US3745990A - Human motor coordination measuring apparatus - Google Patents

Human motor coordination measuring apparatus Download PDF

Info

Publication number
US3745990A
US3745990A US00084143A US3745990DA US3745990A US 3745990 A US3745990 A US 3745990A US 00084143 A US00084143 A US 00084143A US 3745990D A US3745990D A US 3745990DA US 3745990 A US3745990 A US 3745990A
Authority
US
United States
Prior art keywords
pedal
transducer
cyclic
limb
record
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00084143A
Inventor
H Neis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3745990A publication Critical patent/US3745990A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • A61B5/221Ergometry, e.g. by using bicycle type apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus ; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0214Stretching or bending or torsioning apparatus for exercising by rotating cycling movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0002Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms
    • A63B22/0005Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms with particular movement of the arms provided by handles moving otherwise than pivoting about a horizontal axis parallel to the body-symmetrical-plane
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0002Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms
    • A63B22/0007Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms by alternatively exercising arms or legs, e.g. with a single set of support elements driven either by the upper or the lower limbs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0002Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms
    • A63B22/001Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms by simultaneously exercising arms and legs, e.g. diagonally in anti-phase
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0605Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing a circular movement, e.g. ergometers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2208/00Characteristics or parameters related to the user or player
    • A63B2208/12Characteristics or parameters related to the user or player specially adapted for children

Definitions

  • a stationary exercise device is modified to record cy- 272/73 A6lb 5/00 128/2 N, 2 R, 2 S,
  • the apparatus may be motor driven under a specified load for a partially or totally incapacitated person'for therapy for the motor brain center.
  • This invention relates to pedal operated exercise devices and more particularly, to an exercise device which is modified to perform as a skeletal muscle coordinator, brain motor area stimulator, diagnostic simulator and therapy device.
  • This invention is directed to a modified exercising device employing either hand or foot-operated pedals, or both, wherein cyclic rotation of the pedal is recorded in theform of a graph having portions printed and wherein the printer records separately the particular 40 load imposed on the exercise apparatus during the cyclic operation of the same.
  • the exercise device may be motor driven forcing the human operator to move his limbs under a defined pattern of movement until the same movement can be achieved voluntarily subsequent to repair of the brain damage.
  • This procedure either reopens non-used synapses or Weak synapses or by bombardment a detour route is established and normal function again occurs.
  • the .apparatus which measures human motor coordination comprises a cyclic limb driven mechanism and transducer means for providing electrical signals indicative of individual cyclic positions of the mechanism and means to record the signals sequentially and to therebyprovide a complete record of limb participation in movement of the mechanism through multiple cycles of operation.
  • paired pedals are driven both by the arms and legs of the operator with transducer means associated with both left and right pedals. Means are further provided for varying an artificial load on the exercising device and a pressure transducer associated therewith transmits a third signal indicative of said load.
  • Each of said transducers for the foot and hand pedals involves a movable contact which sequentially contacts fixed contacts at spaced angular positions, which in themselves are coupled to individual resistances which are differently loaded, for feeding momentary signals of correlated current strength to the recorder and/or graph printer.
  • the pressure transducer preferably comprises spaced conductive plates, means for springbiasing the plates together with form loads ranging from zero pounds to 200 pounds and a fluid intermediate of the plates whose conductivity varies with spring pressure.
  • FIG. 1 is a top plan view of a skeletal muscle coordinator, brain motor area stimulator, diagnostic simulator and therapy apparatus of the present invention in one form;
  • FIG. 2 is a side elevational view of the apparatus of FIG. 1;
  • FIG. 3 is a front elevational view of the apparatus shown in FIGS. 1 and 2;
  • FIG. 4 is a sectional view of a portion of the appara tus taken about lines 4-4 of FIG. 2 showing the pressure transducer;
  • FIG. 5 is a elevational view of the apparatus shown in FIG. 1 from the opposite side to that of FIG. 2;
  • FIG. 6 is a modified version of the apparatus shown in FIG. 1 incorporating a drive motor allowing the apparatus to be used for therapy;
  • FIG. 7 is a rear elevational view of a portion of the apparatus shown in FIG. 6 taken about line 7--7;
  • FIG. 8 is an electrical schematic diagram of a portion of the apparatus including the recorder and print-out device for graphically displaying the electrical signals emanating from the transducers;
  • FIG. 9 is a graphical plot of cyclicly recorded information from the apparatus of Figure.
  • FIG. 10 is a sectional view of a modified form of pedal assembly for use with the present invention.
  • a stationary frame 12 which may be of tubular construction including vertical risers 14 l at the rear and a single vertical riser l6 at the front of the device which supports a horizontal support 18, carrying-at its rear end, a seat 20 upon which the occupant sits during operation of the device either in a motor driven form or in human driven form under some load.
  • a pair of arms 22 and 24 support a hand-operatedp'edal assembly 26 having righthand handle 28 and left-hand handle 30 which extend from each other and are fixed to a common horizontal shaft 32.
  • a multiple unit sprocket assembly 34 carries sprocket chain 36 which passes over multiple idler sprockets 38 to the reversely oriented variable diameter multiple unit of foot sprocket assembly 40 carried by foot pedal assembly 42 at the outer end of the lower arm 24.
  • a right foot pedal-46 again is disposed on the foot pedal shaft 48 180 and on the opposite side from left foot pedal 50.
  • the sprocket chain 36 may be readily changed from the small to the large diameter sprockets as desired.
  • the load on the sprocket chain 36 is increased or decreased by increasing the tension of springs 52, in combination with adjustment of the compressive pressure exerted upon the rotatable sprockets 38 which form a part of the pressure transducer assembly indicated generally at 54 and shown specifically in FIG. 4.
  • the upper ends of springs 52 are fixed while the lower ends are movable through the common connection 56 and the tension cord 60 carried by drum 62 whose position may be readily adjusted by operating handle 64.
  • These elements are supported by brackets 66 and a pawl and ratchet mechanism 68 locks the tensioning cord 60 in any desired position either increasing or decreasing the spring tension of springs 52.
  • FIG. 4 shows that the multiple idler sprockets 38 carried by arms 22 and 24, respectively are coupled to mounting bolts 72 which pass through spaced plates 74 and 76 with interspersed coil spring 78 interspersed therebetween. Further, the plates 74 and 76 are centrally apertured and carry yet a third bolt 80 whose outer end supports a wing nut 82. Rotation of the wing nut 82 causes the coil springs 78 to be compressed exerting a greater compressive force between the sprocket member and support arms 22 and 24 which act as brakes or a drag on the moving chain 36 through respective sprockets thus increasing the load to both foot pedals 42 and hand'pedal 26.
  • the compressive force exerted between discs 84 and 86 of the pressure transducer is likewise varied to the same degree.
  • the two discs 84 and 86 carry electrical contact surfaces (not shown) and interspersed between these contract surfaces is a fluid whose resistivity varies in inverse proportion to the compressive force acting thereupon.
  • the resistance of the fluid captured between the conductive forces of these discs is decreased and thus the electrical current signal from the pressure transducer is increased.
  • Appropriate leads 88 and 90 to the respective discs complete the electrical circuit.
  • each of the transducers 92 and 94 likewise comprise discs, in this case a rotatable disc 96 and a stationary disc 98 for the upper assembly and a non-rotatable disc,102 for the lower assembly.
  • Each rotatable disc causes one energized contact while the fixed disc carries a plurality of circumferentially spaced contacts.
  • rotating disc 96 carries a single contact 103 connected to bottom 101 and the fixed disc 98 carries circumferentially spaced contacts 104, which are connected to differently weighted resistors 106 all of which are connected to an impedance matcher 108 the output of which passes through line 110 and amplifier 112 to an appropriate recorder 114.
  • transducer assembly 94 includes circumferentially spaced fixed contacts 116 which are individually connected to differently weighted resistors 118 which are connected to impedance matcher 120.
  • the output line 122 is connected to amplifier 124; the amplified signal energizing recorder 126.
  • the individual fixed contacts 116 are carried by stationary disc 102 while a single rotary contact 127 which is connected to a source of voltage 129 is carried by the rotati'ng disc 100.
  • the pressure transducer assembly 54 on the other hand incorporates discs 84 and 86.
  • the variable resistance due to the compression on electrically conductive fluid (not shown) captured between the disc faces causes a signal indicative of load to be fed to impedance matcher 130, and then through amplifier 132 to recorder 134.
  • each of the recorders 114, 126 and 134 feeds appropriate electrical signals to the printer 136 which provides a printout of the recorded information.
  • the printout device 136 may comprise a graph printer, in which case a typical printout consists of graph forms having various configurations depending upon the rate of rotation of the hand and foot pedals, the rhythm or lack of rhythm consistency in rotative speed, the lack or presence of momentary pauses within the cyclic movement of the foot and hand pedals.
  • FIG. 9 there is shown a graph of the transducer output signal indicated by graph lines A, B and C.
  • the straight line A indicates a 40 pound pressure output from the pressure transducer 54 throughout the time period from zero to T
  • the printer 136 provides a graphic illustration of the transducer signals from left hand transducer output as indicated in plot B which constitutes a stepped but uniform curve having steps in descending order due to the different weights given to resistances 106.
  • the printer will provide continuous patterns, with cycles in the hundreds, however, the physician may be readily aware of the non-functioning area or areas of the brain which insures maximum accuracy in his recommendation as to treatment, either actively or passively. Further, the rate in rhythm and coordination and/or non-coordination between the movements and change in relationship to the change in cogs on the two sprockets will afl'ect the recorded wave pattern. However, by a graphical record of these movements, the rate in rhythm change may be readily measured for the first time in an accurate manner and something can be done positively with respect to the deficiency in that portion of the motor area of the brain which corresponds to the non-contributive portions of the cycle.
  • FIG. shows schematically a typical modified pedal assembly, which could be substituted for the upper pedal assembly 26 in the embodiment of FIGS. 1 and 2.
  • the pedal shaft 132 carries a sprocket assembly 134 and on each end L-shaped pedal support means 136 and 138 for left and right-hand pedals, respectively.
  • the left-hand pedal support shaft 140 carries a bronze cylinder 142 as the handle of the pedal assembly which is inserted upon, and received by cylindrical rod 144 also formed of a conductive material.
  • transducer mixture 146 which constitutes a fluid whose electrical resistance varies with pressure such thatby grasping the outer bronze cylinder 142 and exerting some force while rorating the pedal assembly, the resistance offered by the transducer mixture 146 decreases under applied pressure, lowering the electrical resistance and increasing the current flowing between these members.
  • the same arrangement is provided for the right hand pedal or handle involving an outer brass cylinder 148, an inner broze cylindrical member 150 fixed to pedal shaft 152 and an interspersed transducer mixture 154.
  • a signal may be delivered as indicated in FIG 10 from the outer cylinder 148constituting the handle via line 156 to the preamplifier 158 and to the recorder 160, and graphical pointer 162 for right hand pedal assembly and the same means coupled to left hand assembly (not shown).
  • the instant invention as applied in its most sphisticated form, acts to measure accurately the workload. It also measures and accurately records the location of the hand and feet positions atall times during the performance of the work and further readily measures the transducer pressure for each limb, that is, all four hands and feet simultaneously to indicate for each moment, the relative participation inthe performance of the work by the individual. From the above, it is therefore apparent that if the central brain motor center is weak for one extremity there will be a recorded difference in the relationship as to the rhythm, speed and coordination which is readily sshown by graph comparison. Further, after prolonged exercise, the variants in the graph for the cy-' cles may readily indicate the imrpovements of a handicapped person and the closeness with which he may come to a normal physiological standard in regard to both motor coordination and adaptive behavior.
  • the variables of brain response for different persons may be readily measured and ascertainable graphically by the knowledge of the pressure being applied to each of the four pedals at all times, the location of the upper and lower pedals at any instant of time and for a given time: period, and the rate and number of turns of the pedal.
  • most persons considered normal have 2 sets of uncoordinated upper and lower extremities arythamies and mentally retarded children have six to 14 lags per some complete rotations of the upper sprocket measurement, for instance.
  • the first several days of exercise the same graphic pattern persists.
  • FIGS. 6 and 7 discloses a modification of the apparatus shown in FIGSfl through 5, inclusive.
  • the same basic elements are presented and like numerals define like elements.
  • an auxiliary sprocket 200 on which rides an auxiliary chain 202, the outer end of which is carried by a much smaller sprocket 204 coupled to a drive motor shaft 206.
  • Fixed to arm 28 is an electric motor 208 and means are provided for energizing the motor 208 through leads 210 to cause the same to be driven thus rotatingauxiliary sprocket 200, the main foot pedal shaft 40 and driving the foot pedal assembly 42 which is coupled by chain 36 to the handdriven pedal assembly 26 at the outer end of arm 22.
  • Apparatus to measure human motor coordination comprising:
  • a cyclic, limb-drivable mechanism comprising a stationary, modified bicycle including a rotatable foot pedal assembly and a rotatable hand-operated pedal assembly;
  • idler sprockets operatively coupled to said chain intermediate of said hand and foot pedal assemblies
  • first transducer means providing electrical signals indicative of instanteneous positions of said cyclically drivable mechanism; means coupled to said first transducer means to record said signals sequentially to thereby provide a complete record of limb participation at various stages of each cyclic movement of said mechanism;
  • second transducer means operatively associated with said limb-drivable mechanism for providing instantaneous electrical signals indicative of pressure applied to said pedals during cyclic operation of said limb-drivable mechanism;
  • said first transducer means are associated with each of said pedal assemblies for inciating independently, the instantaneous angular position of respective pedals.
  • said first transducer means comprises a pair of discs, one of said discs being fixed, the other of said discs being rotatable, said rotatable disc carries a single contact, said fixed disc carries a plurality of circumferentially spaced contacts positioned in the path of said rotating contact; and said apparatus further includes means energizing said single contact of said rotatable disc, differentially weighted resistors, means connecting said fixed disc contacts respectively to individual,differentially weighted resistors; amplifier means for amplifying the signals from said contacts through said individual resistors; and recording means for recording each of said signals whereby the angular movement of said individual pedal assemblies at cyclic positions during exercise may be visually ascertained.
  • said second transducing means includes a pressure transducer associated with each right and left pedal for indicating the pressure being applied to the respective pedal assembly components by individual limbs during rotation thereof.

Abstract

A stationary exercise device is modified to record cyclic positional information of the hand and foot operated pedals against a variable load which load level is also recorded to indicate brain damage in terms of pedal lag for either set of pedals. Alternatively, the apparatus may be motor driven under a specified load for a partially or totally incapacitated person for therapy for the motor brain center.

Description

[ 1 July 17,1973
United States Patent [191 Neis HUMAN MOTOR COORDINATION MEASURING APPARATUS FOREIGN PATENTS OR APPLICATIONS 1,008,973 5/1957 Germany.....,....................
[76] Inventor: Harry B. Neis, R.R. No. 1, Box 199A, Osage Beach, Mo. 65065 Oct. 26, 1970 Primary Examiner-William E. Kamm AttorneyRobert G. McMorrow [21] App]. No.: 84,143
Related US. Application Data [62] Division of Ser. No. 832,548, May 21, 1969, Pat. No.
ABSTRACT [52] US. Cl. 128/2 S, 73/379, 128/2,
A stationary exercise device is modified to record cy- 272/73 A6lb 5/00 128/2 N, 2 R, 2 S,
clic positional information of the hand and foot oper- [51] Int. ated pedals against a variable load which load level. is
also recorded to indicate brain damage in terms of [58] Field of Search....................
12s 2.0s R, 2.06 1 ,206 R; 212/ 72 v i/ pedal lag for either set of pedals. Alternatively, the apparatus may be motor driven under a specified load for a partially or totally incapacitated person'for therapy for the motor brain center.
[5 6] References Cited I UNITED STATES PATENTS 3,589,193 6/1971 Thornton 73/379 R 4 Claims, 10 Drawing Figures 7 ei un im 7 Pmm I 1 ms SHEEI 2 BF 3 PAIENIEDJULHM; v 3.745.990
sumsnra RHT o I 0 A 40 2 O T, 2 T3 RECORDER POINTER GRAPHICAL HUMAN MOTOR COORDINATION MEASURING APPARATUS CROSS REFERENCE TO RELATED APPLICATION This application is a division of application Ser. No. 832,548, filed May 21, 1969 now U.S. Pat. No. 3,572,699.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to pedal operated exercise devices and more particularly, to an exercise device which is modified to perform as a skeletal muscle coordinator, brain motor area stimulator, diagnostic simulator and therapy device.
2. Description of the Prior Art Attempts have been made to record skeletal muscle activity to determine possible brain damage and the specific areas thereof by allowing the patient to perform manual exercise and record the effect insofar as consistency in muscular application is concerned. This type of activity can neither be accomplished accurately nor recorded with any accuracy unless the person is operating under an actual workload. Further, it is difficult to determine when employing a multiple limb cyclic operating exercise or work performing device, which particular part of the cycle of which the human performing the exercise is contributing to the greatest extent. Finally, since there is a necessity that the exercise be undertaken under considerable load, it was impossible in the past to insure that the load remains constant for each exercise and further that the load in some way be recorded.
SUMMARY OF THE INVENTION This invention is directed to a modified exercising device employing either hand or foot-operated pedals, or both, wherein cyclic rotation of the pedal is recorded in theform of a graph having portions printed and wherein the printer records separately the particular 40 load imposed on the exercise apparatus during the cyclic operation of the same. For therapy purposes, the exercise device may be motor driven forcing the human operator to move his limbs under a defined pattern of movement until the same movement can be achieved voluntarily subsequent to repair of the brain damage.
This procedure either reopens non-used synapses or Weak synapses or by bombardment a detour route is established and normal function again occurs.
In general, the .apparatus which measures human motor coordination comprises a cyclic limb driven mechanism and transducer means for providing electrical signals indicative of individual cyclic positions of the mechanism and means to record the signals sequentially and to therebyprovide a complete record of limb participation in movement of the mechanism through multiple cycles of operation.
Preferably paired pedals are driven both by the arms and legs of the operator with transducer means associated with both left and right pedals. Means are further provided for varying an artificial load on the exercising device and a pressure transducer associated therewith transmits a third signal indicative of said load. Each of said transducers for the foot and hand pedals involves a movable contact which sequentially contacts fixed contacts at spaced angular positions, which in themselves are coupled to individual resistances which are differently loaded, for feeding momentary signals of correlated current strength to the recorder and/or graph printer. The pressure transducer preferably comprises spaced conductive plates, means for springbiasing the plates together with form loads ranging from zero pounds to 200 pounds and a fluid intermediate of the plates whose conductivity varies with spring pressure.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a top plan view of a skeletal muscle coordinator, brain motor area stimulator, diagnostic simulator and therapy apparatus of the present invention in one form;
FIG. 2 is a side elevational view of the apparatus of FIG. 1;
FIG. 3 is a front elevational view of the apparatus shown in FIGS. 1 and 2;
FIG. 4 is a sectional view of a portion of the appara tus taken about lines 4-4 of FIG. 2 showing the pressure transducer;
FIG. 5 is a elevational view of the apparatus shown in FIG. 1 from the opposite side to that of FIG. 2;
FIG. 6 is a modified version of the apparatus shown in FIG. 1 incorporating a drive motor allowing the apparatus to be used for therapy;
FIG. 7 is a rear elevational view of a portion of the apparatus shown in FIG. 6 taken about line 7--7;
FIG. 8 is an electrical schematic diagram of a portion of the apparatus including the recorder and print-out device for graphically displaying the electrical signals emanating from the transducers;
FIG. 9 is a graphical plot of cyclicly recorded information from the apparatus of Figure, and
FIG. 10 is a sectional view of a modified form of pedal assembly for use with the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS cycle which includes a stationary frame 12 which may be of tubular construction including vertical risers 14 l at the rear and a single vertical riser l6 at the front of the device which supports a horizontal support 18, carrying-at its rear end, a seat 20 upon which the occupant sits during operation of the device either in a motor driven form or in human driven form under some load. In conventional fashion, a pair of arms 22 and 24 support a hand-operatedp'edal assembly 26 having righthand handle 28 and left-hand handle 30 which extend from each other and are fixed to a common horizontal shaft 32. A multiple unit sprocket assembly 34 carries sprocket chain 36 which passes over multiple idler sprockets 38 to the reversely oriented variable diameter multiple unit of foot sprocket assembly 40 carried by foot pedal assembly 42 at the outer end of the lower arm 24. A right foot pedal-46 again is disposed on the foot pedal shaft 48 180 and on the opposite side from left foot pedal 50. The sprocket chain 36 may be readily changed from the small to the large diameter sprockets as desired. The load on the sprocket chain 36 is increased or decreased by increasing the tension of springs 52, in combination with adjustment of the compressive pressure exerted upon the rotatable sprockets 38 which form a part of the pressure transducer assembly indicated generally at 54 and shown specifically in FIG. 4. The upper ends of springs 52 are fixed while the lower ends are movable through the common connection 56 and the tension cord 60 carried by drum 62 whose position may be readily adjusted by operating handle 64. These elements are supported by brackets 66 and a pawl and ratchet mechanism 68 locks the tensioning cord 60 in any desired position either increasing or decreasing the spring tension of springs 52. Members 22 and 24 which support the individual sprockets 38 are therefore moved relative to each other about the pivot point formed by shaft 70 to vary the load or tension acting on the sprocket chain 36. Of course, this load-changing arrangement operates in conjunction with the pressure transducer assembly 54.
Reference to FIG. 4 shows that the multiple idler sprockets 38 carried by arms 22 and 24, respectively are coupled to mounting bolts 72 which pass through spaced plates 74 and 76 with interspersed coil spring 78 interspersed therebetween. Further, the plates 74 and 76 are centrally apertured and carry yet a third bolt 80 whose outer end supports a wing nut 82. Rotation of the wing nut 82 causes the coil springs 78 to be compressed exerting a greater compressive force between the sprocket member and support arms 22 and 24 which act as brakes or a drag on the moving chain 36 through respective sprockets thus increasing the load to both foot pedals 42 and hand'pedal 26. Further, the compressive force exerted between discs 84 and 86 of the pressure transducer is likewise varied to the same degree. The two discs 84 and 86 carry electrical contact surfaces (not shown) and interspersed between these contract surfaces is a fluid whose resistivity varies in inverse proportion to the compressive force acting thereupon. Thus, by rotating wing nut 82 to increase the compressive force acting between'discs 84 and 86, the resistance of the fluid captured between the conductive forces of these discs is decreased and thus the electrical current signal from the pressure transducer is increased. Appropriate leads 88 and 90 to the respective discs complete the electrical circuit. Thus, any time that the load on the exercise device is varied, the variance is achieved by increase in compressive force or decrease on the fluid captured between the opposed surfaces of discs 84 and 86 and a signal of appropriate intensity is directed from the pressure transducer 54 to the printout device which records the same. Likewise, as best seen in FIG. 8 a hand pedal transducer assembly 92 is associated with hand-operated pedal assembly 26 while a foot pedal transducer assembly 94 is associated with the foot pedal assembly 42, both assemblies being carried by respective pedal shafts 32 and 48. In this respect, each of the transducers 92 and 94 likewise comprise discs, in this case a rotatable disc 96 and a stationary disc 98 for the upper assembly and a non-rotatable disc,102 for the lower assembly. Each rotatable disc causes one energized contact while the fixed disc carries a plurality of circumferentially spaced contacts. For instance, referring to transducer assembly 92, rotating disc 96 carries a single contact 103 connected to bottom 101 and the fixed disc 98 carries circumferentially spaced contacts 104, which are connected to differently weighted resistors 106 all of which are connected to an impedance matcher 108 the output of which passes through line 110 and amplifier 112 to an appropriate recorder 114.
In like fashion, transducer assembly 94 includes circumferentially spaced fixed contacts 116 which are individually connected to differently weighted resistors 118 which are connected to impedance matcher 120. The output line 122 is connected to amplifier 124; the amplified signal energizing recorder 126. The individual fixed contacts 116 are carried by stationary disc 102 while a single rotary contact 127 which is connected to a source of voltage 129 is carried by the rotati'ng disc 100. The pressure transducer assembly 54 on the other hand incorporates discs 84 and 86. The variable resistance due to the compression on electrically conductive fluid (not shown) captured between the disc faces causes a signal indicative of load to be fed to impedance matcher 130, and then through amplifier 132 to recorder 134. It is noted that each of the recorders 114, 126 and 134 feeds appropriate electrical signals to the printer 136 which provides a printout of the recorded information. The printout device 136 may comprise a graph printer, in which case a typical printout consists of graph forms having various configurations depending upon the rate of rotation of the hand and foot pedals, the rhythm or lack of rhythm consistency in rotative speed, the lack or presence of momentary pauses within the cyclic movement of the foot and hand pedals.
Referring to FIG. 9, there is shown a graph of the transducer output signal indicated by graph lines A, B and C. In this respect, the straight line A indicates a 40 pound pressure output from the pressure transducer 54 throughout the time period from zero to T Simultaneously therewith, the printer 136 provides a graphic illustration of the transducer signals from left hand transducer output as indicated in plot B which constitutes a stepped but uniform curve having steps in descending order due to the different weights given to resistances 106. With respect to graph line C the first series of steps are uniform, while the central portion 138 of the graph is a straight line indicating an absence of left hand contribution to the work derived from rotating the hand operated pedal for a period of time from T to T Subsequently, from T to T the left hand pedal is operated by the patient as indicated by the uniform stepped appearance of the graph line C from T to T,. This indicates that the right control motor area of the brain of the patient or operator is deficient and the extent of such deficiency. Thus, by viewing the graph provided as the ultimate output from printer 136, ready designation from the hand positions are shown and the plot lines on the graphs show what area of the brain motor is involved in any instance and which movement shows the greatest abnormal pattern. It is thus relatively easy to locate the brain lesion or deficit.
The printer will provide continuous patterns, with cycles in the hundreds, however, the physician may be readily aware of the non-functioning area or areas of the brain which insures maximum accuracy in his recommendation as to treatment, either actively or passively. Further, the rate in rhythm and coordination and/or non-coordination between the movements and change in relationship to the change in cogs on the two sprockets will afl'ect the recorded wave pattern. However, by a graphical record of these movements, the rate in rhythm change may be readily measured for the first time in an accurate manner and something can be done positively with respect to the deficiency in that portion of the motor area of the brain which corresponds to the non-contributive portions of the cycle.
Further, it is possible, by incorporating in the specific handles or pedals 28, 30, 46 and 50, a pressure trans ducer similar to that of FIG. 5 in which the active pressure exerted by the patient on the handle and against the shaft holding the handle may be meassured by means of a compressive fluid captured threrebetween whose resistance changes with pressure. At all times, regardless of cyclic position of the individual handles or pedals of each pedal assembly, one would readily know, by transmission and recording of signals, applied pressure for each limit, such as the pressure indicative signal or graph line A in FIG. 12. There would be re corded the contribution of each limb of the operator over a full 360 rotation of each pedal assembly. Thus, not only would there be recorded signals indicative of actual rotation of the handle but the amount of pressure or lack of pressure exerted by the operator during rotation of the same.
FIG. shows schematically a typical modified pedal assembly, which could be substituted for the upper pedal assembly 26 in the embodiment of FIGS. 1 and 2. Referring to FIG. 13, the pedal shaft 132 carries a sprocket assembly 134 and on each end L-shaped pedal support means 136 and 138 for left and right-hand pedals, respectively. The left-hand pedal support shaft 140 carries a bronze cylinder 142 as the handle of the pedal assembly which is inserted upon, and received by cylindrical rod 144 also formed of a conductive material. Interposed therebetween, is a transducer mixture 146 which constitutes a fluid whose electrical resistance varies with pressure such thatby grasping the outer bronze cylinder 142 and exerting some force while rorating the pedal assembly, the resistance offered by the transducer mixture 146 decreases under applied pressure, lowering the electrical resistance and increasing the current flowing between these members. The same arrangement is provided for the right hand pedal or handle involving an outer brass cylinder 148, an inner broze cylindrical member 150 fixed to pedal shaft 152 and an interspersed transducer mixture 154. A signal may be delivered as indicated in FIG 10 from the outer cylinder 148constituting the handle via line 156 to the preamplifier 158 and to the recorder 160, and graphical pointer 162 for right hand pedal assembly and the same means coupled to left hand assembly (not shown).
From the above, it is seen that the instant invention as applied in its most sphisticated form, acts to measure accurately the workload. It also measures and accurately records the location of the hand and feet positions atall times during the performance of the work and further readily measures the transducer pressure for each limb, that is, all four hands and feet simultaneously to indicate for each moment, the relative participation inthe performance of the work by the individual. From the above, it is therefore apparent that if the central brain motor center is weak for one extremity there will be a recorded difference in the relationship as to the rhythm, speed and coordination which is readily sshown by graph comparison. Further, after prolonged exercise, the variants in the graph for the cy-' cles may readily indicate the imrpovements of a handicapped person and the closeness with which he may come to a normal physiological standard in regard to both motor coordination and adaptive behavior.
It further may be observed that the variables of brain response for different persons may be readily measured and ascertainable graphically by the knowledge of the pressure being applied to each of the four pedals at all times, the location of the upper and lower pedals at any instant of time and for a given time: period, and the rate and number of turns of the pedal. As a result of study, most persons considered normal have 2 sets of uncoordinated upper and lower extremities arythamies and mentally retarded children have six to 14 lags per some complete rotations of the upper sprocket measurement, for instance. During actual use of the device, regardless of the number of changes from rhythm to nonrhythm coordination, the first several days of exercise the same graphic pattern persists. However, upon further exercise, the patterns are less severe and in actuality thereapy is occuring. Since all four pedals on the basic device are all coupled by a common sprocket and chain arrangement, continuous movement of the pedal by either driven power, or under actual operation of one or more of the pedals at any given instant, causes due to continuous movement of the same individual bombarding of the weak motor area of the brain and if the area is completely gone the neutron bombardment will reroute around the damaged area in true therapeutic fashion. It is believed that if a person has a total paralysis of one member or perhaps two members continuous movement either by power driven techniques or by partial human propulsion such that, for instance, if all four limbs are paralyzed, attachment of the hands and the legs to the pedals and by operating the device with an electric motor, the motor-driven coordinator and uncoordinator pattern are continuously presented to the occupant until response is present al lowing the occupant to use his or her own power. Further, with a resistant clutch, a precise working load may be applied to a non-functioning area to speed up the recovery of the correction of the deficit area.
Reference to FIGS. 6 and 7 discloses a modification of the apparatus shown in FIGSfl through 5, inclusive. In this embodiment the same basic elements are presented and like numerals define like elements. In addition, however, there is provided an auxiliary sprocket 200 on which rides an auxiliary chain 202, the outer end of which is carried by a much smaller sprocket 204 coupled to a drive motor shaft 206. Fixed to arm 28 is an electric motor 208 and means are provided for energizing the motor 208 through leads 210 to cause the same to be driven thus rotatingauxiliary sprocket 200, the main foot pedal shaft 40 and driving the foot pedal assembly 42 which is coupled by chain 36 to the handdriven pedal assembly 26 at the outer end of arm 22. Thus forced therapeutic exercise is achieved.
I claim:
1. Apparatus to measure human motor coordination comprising:
a cyclic, limb-drivable mechanism comprising a stationary, modified bicycle including a rotatable foot pedal assembly and a rotatable hand-operated pedal assembly;
sprocket means carried by each of said pedal assemblies;
an endless chain coupling said sprocket means;
idler sprockets operatively coupled to said chain intermediate of said hand and foot pedal assemblies;
means for varying the frictional restraint on said idler sprockets to provide a variable load force;
first transducer means providing electrical signals indicative of instanteneous positions of said cyclically drivable mechanism; means coupled to said first transducer means to record said signals sequentially to thereby provide a complete record of limb participation at various stages of each cyclic movement of said mechanism;
second transducer means operatively associated with said limb-drivable mechanism for providing instantaneous electrical signals indicative of pressure applied to said pedals during cyclic operation of said limb-drivable mechanism; and
means coupled to said second transducer means to record said signals to thereby provide a record of limb participation at various stages of each cyclic movement of said mechanism.
2. The apparatus as claimed in claim 1 wherein: said first transducer means are associated with each of said pedal assemblies for inciating independently, the instantaneous angular position of respective pedals.
3. The apparatus as claim in claim 2 wherein: said first transducer means comprises a pair of discs, one of said discs being fixed, the other of said discs being rotatable, said rotatable disc carries a single contact, said fixed disc carries a plurality of circumferentially spaced contacts positioned in the path of said rotating contact; and said apparatus further includes means energizing said single contact of said rotatable disc, differentially weighted resistors, means connecting said fixed disc contacts respectively to individual,differentially weighted resistors; amplifier means for amplifying the signals from said contacts through said individual resistors; and recording means for recording each of said signals whereby the angular movement of said individual pedal assemblies at cyclic positions during exercise may be visually ascertained.
4. The apparatus as claimed in claim 3 wherein: said second transducing means includes a pressure transducer associated with each right and left pedal for indicating the pressure being applied to the respective pedal assembly components by individual limbs during rotation thereof.

Claims (4)

1. Apparatus to measure human motor coordination comprising: a cyclic, limb-drivable mechanism comprising a stationary, modified bicycle including a rotatable foot pedal assembly and a rotatable hand-operated pedal assembly; sprocket means carried by each of said pedal assemblies; an endless chain coupling said sprocket means; idler sprockets operatively coupled to said chain intermediate of said hand and foot pedal assemblies; means for varying the frictional restraint on said idler sprockets to provide a variable load force; first transducer means providing electrical signals indicative of instanteneous positions of said cyclically drivable mechanism; means coupled to said first transducer means to record said signals sequentially to thereby provide a complete record of limb participation at various stages of each cyclic movement of said mechanism; second transducer means operatively associated with said limbdrivable mechanism for providing instantaneous electrical signals indicative of pressure applied to said pedals during cyclic operation of said limb-drivable mechanism; and means coupled to said second transducer means to record said signals to thereby provide a record of limb participation at various stages of each cyclic movement of said mechanism.
2. The apparatus as claimed in claim 1 wherein: said first transducer means are associated with each of said pedal assemblies for inciating independently, the instantaneous angular position of respective pedals.
3. The apparatus as claim in claim 2 wherein: said first transducer means comprises a pair of discs, one of said discs being fixed, the other of said discs being rotatable, said rotatable disc carries a single contact, said fixed disc carries a plurality of circumferentially spaced contacts positioned in the path of said rotating contact; and said apparatus further includes means energizing said single contact of said rotatable disc, differentially weighted resistors, means connecting said fixed disc contacts respectively to individual,differentially weighted resistors; amplifier means for amplifying the signals from said contacts through said individual resistors; and recording means for recording each of said signals whereby the angular movement of said individual pedal assemblies at cyclic positions during exercise may be visually ascertained.
4. The apparatus as claimed in claim 3 wherein: said second transducing means includes a pressure transducer associated with each right and left pedal for indicating the pressure being applied to the respective pedal assembly components by individual limbs during rotation thereof.
US00084143A 1969-05-21 1970-10-26 Human motor coordination measuring apparatus Expired - Lifetime US3745990A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US83254869A 1969-05-21 1969-05-21
US8414370A 1970-10-26 1970-10-26

Publications (1)

Publication Number Publication Date
US3745990A true US3745990A (en) 1973-07-17

Family

ID=26770650

Family Applications (1)

Application Number Title Priority Date Filing Date
US00084143A Expired - Lifetime US3745990A (en) 1969-05-21 1970-10-26 Human motor coordination measuring apparatus

Country Status (1)

Country Link
US (1) US3745990A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0057609A1 (en) * 1981-01-30 1982-08-11 Nautilus Sports/Medical Industries, Inc. Exercising apparatus
US4493485A (en) * 1981-01-30 1985-01-15 Nautilus Sports/Medical Industries, Inc. Exercising apparatus and method
US4501148A (en) * 1982-01-05 1985-02-26 Nicholas James A Manual muscle tester
US4657244A (en) * 1986-07-31 1987-04-14 Ross Bicycles, Inc. Exercise bicycle
WO1989010165A1 (en) * 1988-04-23 1989-11-02 Stel Frans V D Device for measuring and evaluating a cyclist's ergometric data
US5071117A (en) * 1989-06-15 1991-12-10 Propel Partnership 1987 Electric exercise appliance
US5129872A (en) * 1991-03-15 1992-07-14 Precor Incorporated Exercise apparatus
US5318490A (en) * 1991-03-15 1994-06-07 Precor Incorporated Exercise apparatus
US6406421B1 (en) 1998-09-08 2002-06-18 Medtronic, Inc. System and method of determining skeletal muscle contraction by serial lead impedance measurements
US6692449B1 (en) * 2000-12-15 2004-02-17 Northwestern University Methods and system for assessing limb position sense during movement
US20070299371A1 (en) * 2004-02-05 2007-12-27 Omer Einav Methods and Apparatus for Rehabilitation and Training
US20080161733A1 (en) * 2004-02-05 2008-07-03 Motorika Limited Methods and Apparatuses for Rehabilitation and Training
US20080234113A1 (en) * 2004-02-05 2008-09-25 Motorika, Inc. Gait Rehabilitation Methods and Apparatuses
US20080234781A1 (en) * 2004-02-05 2008-09-25 Motorika, Inc. Neuromuscular Stimulation
US20080242521A1 (en) * 2004-02-05 2008-10-02 Motorika, Inc. Methods and Apparatuses for Rehabilitation Exercise and Training
US20090221928A1 (en) * 2004-08-25 2009-09-03 Motorika Limited Motor training with brain plasticity
US20100273618A1 (en) * 2007-12-25 2010-10-28 Takahisa Ozawa Exercise assisting device
US9050498B2 (en) 2013-03-04 2015-06-09 Brunswick Corporation Exercise assemblies having foot pedal members that are movable along user defined paths
US9114275B2 (en) 2013-03-04 2015-08-25 Brunswick Corporation Exercise assemblies having crank members with limited rotation
US9138614B2 (en) 2013-03-04 2015-09-22 Brunswick Corporation Exercise assemblies having linear motion synchronizing mechanism
US9610475B1 (en) 2014-11-11 2017-04-04 Brunswick Corporation Linear motion synchronizing mechanism and exercise assemblies having linear motion synchronizing mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR842719A (en) * 1938-02-23 1939-06-19 Training for ergographers
DE1008973B (en) * 1953-04-09 1957-05-23 Metallwerk Karl Leibfried K G Regulating valve with non-rising spindle and presetting
US3216722A (en) * 1963-01-09 1965-11-09 Earl R Odom Exercise machine
US3589193A (en) * 1969-07-24 1971-06-29 William E Thornton Ergometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR842719A (en) * 1938-02-23 1939-06-19 Training for ergographers
DE1008973B (en) * 1953-04-09 1957-05-23 Metallwerk Karl Leibfried K G Regulating valve with non-rising spindle and presetting
US3216722A (en) * 1963-01-09 1965-11-09 Earl R Odom Exercise machine
US3589193A (en) * 1969-07-24 1971-06-29 William E Thornton Ergometer

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0057609A1 (en) * 1981-01-30 1982-08-11 Nautilus Sports/Medical Industries, Inc. Exercising apparatus
US4493485A (en) * 1981-01-30 1985-01-15 Nautilus Sports/Medical Industries, Inc. Exercising apparatus and method
US4501148A (en) * 1982-01-05 1985-02-26 Nicholas James A Manual muscle tester
US4657244A (en) * 1986-07-31 1987-04-14 Ross Bicycles, Inc. Exercise bicycle
WO1989010165A1 (en) * 1988-04-23 1989-11-02 Stel Frans V D Device for measuring and evaluating a cyclist's ergometric data
US5071117A (en) * 1989-06-15 1991-12-10 Propel Partnership 1987 Electric exercise appliance
US5129872A (en) * 1991-03-15 1992-07-14 Precor Incorporated Exercise apparatus
US5318490A (en) * 1991-03-15 1994-06-07 Precor Incorporated Exercise apparatus
US6406421B1 (en) 1998-09-08 2002-06-18 Medtronic, Inc. System and method of determining skeletal muscle contraction by serial lead impedance measurements
US6692449B1 (en) * 2000-12-15 2004-02-17 Northwestern University Methods and system for assessing limb position sense during movement
US20070299371A1 (en) * 2004-02-05 2007-12-27 Omer Einav Methods and Apparatus for Rehabilitation and Training
US20080004550A1 (en) * 2004-02-05 2008-01-03 Motorika, Inc. Methods and Apparatus for Rehabilitation and Training
US20080161733A1 (en) * 2004-02-05 2008-07-03 Motorika Limited Methods and Apparatuses for Rehabilitation and Training
US20080234113A1 (en) * 2004-02-05 2008-09-25 Motorika, Inc. Gait Rehabilitation Methods and Apparatuses
US20080234781A1 (en) * 2004-02-05 2008-09-25 Motorika, Inc. Neuromuscular Stimulation
US20080242521A1 (en) * 2004-02-05 2008-10-02 Motorika, Inc. Methods and Apparatuses for Rehabilitation Exercise and Training
US8915871B2 (en) * 2004-02-05 2014-12-23 Motorika Limited Methods and apparatuses for rehabilitation exercise and training
US10039682B2 (en) 2004-02-05 2018-08-07 Motorika Limited Methods and apparatus for rehabilitation and training
US9238137B2 (en) 2004-02-05 2016-01-19 Motorika Limited Neuromuscular stimulation
US8177732B2 (en) 2004-02-05 2012-05-15 Motorika Limited Methods and apparatuses for rehabilitation and training
US8545420B2 (en) 2004-02-05 2013-10-01 Motorika Limited Methods and apparatus for rehabilitation and training
US8753296B2 (en) 2004-02-05 2014-06-17 Motorika Limited Methods and apparatus for rehabilitation and training
US8888723B2 (en) 2004-02-05 2014-11-18 Motorika Limited Gait rehabilitation methods and apparatuses
US20090221928A1 (en) * 2004-08-25 2009-09-03 Motorika Limited Motor training with brain plasticity
US8938289B2 (en) 2004-08-25 2015-01-20 Motorika Limited Motor training with brain plasticity
US8083650B2 (en) * 2007-12-25 2011-12-27 Panasonic Electric Works Co., Ltd. Exercise assisting device
US20100273618A1 (en) * 2007-12-25 2010-10-28 Takahisa Ozawa Exercise assisting device
US9050498B2 (en) 2013-03-04 2015-06-09 Brunswick Corporation Exercise assemblies having foot pedal members that are movable along user defined paths
US9114275B2 (en) 2013-03-04 2015-08-25 Brunswick Corporation Exercise assemblies having crank members with limited rotation
US9138614B2 (en) 2013-03-04 2015-09-22 Brunswick Corporation Exercise assemblies having linear motion synchronizing mechanism
US9283425B2 (en) 2013-03-04 2016-03-15 Brunswick Corporation Exercise assemblies having foot pedal members that are movable along user defined paths
US9610475B1 (en) 2014-11-11 2017-04-04 Brunswick Corporation Linear motion synchronizing mechanism and exercise assemblies having linear motion synchronizing mechanism

Similar Documents

Publication Publication Date Title
US3745990A (en) Human motor coordination measuring apparatus
US3572699A (en) Bicycle exerciser with interconnected hand and foot pedals
US4934692A (en) Exercise apparatus providing resistance variable during operation
DE112015000486B4 (en) Instrumented full-body reclining cross trainer system
CA1329227C (en) Upper and lower body exerciser
US4493485A (en) Exercising apparatus and method
US3831942A (en) Portable exercise machine
US5271416A (en) Exercise platform for physiological testing
Enoka Neural adaptations with chronic physical activity
Caggiano et al. Effects of electrical stimulation or voluntary contraction for strengthening the quadriceps femoris muscles in an aged male population
US3497215A (en) Exercise escalator
McCartney et al. A constant-velocity cycle ergometer for the study of dynamic muscle function
US5114391A (en) Upper and lower body exerciser
US6648838B1 (en) Postural awareness apparatus
US20130310716A1 (en) Systems and methods for improving motor function with assisted exercise
Duncan et al. Electromyographic analysis of postural adjustments in two methods of balance testing
Grohler et al. Test bed with force-measuring crank for static and dynamic investigations on cycling by means of functional electrical stimulation
EP0057609B1 (en) Exercising apparatus
JPWO2015190605A1 (en) Paralysis function recovery training device and paralysis function recovery training method
GB2094647A (en) Physical exercise device
US4809696A (en) Functional electrical stimulation synchronizer switch
Sedlock et al. The effects of arm crank training on the physiological responses to silbmaximal wheelchair ergometry
DE2838854C2 (en) Electronic ergometer
Burkett et al. Construction and validation of a hysteresis brake wheelchair ergometer
JP2006280398A (en) Foot-driven type wheelchair