US3754223A - Intruder detection system - Google Patents

Intruder detection system Download PDF

Info

Publication number
US3754223A
US3754223A US00008755A US3754223DA US3754223A US 3754223 A US3754223 A US 3754223A US 00008755 A US00008755 A US 00008755A US 3754223D A US3754223D A US 3754223DA US 3754223 A US3754223 A US 3754223A
Authority
US
United States
Prior art keywords
core
line
sections
coil
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00008755A
Inventor
S Shtrikman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yeda Research and Development Co Ltd
Original Assignee
Yeda Research and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yeda Research and Development Co Ltd filed Critical Yeda Research and Development Co Ltd
Application granted granted Critical
Publication of US3754223A publication Critical patent/US3754223A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2491Intrusion detection systems, i.e. where the body of an intruder causes the interference with the electromagnetic field
    • G08B13/2497Intrusion detection systems, i.e. where the body of an intruder causes the interference with the electromagnetic field using transmission lines, e.g. cable

Abstract

An intruder detection system comprising a line adapted to be located substantially at ground level and consisting of an elongated high permeability magnetic core on which is wound a coil in the form of successive sections of respectively opposite winding handednesses, a high gain low noise amplifier coupled to the line and a detector coupled to the amplifier and adapted to be coupled to an alarm system.

Description

0 United States Patent 11 1 1111 3,754,223 Shtrikman Aug. 21, 1973 [54] INTRUDER DETECTION SYSTEM 3,371,272 2/1968 Stanton 340/282 3,159,826 12/1964 Morrison... 340/258 C [75] Inventor. Shmuel Shtrikman, Rehovoth, Israel 3,449,703 6/1969 Swen 336/229 x [73] Assignee: Yeda Research and Development 5 g 3 eyger Rehovoth' Israel 3,355,707 11/1967 Koemer 324/41 x [22] FOREIGN PATENTS 0R APPLICATIONS [21] Appi. No.: 8,755 464,880 5/1960 Canada 340/38 L 52 us. c1 340/258 c, 340/38 L Primary Examinerlohn Caldwell 511 1111. c1. G081) 13/24 Ass/slam Examiner-Scott Partridge [58] Field of Search 340/258 c, 38 L, Atwrney-Bwwdy and Nelmark [57] ABSTRACT References Cited An intruder detection system comprising a line adapted UNITED STATES PATENTS to be located substantially at ground level and consist- 2,201,146 5/1940 Barker 340/38 1. ing of an elongated high Permeability magnetic core on 3,140,475 7/1964 Spencer et a1 340/282 which is wound a coil in the form of successive sections 2,492,182 12/1949 Robinson 340/38 L of respectively opposite winding handednesses, a high 2,955,286 10/1960 Klein 343/788 gain low noise amplifier coupled to the line and a de- Baker C tector coupled to the amplifier and adapted to be cou- 2,981,950 4/1961 Skidmore 343/788 pled to an alarm system 3,068,448 12/1962 Mount oy et a1... 340/38 L 2,212,986 8/1940 Horni 340/38 L 5 Claims, 4 Drawing Figures 2,976,483 3/1961 Moore et a1. 324/43 vvvvvvv id AXAAMAAAAAAJ PATENTEDwcZ I ma 3, 754,223
32 1 2 I'm"? an I mxmwwwwmmmmg IN V EN TOR.
INTRUDER DETECTION SYSTEM The present invention relates to an intruder detection system and is particularly concerned with a system which is capable of detecting the entry of an intruder into a defined area whilst carrying a ferromagnetic ob ject, such as, for example, house breaking tools, small arms or the like.
Various intruder detection systems have been proposed but in most cases the effectiveness of these known systems is limited by the fact that they are either complicated and therefore liable to fail or to be put out of action by the intruder or can lead to the production of false alarms, or that they are relatively difficult to instal.
It is an object of the present invention to provide a new and improved detection system in which the above referred to disadvantages are substantially reduced.
According to the present invention there is provided an intruder detection system comprising a line adapted to be located substantially at ground level and consisting of an elongated high permeability magnetic core on which is wound a coil in the form of successive sections of respectively opposite winding handednesses, a high gain low noise amplifier coupled to the line and a detector coupled to the amplifier and adapted to be coupled to an alarm system.
The system in accordance with the present invention is based on the observed phenomenon that the presence of a ferromagnetic object is associated with an inhomogeneous magnetic field which arises out of the magnetic moment induced in the object by the earths magnetic field and out of any inherent magnetic moment of the object itself. The magnitude of the induced magnetic moment of the ferromagnetic object is related to the size and shape of the object, its magnetic permeability and orientation. On the other hand, the magnitude of the earth s magnetic field is a more or less constant factor in these considerations having an intensity of about 0.6 gauss in a direction which mainly depends on the latitude of the location involved.
If now the ferromagnetic object moves, its associated field will also move and in consequence a fluctuation in the magnetic flux density will be observable during the movement at any point along the path of movement.
In the case of the present invention, this moving, inhomogeneous magnetic field associated with the object will be greatly enhanced and concentrated by the high permeability core and there will be induced in the various sections of the coil, electromotive forces which are cumulative along the length of the line and which result in the production of a detectable voltage across the coil leads. On the other hand, any change in the homogeneous field (e.g. fluctuations in the earth's magnetic field) will induce equal but opposite voltages in all the sections resulting in a substantially zero voltage across the coil leads.
Preferably the coil sections are of substantially equal length and numbers of turns, the section length being of the order of one meter in length.
Where a low impedance line is employed, in order to amplify the voltage signal appearing across the coil, which is of the order of nano volts, the line is coupled to an amplifier via a suitable transformer which is matched to the low impedance of the line. The output of the amplifier is fed to an appropriate discriminator circuit such as for example a threshold detector by means of which unwanted signals are rejected. The output of the discriminator can then be coupled to an appropriate alarm system which can be visual or audible.
For better understanding of the present invention and to show how the same can be carried out in practice reference will now be made to the accompanying drawings in which FIGS. 1 and 2 are schematic representations of three forms of lines in accordance with the present invention,
FIG. 3 is a schematic circuit block diagram of the intruder detection system in accordance with the invention, and
FIG. 4 is a schematic cross sectional representation of a line in accordance with the present invention.
FIG. 1 shows schematically a line 1 consisting of a ferromagnetic core 2 along the length of which is wound a coil 3. The coil 3 is wound in the form of successive, single-layer, sections 3a of respectively opposite winding handednesses. In the embodiment shown in FIG. 1 of the drawings seeing that both ends of the coil 3 are to emerge from the same end of the line one return lead of the coil extends over the whole wound length thereof. Alternatively, said one terminal lead can be made to extend through the core.
In the embodiment shown in FIG. 2 of the drawings the coil is rewound on itself in such a way that the two ends of the coil emerge from one end of the line, In this way a multilayer coil can be obtained. The constituent layers of each section can be successive right and left handed in which case the successive layers are connected in series. Where however successive sections are to be connected in parallel then the successive constituent layers of each section form like-handed windings, the handedness alternating from section to section.
As seen schematically in FIG. 3 the output from the line 1. is fed to a transformer which serves to impedance match the line 1 with a subsequent amplifier 6. For this purpose a step up transformer 5 is employed. Since the signal frequency to be detected is in the cycle per second range (e.g. between 0.3 3 Hz a magnetically shielded transformer having a step up. ratio of (for example) I to 50 and a primary winding of (for example) Henry is employed. The output of the transformer 5 isfed to the amplifier which has an input impedance of several megohms in the above signal frequency range and has a noise characteristic of less than one micro volt. The output of the amplifier 6 isfed to a discriminator 7 whose purpose is to discriminate betweensignals whose voltage lies above orbelow 'a certainminimum value. The output of the discriminator 7 is fed to a suitable alarm system which can be audio, visual or the like.
With an arrangement as described above an extreme situation can be envisaged wherein the ferromagnetic object, behaving as a magnetic dipole, moves in the plane which is always parallel to itself and normal to the line. In such an extreme situation the signal strength arising out of the passage of a ferromagnetic object in the vicinity of the line has a maximum value when this object passes between two successive sections and a theoretically zero value when the object passes the mid point of any specific section. In order to ensure that a detectable signal is obtained even under these extreme circumstances when the object passes the mid point of a section, an arrangement can be employed wherein two essentially separate independent coils are employed wound one on the other each coil being similar to that described with reference to FIG. 2, the two coils being shifted with respect to each other by half a section and being connected respectively via separate transformers and amplifiers to separate displays. With such an arrangement and even under the extreme circumstances referred to above when an object passes in the mid point of any specific section a detectable signal will be obtained at least in one of the displays.
ln one particular example of a flexible line (shown schematically in FIG. 4 of the drawings) the core 1 consists of a considerable number (e.g. 7X19) of numetal wires of 0.2 mm diameter. A double layer coil winding consisting of enamel insulated copper wire of 0.5 mm diameter is wound on the core in the form of sections of successively opposite winding handednesses. Each section is 700 mm in length and in consequence each section includes about 1400 turns. With such a line having a length of 100 metres the overall resistance is about 400 ohms. In order to ensure a good electrical insulation between the core and the winding and between the two layers of winding a thin nylon insulating layer, not shown, (0.05 mm thickness) can be wound on the core and between the windings. The windings are encased in a copper braiding shield 11 which is in its turn located within an outer plastic envelope l2 and in this way moisture is prevented from entering the line.
It will be appreciated that other materials can be employed for the magnetic core and conductive windings and other dimensions can be used.
Furthermore, whilst in the arrangement shown in FIG. 2 of the drawings a second winding is interposed between successive sections of a first winding this second winding can be superimposed on the first winding but shifted with respect thereto.
An intruder detection system including a line (preferably flexible) in accordance with the present invention enjoys the distinct advantage that the line which can be of small diameter can be rapidly and simply buried in a single narrow trench even in difficult terrain. Such a single line can be effectively protective against damage, e.g. by rodents by enclosing it in a pipe, e.g. an aluminum irrigation pipe. The same trench in which the line is laid can also serve to accommodate the leads to and from the line. Thus a plurality of successive lines (each e.g. being about 200 m in length) can be coupled by means of these leads to the respective electronic units which can all be located in a single control post.
I claim 1. A passive line for an intruder detection system operable in the earth's magnetic field, comprising:
a. a plurality of elongated high-permeability wires arranged in lengthwise contact to define a flexible high-permeability magnetic core un-magnetized except for the effect thereon of the earths magnetic field, the cross-section of the wires being very much smaller than the cross-section of the core;
and
b. a coil wound on the core having at least one layer of insulated conductor wound on the core in the form of many successive lengthwise serially connected sections of respectively opposite-winding handedness, the sections being of substantially equal length and homogeneously wound.
2. An intruder detection system using the line of claim 1 comprising a high-gain, low-noise amplifier,
and an impedance matching transformer coupling the line to the amplifier for detecting transient inhomogeneous magnetic fields in the vicinity of the line.
3. A line according to claim 1 including:
a. a shield of braided metal encasing the coil and core to effect flexing of the line; and
b. an outer plastic envelope encasing the shield for waterproofing the line.
4. A passive line for an intruder detection system operable in the earths magnetic field, comprising:
a. a plurality of elongated high-permeability wires arranged in lengthwise contact to define a flexible high-permeability magnetic core un-magnetized except for the effect thereon of the earths magnetic field, the cross-section of the wires being very much smaller than the cross-section of the core;
b. a coil wound on the core having at least one layer of insulated conductor wound on the core in the form of many successive lengthwise serially connected sections of respectively opposite-winding handedness, the sections being of substantially equal length and homogeneously wound; and
I c. a second coil wound on the core and comprising at least one layer of insulated conductor wound on the first mentioned coil in the form of successive lengthwise sections of respectively opposite handedness, the sections of one coil being shifted lengthwise by about a half a section with respect to the sections of the other coil.
5. A passive line for an intruder detection system operable in the earths magnetic field, comprising:
a. a plurality of elongated high-permeability wires arranged in lengthwise contact to define a flexible high-permeability magnetic core un-magnetized except for the effect thereon of the earth's magnetic field, the cross-section of the wires being very much smaller than the cross-section of the core;
and
b. a coil wound on the core having at least one layer of insulated conductor wound on the core inthe form of many successive lengthwise serially connected sections of respectively opposite-winding handedness, the sections being of substantially equal length and homogeneously wound;
c. said coil comprising a plurality of layers of conductors, overlying sections in different layers having the same winding handedness.

Claims (5)

1. A passive line for an intruder detection system operable in the earth''s magnetic field, comprising: a. a plurality of elongated high-permeability wires arranged in lengthwise contact to define a flexible high-permeability magnetic core un-magnetized except for the effect thereon of the earth''s magnetic field, the cross-section of the wires being very much smaller than the cross-section of the core; and b. a coil wound on the core having at least one layer of insulated conductor wound on the core in the form of many successive lengthwise serially connected sections of respectively opposite-winding handedness, the sections being of substantially equal length and homogeneously wound.
2. An intruder detection system using the line of claim 1 comprising a high-gain, low-noise amplifier, and an impedance matching transformer coupling the line to the amplifier for detecting transient inhomogeneous magnetic fields in the vicinity of the line.
3. A line according to claim 1 including: a. a shield of braided metal encasing the coil and core to effect fleXing of the line; and b. an outer plastic envelope encasing the shield for waterproofing the line.
4. A passive line for an intruder detection system operable in the earth''s magnetic field, comprising: a. a plurality of elongated high-permeability wires arranged in lengthwise contact to define a flexible high-permeability magnetic core un-magnetized except for the effect thereon of the earth''s magnetic field, the cross-section of the wires being very much smaller than the cross-section of the core; b. a coil wound on the core having at least one layer of insulated conductor wound on the core in the form of many successive lengthwise serially connected sections of respectively opposite-winding handedness, the sections being of substantially equal length and homogeneously wound; and c. a second coil wound on the core and comprising at least one layer of insulated conductor wound on the first mentioned coil in the form of successive lengthwise sections of respectively opposite handedness, the sections of one coil being shifted lengthwise by about a half a section with respect to the sections of the other coil.
5. A passive line for an intruder detection system operable in the earth''s magnetic field, comprising: a. a plurality of elongated high-permeability wires arranged in lengthwise contact to define a flexible high-permeability magnetic core un-magnetized except for the effect thereon of the earth''s magnetic field, the cross-section of the wires being very much smaller than the cross-section of the core; and b. a coil wound on the core having at least one layer of insulated conductor wound on the core inthe form of many successive lengthwise serially connected sections of respectively opposite-winding handedness, the sections being of substantially equal length and homogeneously wound; c. said coil comprising a plurality of layers of conductors, overlying sections in different layers having the same winding handedness.
US00008755A 1970-01-21 1970-01-21 Intruder detection system Expired - Lifetime US3754223A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US875570A 1970-01-21 1970-01-21

Publications (1)

Publication Number Publication Date
US3754223A true US3754223A (en) 1973-08-21

Family

ID=21733481

Family Applications (1)

Application Number Title Priority Date Filing Date
US00008755A Expired - Lifetime US3754223A (en) 1970-01-21 1970-01-21 Intruder detection system

Country Status (1)

Country Link
US (1) US3754223A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2202330A1 (en) * 1972-10-10 1974-05-03 Westinghouse Electric Corp
US3889181A (en) * 1974-03-08 1975-06-10 Us Army Magnetic system for discriminating between vehicles and personnel based upon their characteristic frequency signatures
US3967262A (en) * 1975-04-30 1976-06-29 The United States Of America As Represented By The Secretary Of The Army Line integrated combination magnetic and strain line sensor
US3965751A (en) * 1974-11-08 1976-06-29 Harvalik Zaboj V Integrated magneto-seismic sensor
US4004268A (en) * 1975-02-06 1977-01-18 Teledyne Industries, Inc. In-line stress/strain detector
US4166264A (en) * 1977-12-27 1979-08-28 Honeywell Inc. Intrusion detection transducers
WO2005040841A1 (en) * 2003-10-25 2005-05-06 Honeywell International Inc. Permalloy magnetization reversal sensor

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1992214A (en) * 1928-11-12 1935-02-26 Katz David Traffic detector
US2201146A (en) * 1937-08-14 1940-05-21 Automatic Signal Corp Traffic detector
US2212986A (en) * 1937-12-02 1940-08-27 Paul P Horni Vehicle actuated traffic signal
US2492182A (en) * 1946-04-12 1949-12-27 Standard Telephones Cables Ltd Approach alarm system
CA464880A (en) * 1950-05-02 Western Electric Company, Incorporated Signalling system
US2955286A (en) * 1958-02-24 1960-10-04 Internat Res & Dev Corp Plural loop antenna having ferrite cores
US2976483A (en) * 1956-11-30 1961-03-21 William H Moore Gradiometer for underwater missile warhead
US2981950A (en) * 1959-02-27 1961-04-25 Rca Corp Electrostatically-shielded loop antenna
US3040248A (en) * 1958-10-30 1962-06-19 William A Geyger Self-balancing flux-gate magnetometer
US3068448A (en) * 1958-09-08 1962-12-11 Gen Motors Corp Obstacle detection system
US3140475A (en) * 1960-12-30 1964-07-07 Gen Electric Electromagnetic position translating device
US3159826A (en) * 1960-03-17 1964-12-01 Gen Motors Corp Obstacle detection system
US3355707A (en) * 1964-05-11 1967-11-28 Bunker Ramo Apparatus for vehicle detection
US3371272A (en) * 1964-09-09 1968-02-27 Stanton Joshua Clarke Electromagnetic sensing probe structure and system for gaging proximity of metals and the like utilizing a linear variable differential transformer
US3449703A (en) * 1968-03-20 1969-06-10 Gen Electric Current transformer having an accuracy unimpaired by stray flux from adjacent conductors
US3508238A (en) * 1966-07-18 1970-04-21 Texas Instruments Inc Intrusion detection system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA464880A (en) * 1950-05-02 Western Electric Company, Incorporated Signalling system
US1992214A (en) * 1928-11-12 1935-02-26 Katz David Traffic detector
US2201146A (en) * 1937-08-14 1940-05-21 Automatic Signal Corp Traffic detector
US2212986A (en) * 1937-12-02 1940-08-27 Paul P Horni Vehicle actuated traffic signal
US2492182A (en) * 1946-04-12 1949-12-27 Standard Telephones Cables Ltd Approach alarm system
US2976483A (en) * 1956-11-30 1961-03-21 William H Moore Gradiometer for underwater missile warhead
US2955286A (en) * 1958-02-24 1960-10-04 Internat Res & Dev Corp Plural loop antenna having ferrite cores
US3068448A (en) * 1958-09-08 1962-12-11 Gen Motors Corp Obstacle detection system
US3040248A (en) * 1958-10-30 1962-06-19 William A Geyger Self-balancing flux-gate magnetometer
US2981950A (en) * 1959-02-27 1961-04-25 Rca Corp Electrostatically-shielded loop antenna
US3159826A (en) * 1960-03-17 1964-12-01 Gen Motors Corp Obstacle detection system
US3140475A (en) * 1960-12-30 1964-07-07 Gen Electric Electromagnetic position translating device
US3355707A (en) * 1964-05-11 1967-11-28 Bunker Ramo Apparatus for vehicle detection
US3371272A (en) * 1964-09-09 1968-02-27 Stanton Joshua Clarke Electromagnetic sensing probe structure and system for gaging proximity of metals and the like utilizing a linear variable differential transformer
US3508238A (en) * 1966-07-18 1970-04-21 Texas Instruments Inc Intrusion detection system
US3449703A (en) * 1968-03-20 1969-06-10 Gen Electric Current transformer having an accuracy unimpaired by stray flux from adjacent conductors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2202330A1 (en) * 1972-10-10 1974-05-03 Westinghouse Electric Corp
US3889181A (en) * 1974-03-08 1975-06-10 Us Army Magnetic system for discriminating between vehicles and personnel based upon their characteristic frequency signatures
US3965751A (en) * 1974-11-08 1976-06-29 Harvalik Zaboj V Integrated magneto-seismic sensor
US4004268A (en) * 1975-02-06 1977-01-18 Teledyne Industries, Inc. In-line stress/strain detector
US3967262A (en) * 1975-04-30 1976-06-29 The United States Of America As Represented By The Secretary Of The Army Line integrated combination magnetic and strain line sensor
US4166264A (en) * 1977-12-27 1979-08-28 Honeywell Inc. Intrusion detection transducers
WO2005040841A1 (en) * 2003-10-25 2005-05-06 Honeywell International Inc. Permalloy magnetization reversal sensor

Similar Documents

Publication Publication Date Title
US3747036A (en) Magnetic line sensor
EP0615217B1 (en) Electronic article surveillance system with enhanced geometric arrangement
US4987394A (en) Leaky cables
US4751516A (en) Antenna system for magnetic and resonant circuit detection
US5247270A (en) Dual leaky cables
SE456703B (en) MARKING DEVICE AND DETECTING EQUIPMENT MOVE A MARKING DEVICE
US4604576A (en) Electromagnetic delay line incorporated in a position detector for a movable nuclear reactor control rod
US3754223A (en) Intruder detection system
US2623923A (en) Electrostatically shielded magnetic well logging system
CA2056446A1 (en) Detection apparatus for security systems
KR940009084B1 (en) Antenna system for magnetic and resonant circuit detection
US3375511A (en) Transmission line intruder detection system
US3508238A (en) Intrusion detection system
EP0206458B1 (en) Vibration-sensitive transducer
US6577284B1 (en) Component field antenna for induction borehole logging
USRE29019E (en) Intruder detection system
GB1435370A (en) Perimeter intrusion detection system
US3378761A (en) Nondestructive testing device for testing wire ropes and similarly shaped objects
US11215678B2 (en) Electrical continuity detection system
GB1278646A (en) Protective barrier
US4477768A (en) Leakage current detecting structure
IL31466A (en) An intruder detection system
KR960703234A (en) METHOD AND DEVICE FOR DETECTING AND IDENTIFYING ELECTRICAL CABLES
RU2541129C2 (en) Vibrometric system for monitoring extended security boundaries
US3736541A (en) Detector probe for mapping discontinuities in electromagnetic paths