equipment after removal of the frame from the mold.

The further processing may desirably include the filling of the hollow tubular member with a foam core. Suitable material may be placed in the tubular member and foamed in situ according to well known techniques. This foam core helps damp vibration, and greatly facilitates stringing by guiding the end of the string across the tube.

v The drawing illustrate the tubular member 18 as being substantially circular in cross section. Actual use of a racket formed in accordance with this process has been entirely satisfactory. It is of course to be pointed out that the foregoing process will permit the formation of a frame having other cross sections. That is, if it is desired to produce a racket frame having an eliptical cross section, it is only necessary to provide the appropriate configuration for the mold cavity 40. It will also be apparent that the mold cavity 40 may have differing cross sections, the fluid under pressure within the casing serving to cause the binder impregnated fibers to 5 conform to whatever cavity is present.

An alternative construction is shown in FIG. 6. According to this embodiment of the invention, the reinforcing segment 50 again extends across the open base of the oval defined by the tubular member 180, but does not form a portion of the finished handle. According to this embodiment of the invention, the mold will provide a cavity to form the tubular member 18 in the general configuration described earlier; that is, an open oval or loop 18a and the spaced apart, parallel handle portions 18b and 18c. No provision is made for the formation of an integral handle or grip portion. Under this practice, the grip portion may be made in the form of a pair of mating grip blocks 52 and 54 which are subsequently secured to the portions 18b and 18c of the tu- 20 bular member. These grip blocks may be formed of wood and the securing may be accomplished by a suitable adhesive or mechanical fasteners. It would also be possible to form these grip blocks of plastic and provide structures such that the two blocks will interlock together.

Numerous modifications can be made in the foregoing disclosure without departing from the scope and spirit of this invention. Specifically, the fiber reinforcing fiber 42 or strips 43 and 44 are exemplary only. This invention comprehends the use of additional fiber reinforcement at any desired point or section of the racket frame.

It will also be apparent that the method disclosed may be used for the production of virtually any curved, tubular article, and by providing a tapered core, the tubular member can be given a tapered configuration.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. A method of making a racket frame comprising the steps of:

a. providing a core which is substantially rigid in a radial direction; b. covering said core with a flexible, fluid-tight cas- "'8; c. placing said core under axial tension; d. helically winding a plurality of layers of a strip of material about said core and casing to form a flexible, tubular member; e. impregnating said material with a hardenable binder; f. releasing said core from said axial tension; g. placing said tubular member in a mold having a cavity defining a racket shape; h. applying fluid under pressure to the interior of said casing; i. removing said core from said casing after said helical winding step and before applying fluid under pressure thereto; and j. hardening said binder. 2. The method claimed in claim 1 wherein said core is axially flexible. I

3. The method claimed in claim 1 wherein said helical winding includes at least two helixes of opposite hand.

4. The method claimed in claim 1 including the steps of providing longitudinal reinforcing fibers for at least the head portion of said racket frame, and bonding said reinforcing fibers to said helically wound material.

Claims (4)

1. A method of making a racket frame comprising the steps of: a. providing a core which is substantially rigid in a radial direction; b. covering said core with a flexible, fluid-tight casing; c. placing said core under axial tension; d. helically winding a plurality of layers of a strip of material about said core and casing to form a flexible, tubular member; e. impregnating said material with a hardenable binder; f. releasing said core from said axial tension; g. placing said tubular member in a mold having a cavity defining a racket shape; h. applying fluid under pressure to the interior of said casing; i. removing said core from said casing after said helical winding step and before applying fluid under pressure thereto; and j. hardening said binder.
2. The method claimed in claim 1 wherein said core is axially flexible.
3. The method claimed in claim 1 wherein said helical winding includes at least two helixes of opposite hand.
4. The method claimed in claim 1 including the steps of providing longitudinal reinforcing fibers for at least the head portion of said racket frame, and bonding said reinforcing fibers to said helically wound material.
US3755037A 1971-01-18 1971-01-18 Method of making a fiber reinforced racket Expired - Lifetime US3755037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10730471 true 1971-01-18 1971-01-18

Publications (1)

Publication Number Publication Date
US3755037A true US3755037A (en) 1973-08-28

Family

ID=22315943

Family Applications (1)

Application Number Title Priority Date Filing Date
US3755037A Expired - Lifetime US3755037A (en) 1971-01-18 1971-01-18 Method of making a fiber reinforced racket

Country Status (1)

Country Link
US (1) US3755037A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108035A (en) * 1974-01-30 1975-08-26
US3930920A (en) * 1972-06-20 1976-01-06 Modicus Karl-Heinz Kicherer Process of manufacturing tennis racket frames or the like
US3949988A (en) * 1972-06-08 1976-04-13 Fischer Gesellschaft M.B.H. Racket
US3953637A (en) * 1974-10-31 1976-04-27 United Technologies Corporation Slender rod for fishing rods and method of making the same
US3993308A (en) * 1968-01-08 1976-11-23 Jenks Herbert R Laminated fiberglass tennis racket
US4023799A (en) * 1974-01-24 1977-05-17 Exxon Research And Engineering Company Game racket
US4031181A (en) * 1972-04-05 1977-06-21 General Dynamics Corporation Method for molding high strength facing
JPS52123731A (en) * 1976-04-06 1977-10-18 Hitachi Chem Co Ltd Packet frame and fabricating method of
US4070021A (en) * 1976-07-07 1978-01-24 Fansteel Inc. Composite high strength to weight structure having shell and sleeved core
US4070020A (en) * 1976-07-07 1978-01-24 Fansteel Inc. Composite high strength to weight structure with fray resistance
FR2358170A1 (en) * 1976-07-13 1978-02-10 Bosch Gmbh Robert composite construction tennis racket and process for its manufacturing
US4099718A (en) * 1976-05-17 1978-07-11 Marcraft Recreation Inc. Racquet frame construction
US4123054A (en) * 1975-03-04 1978-10-31 Jacqueline Septier Tennis racket frame
US4124678A (en) * 1975-04-11 1978-11-07 Sipler Plastics, Inc. Method of making tortuous tubular articles
US4124670A (en) * 1976-07-07 1978-11-07 Fansteel Inc. Method of producing a composite high strength to weight structure having a shell and weight controlled cellular core
JPS5434935A (en) * 1978-08-10 1979-03-14 Hitachi Chem Co Ltd Racket frame
US4144632A (en) * 1977-01-17 1979-03-20 Sipler Plastics, Inc. Method of making tubular article
US4158586A (en) * 1976-08-25 1979-06-19 Fumio Usui Method for producing bent pipe of reinforced synthetic resin
US4165071A (en) * 1976-01-05 1979-08-21 Frolow Jack L Tennis racket
US4183776A (en) * 1973-02-13 1980-01-15 Starwin Industries, Inc. Tennis racket manufacture
US4192505A (en) * 1977-11-07 1980-03-11 Pepsico, Inc. Game racket
US4194738A (en) * 1977-06-30 1980-03-25 Hitachi Chemical Company, Ltd. Frame of a game racket
US4221382A (en) * 1978-02-21 1980-09-09 Pepsico, Inc. Sports racket
US4227295A (en) * 1978-07-27 1980-10-14 Baxter Travenol Laboratories, Inc. Method of potting the ends of a bundle of hollow fibers positioned in a casing
JPS5628823A (en) * 1979-08-17 1981-03-23 Sekisui Chem Co Ltd Manufacturing of bent pipe
US4264389A (en) * 1977-08-25 1981-04-28 Starwin Industries, Inc. Method of manufacturing a tennis racket
JPS56115218A (en) * 1980-02-19 1981-09-10 Kubota Ltd Manufacture of frp bent tube
US4291574A (en) * 1976-01-05 1981-09-29 Frolow Jack L Tennis racket
JPS5791141A (en) * 1980-11-27 1982-06-07 Shimano Industrial Co Production of fishing rod
US4360202A (en) * 1978-09-08 1982-11-23 Lo Kun Nan CFRP or FRP made badminton racket frame
US4399992A (en) * 1980-03-10 1983-08-23 Questor Corporation Structural member having a high strength to weight ratio and method of making same
USRE31419E (en) * 1976-01-05 1983-10-18 Tennis racket
US4579343A (en) * 1981-12-21 1986-04-01 Ektelon Graphite composite racquet
US4684131A (en) * 1984-06-14 1987-08-04 Ektelon Graphite composite racquet with aramid core
WO1989005753A1 (en) * 1987-12-23 1989-06-29 Trimble Brent J Composite bicycle frame with crossed tubular portions
US4982975A (en) * 1986-05-12 1991-01-08 Trimble Brent J Composite bicycle frame with pressure molded juncture
US4986949A (en) * 1986-05-12 1991-01-22 Trimble Brent J Method of making composite bicycle frames
US5037098A (en) * 1988-04-06 1991-08-06 Prince Manufacturing, Inc. Tennis racquet with tapered profile frame
US5050878A (en) * 1988-10-07 1991-09-24 Destra S.A. Hockey stick made of composite materials and its manufacturing process
US5282913A (en) * 1992-09-16 1994-02-01 Lo Kun Nan Method for producing a connecting tube interconnecting the shaft and the handle of a racket
US5310516A (en) * 1992-05-06 1994-05-10 Walter Shen Method of making a composite racket
US5322249A (en) * 1992-07-15 1994-06-21 You Chin San Method of making game racket frame of plastic compound material
US5348601A (en) * 1993-06-23 1994-09-20 The United States Of America As Represented By The Secretary Of The Navy Method of making an offset corrugated sandwich construction
JPH06286005A (en) * 1993-03-31 1994-10-11 Toray Ind Inc Production of bent pipe
FR2711068A1 (en) * 1993-10-15 1995-04-21 Vsa Method for producing a tennis racquet (racket) frame from a flexible tubular element impregnated with resin and intended to be moulded
US5540877A (en) * 1994-02-24 1996-07-30 Wilson Sporting Goods Co. Method of making a continous fiber reinforced resin transfer molded frame for a game racquet
US5814268A (en) * 1990-12-05 1998-09-29 Taylor Made Golf Company, Inc. Process of making a golf club shaft
US5900194A (en) * 1996-12-27 1999-05-04 Wasatch Technologies Corporation Method for removing mandrels from composite tubes of substantial length
US6254500B1 (en) * 1998-04-14 2001-07-03 Yonex Kabushiki Kaisha Racket with meshed titanium reinforcement
US20040006947A1 (en) * 1999-07-26 2004-01-15 Clint Ashton Filament wound structural light poles
US20060025247A1 (en) * 2004-07-29 2006-02-02 Hayden Mark X One Piece LaCrosse Stick
US20080274843A1 (en) * 2006-10-20 2008-11-06 Prince Sports, Inc. Method for Manufacturing a Racquet Frame for Sports Racquet and a Racquet Frame Thereof
US20130231204A1 (en) * 2011-08-24 2013-09-05 Marisa Hodges Tennis racket having an optimized striking area and a ball collection portion
US20170165545A1 (en) * 2015-12-09 2017-06-15 Jung-Shih Chang Safety bat for striking balls or the like

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2054354A (en) * 1934-12-11 1936-09-15 Edward D Andrews Elastic thread and process of making the same
US2838435A (en) * 1953-10-08 1958-06-10 Oscar C Hewett Method of forming plastic parts
US2878020A (en) * 1949-12-16 1959-03-17 Roy H Robinson Racket for batting games
US3202560A (en) * 1961-01-23 1965-08-24 Rock Island Oil & Refining Co Process and apparatus for forming glass-reinforced plastic pipe
US3433696A (en) * 1965-10-15 1969-03-18 Koch Ind Inc Apparatus for making filament reinforced plastic pipe
US3483055A (en) * 1966-03-28 1969-12-09 Robert Wayne Eshbaugh Method for forming a fiber glass racket frame

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2054354A (en) * 1934-12-11 1936-09-15 Edward D Andrews Elastic thread and process of making the same
US2878020A (en) * 1949-12-16 1959-03-17 Roy H Robinson Racket for batting games
US2838435A (en) * 1953-10-08 1958-06-10 Oscar C Hewett Method of forming plastic parts
US3202560A (en) * 1961-01-23 1965-08-24 Rock Island Oil & Refining Co Process and apparatus for forming glass-reinforced plastic pipe
US3433696A (en) * 1965-10-15 1969-03-18 Koch Ind Inc Apparatus for making filament reinforced plastic pipe
US3483055A (en) * 1966-03-28 1969-12-09 Robert Wayne Eshbaugh Method for forming a fiber glass racket frame

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993308A (en) * 1968-01-08 1976-11-23 Jenks Herbert R Laminated fiberglass tennis racket
US4031181A (en) * 1972-04-05 1977-06-21 General Dynamics Corporation Method for molding high strength facing
US3949988A (en) * 1972-06-08 1976-04-13 Fischer Gesellschaft M.B.H. Racket
US3930920A (en) * 1972-06-20 1976-01-06 Modicus Karl-Heinz Kicherer Process of manufacturing tennis racket frames or the like
US4183776A (en) * 1973-02-13 1980-01-15 Starwin Industries, Inc. Tennis racket manufacture
US4023799A (en) * 1974-01-24 1977-05-17 Exxon Research And Engineering Company Game racket
JPS50108035A (en) * 1974-01-30 1975-08-26
US3953637A (en) * 1974-10-31 1976-04-27 United Technologies Corporation Slender rod for fishing rods and method of making the same
US4123054A (en) * 1975-03-04 1978-10-31 Jacqueline Septier Tennis racket frame
US4124678A (en) * 1975-04-11 1978-11-07 Sipler Plastics, Inc. Method of making tortuous tubular articles
USRE31419E (en) * 1976-01-05 1983-10-18 Tennis racket
US4291574A (en) * 1976-01-05 1981-09-29 Frolow Jack L Tennis racket
US4165071A (en) * 1976-01-05 1979-08-21 Frolow Jack L Tennis racket
JPS565547B2 (en) * 1976-04-06 1981-02-05
JPS52123731A (en) * 1976-04-06 1977-10-18 Hitachi Chem Co Ltd Packet frame and fabricating method of
US4099718A (en) * 1976-05-17 1978-07-11 Marcraft Recreation Inc. Racquet frame construction
US4124670A (en) * 1976-07-07 1978-11-07 Fansteel Inc. Method of producing a composite high strength to weight structure having a shell and weight controlled cellular core
US4128963A (en) * 1976-07-07 1978-12-12 Fansteel, Inc. Method for preparing a composite high strength to weight structure with fray resistance
US4070020A (en) * 1976-07-07 1978-01-24 Fansteel Inc. Composite high strength to weight structure with fray resistance
US4070021A (en) * 1976-07-07 1978-01-24 Fansteel Inc. Composite high strength to weight structure having shell and sleeved core
FR2358170A1 (en) * 1976-07-13 1978-02-10 Bosch Gmbh Robert composite construction tennis racket and process for its manufacturing
US4158586A (en) * 1976-08-25 1979-06-19 Fumio Usui Method for producing bent pipe of reinforced synthetic resin
US4144632A (en) * 1977-01-17 1979-03-20 Sipler Plastics, Inc. Method of making tubular article
US4194738A (en) * 1977-06-30 1980-03-25 Hitachi Chemical Company, Ltd. Frame of a game racket
US4264389A (en) * 1977-08-25 1981-04-28 Starwin Industries, Inc. Method of manufacturing a tennis racket
US4192505A (en) * 1977-11-07 1980-03-11 Pepsico, Inc. Game racket
US4221382A (en) * 1978-02-21 1980-09-09 Pepsico, Inc. Sports racket
US4227295A (en) * 1978-07-27 1980-10-14 Baxter Travenol Laboratories, Inc. Method of potting the ends of a bundle of hollow fibers positioned in a casing
JPS5434935A (en) * 1978-08-10 1979-03-14 Hitachi Chem Co Ltd Racket frame
US4360202A (en) * 1978-09-08 1982-11-23 Lo Kun Nan CFRP or FRP made badminton racket frame
JPS5628823A (en) * 1979-08-17 1981-03-23 Sekisui Chem Co Ltd Manufacturing of bent pipe
JPS625055B2 (en) * 1979-08-17 1987-02-03 Sekisui Chemical Co Ltd
JPS56115218A (en) * 1980-02-19 1981-09-10 Kubota Ltd Manufacture of frp bent tube
JPS6331377B2 (en) * 1980-02-19 1988-06-23 Kubota Tetsuko Kk
US4399992A (en) * 1980-03-10 1983-08-23 Questor Corporation Structural member having a high strength to weight ratio and method of making same
JPS5791141A (en) * 1980-11-27 1982-06-07 Shimano Industrial Co Production of fishing rod
JPS6345948B2 (en) * 1980-11-27 1988-09-13 Shimano Kogyo Kk
US4579343A (en) * 1981-12-21 1986-04-01 Ektelon Graphite composite racquet
US4684131A (en) * 1984-06-14 1987-08-04 Ektelon Graphite composite racquet with aramid core
US4982975A (en) * 1986-05-12 1991-01-08 Trimble Brent J Composite bicycle frame with pressure molded juncture
US4986949A (en) * 1986-05-12 1991-01-22 Trimble Brent J Method of making composite bicycle frames
US5158733A (en) * 1986-05-12 1992-10-27 Trimble Brent J Method of making composite cycle frame components
WO1989005753A1 (en) * 1987-12-23 1989-06-29 Trimble Brent J Composite bicycle frame with crossed tubular portions
US5037098A (en) * 1988-04-06 1991-08-06 Prince Manufacturing, Inc. Tennis racquet with tapered profile frame
US5050878A (en) * 1988-10-07 1991-09-24 Destra S.A. Hockey stick made of composite materials and its manufacturing process
US5814268A (en) * 1990-12-05 1998-09-29 Taylor Made Golf Company, Inc. Process of making a golf club shaft
US6030574A (en) * 1990-12-05 2000-02-29 Taylor Made Golf Company, Inc. Process of manufacturing a golf club shaft
US5310516A (en) * 1992-05-06 1994-05-10 Walter Shen Method of making a composite racket
US5322249A (en) * 1992-07-15 1994-06-21 You Chin San Method of making game racket frame of plastic compound material
US5282913A (en) * 1992-09-16 1994-02-01 Lo Kun Nan Method for producing a connecting tube interconnecting the shaft and the handle of a racket
JPH06286005A (en) * 1993-03-31 1994-10-11 Toray Ind Inc Production of bent pipe
US5348601A (en) * 1993-06-23 1994-09-20 The United States Of America As Represented By The Secretary Of The Navy Method of making an offset corrugated sandwich construction
FR2711068A1 (en) * 1993-10-15 1995-04-21 Vsa Method for producing a tennis racquet (racket) frame from a flexible tubular element impregnated with resin and intended to be moulded
US5540877A (en) * 1994-02-24 1996-07-30 Wilson Sporting Goods Co. Method of making a continous fiber reinforced resin transfer molded frame for a game racquet
US5900194A (en) * 1996-12-27 1999-05-04 Wasatch Technologies Corporation Method for removing mandrels from composite tubes of substantial length
US6254500B1 (en) * 1998-04-14 2001-07-03 Yonex Kabushiki Kaisha Racket with meshed titanium reinforcement
US20040006947A1 (en) * 1999-07-26 2004-01-15 Clint Ashton Filament wound structural light poles
US6955024B2 (en) 1999-07-26 2005-10-18 North Pacific Group, Inc. Filament wound structural light poles
US20060025247A1 (en) * 2004-07-29 2006-02-02 Hayden Mark X One Piece LaCrosse Stick
US20070281808A1 (en) * 2004-07-29 2007-12-06 Harrow Sports, Inc. One Piece Lacrosse Stick
US7749112B2 (en) 2004-07-29 2010-07-06 Harrow Sports, Inc. One piece lacrosse stick
US8038551B2 (en) * 2006-10-20 2011-10-18 Prince Sports, Inc. Method for manufacturing a racquet frame for sports racquet and a racquet frame thereof
US20080274843A1 (en) * 2006-10-20 2008-11-06 Prince Sports, Inc. Method for Manufacturing a Racquet Frame for Sports Racquet and a Racquet Frame Thereof
US20130231204A1 (en) * 2011-08-24 2013-09-05 Marisa Hodges Tennis racket having an optimized striking area and a ball collection portion
US9119993B2 (en) * 2011-08-24 2015-09-01 Ojoee Industries, Inc. Tennis racket having an optimized striking area
US20170165545A1 (en) * 2015-12-09 2017-06-15 Jung-Shih Chang Safety bat for striking balls or the like

Similar Documents

Publication Publication Date Title
US2785442A (en) Method of making a reinforced hollow cylindrical article
US3013922A (en) Manufacture of plastic articles having spaced shells with reinforced foam filling
US2802766A (en) Method of manufacturing a laminated article
US6291049B1 (en) Sandwich structure and method of making same
US3657040A (en) Method of fabricating reinforced plastic bows having different draw weights
US5599242A (en) Golf club shaft and club including such shaft
US2626804A (en) Racket for tennis and batting games
US5050878A (en) Hockey stick made of composite materials and its manufacturing process
US2809144A (en) Method of making a composite golf shaft for a golf club
US5407195A (en) Blade construct for a hockey stick or the like
US6062996A (en) Formable sports implement
US5028464A (en) Structure of golf club shaft and method of producing the shaft
US5624115A (en) Composite baseball bat with cavitied core
US4757997A (en) Golf club shaft and method of manufacture
US4090002A (en) Reinforced fiber structures and method of making the same
US5217221A (en) Hockey stick formed of composite materials
US5721034A (en) Large composite structures incorporating a resin distribution network
US3899172A (en) Tennis racket having improved strength factor
US4200479A (en) Method of making a hockey stick
US4746386A (en) Method of producing continuous fiber reinforced bent resin pipe
US5262118A (en) Method for producing a hollow FRP article
US5458330A (en) Composite baseball bat with cavitied core
US2300441A (en) Method of making athletic balls
US4159114A (en) Ice hockey stick
US6056655A (en) Composite bat with metal barrel area and method of fabrication