Connect public, paid and private patent data with Google Patents Public Datasets

Power-operated hammer

Download PDF

Info

Publication number
US3734206A
US3734206A US3734206DA US3734206A US 3734206 A US3734206 A US 3734206A US 3734206D A US3734206D A US 3734206DA US 3734206 A US3734206 A US 3734206A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
piston
space
casing
hammer
portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
A Last
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSP INTERNATIONAL FOUNDATIONS Ltd
Original Assignee
BSP INTERNATIONAL FOUNDATIONS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C1/00Crushing or disintegrating by reciprocating members
    • B02C1/14Stamping mills
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/02Placing by driving
    • E02D7/06Power-driven drivers
    • E02D7/12Drivers with explosion chambers
    • E02D7/125Diesel drivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines

Abstract

A power-operated hammer has a fluid-pressure piston and cylinder arrangement for generating the working impulses. The top of the piston fits an upper part of the cylinder to seal off a space such that the volume of the sealed space increases as the piston makes a return movement and a partial vacuum is created so that the resultant air pressure acting on the piston accelerates the reversal of its movement and increases the cycle frequency.

Description

O United States Patent [191 [111 3,734,206 Last [4 1 May 22, 1973 541 POWER-OPERATED HAMMER [56] References Cited [75] Inventor: Anthony Edward Walter Last, Stow- UNITED STATES PATENTS market, England 2,230,181 1 1941 C d t l. ..l23 46 [73] Assignee: The British Steel Piling Company I or es 8 a Limited Ipswlch Suffolk England Primary Examiner-Ernest R. Purser [22] Filed: Apr. 29, 1971 Attorney-Larson, Taylor & Hinds 21 A 1. No.: 138439 1 pp 57 ABSTRACT A power-operated hammer has a fluid-pressure piston [30] Foreign Application Priority Data and cylinder arrangement for generating the working May 4, 1970 Great Britain ..21,277/70 us. Cl .113/137, 123/46 Int. Cl. ..E02d 7/12 Field ofSearch ..l73/l34137, 119-121;

12 Claims, 3 Drawing Figures POWER-OPERATED HAMMER This invention relates to power-operated hammers, for example for rock-breaking and for pile driving.

In order to increase the rate of working in conventional hammers, it is known to provide a resilient return arrangement provided to act upon the reciprocating tool member to accelerate its return movement after a working stroke producing the hammer impact. Thus, in previous designs of diesel-powered hammers, the diesel piston has had its upper end moving in a closed cylinder that thereby acts as an air spring when the air within it is compressed with the upward movement of the piston.

Although such an accelerated return of the piston can produce a marked increase in the cycle frequency it is possible, and is especially apparent in general in diesel-powered hammers, that reaction forces of the resilient return means tend to lift the hammer, which is to be avoided, and when the hammer is arranged to act downwardly, as in a pile driver, it is usually necessary to make the cylinder construction relatively massive in order to prevent this from occurring.

According to the present invention, in a poweroperated hammer comprising a piston reciprocable to produce a series of working impacts, the piston projects into an enclosure that forms, with the surface of a part of the piston, a sealed space the volume of which increases with the return movement of the piston from a working impact, the arrangement being such that a suction force is developed that acts upon the said part of the piston surface in the opposite direction to said return movement.

It is found that, by using such an arrangement, the peak pressure force acting to accelerate the return motion of the piston is significantly reduced, since it is limited by the value of atmospheric pressure if the space beyond the piston is freely open to atmosphere, and in a hammer arranged for downwards driving the tendency to lift the hammer cylinder is correspondingly reduced. At the same time, the suction force is built up relatively quickly as the piston rises so that despite the reduction in peak force a similar increase of cycle frequency can be achieved as when using a compression air spring.

Preferably the piston is mounted in a casing comprising a first portion providing a space for pressure fluid to generate the working impacts, and a second portion in which said enclosed space is formed. Conveniently said first and second casing portions have different diameters, the piston being a unitary member having different diameter portions closely fitting the respective casing portions, when it can be arranged that the smaller diameter portions of the casing and piston cooperate to provide said working fluid space and the piston smaller diameter portion projects into the casing larger diameter portion whereby said sealed space is formed in an annular region therebetween and is closed by the piston larger diameter portion.

Advantageously, means are provided to open the sealed space to atmosphere at or near the beginning of said return movement of the piston, or relief valve means are provided to limit the pressure in said sealed space. Such a provision can prevent the generation of any significant positive gauge pressure in that space as the piston reaches the bottom of its stroke if there has been any leakage into the space while the piston was in a higher position and while a negative gauge pressure prevailed in the space.

By way of example only, a diesel-powered hammer according to the invention will now be described in greater detail with reference to the accompanying drawings of which:

FIG. 1 is a side view, in vertical section, of the lower region of the hammer, and

FIGS. 2 and 3 are side views, in vertical section of two alternative arrangements of the upper region of the hammer of FIG. 1.

Referring to the drawings, the hammer casing comprises a lower, cylindrical portion 2 and an upper, larger diameter cylindrical portion 4 secured to it. Slidably mounted in the lower end of the portion 4 and sealing that end is an anvil block 6. A piston 8 is reciprocable within the casing from a lowermost position illustrated in FIG. 1 by a compression ignition cycle being operated in the combustion space between the bottom of the piston and the casing portion 2. The piston 8, which may be of cast iron, has an integrally formed impact stem 10 slidable in and sealing with the portion 2 of casing, and an enlarged diameter head 12 located in. and sealing with the portion 4 of the casing. Secured to the lower end of the hammer casing are pile grips 14, to attach a pile P and hammer together with a pile dolly 16 sandwiched between the anvil block 6 and the pile.

The upper face of the anvil block 6 and the lower face of the piston stem 10 have opposed central cavities 18 while the outer region of these faces have complementary profiles sloping downwards towards the central cavities. Fuel is injected from a pump in a casing 20 on to the anvil sloping face, the fuel following the trajectory 22. The supply to the pump is from a fuel tank 24 on the upper portion 4 of the casing.

The fuel pump is operated with the reciprocation of the piston 8 by a cam 26 having spaced pivot connections to the casing lower portion and to rod 28 carrying a piston of the pump. The cam is spring-loaded to project through a slot 30 in the casing wall and bear against the piston stem 10. As the piston stem rises clear the slot, the cam moves inwards to draw fuel into the pump and when the piston stem next descends, it strikes the curved face of the cam and so displaces the rod 28 to inject thefuel through the line 22 into the combustion space. The injection is at low pressure since at this stage exhaust ports 34 (only one of which is shown) are not yet covered by the piston stem 10.

The piston head 12 forms, with a. spring sealing ring 36 located at the junction between the upper and lower casing portions, an enclosed space 38 that is joined to the space above the piston, when the piston is in its lowermost position, by a channel 40, the function of which will be described below.

, The top end of the casing portion 4 is open to atmosphere. Each time the piston 8 rises after ignition of fuel injected with the casing below it, the space 38 is sealed off once the piston head 12 has covered the upper end of the channel 40, and further upwards movement of the piston then increases the volume of the space 38 below the piston, with a consequent reduction in pressure within this space. Hence, as a result of the fact that the space is substantially sealed from its surroundings during at least a major portion of its increase in volume, a suction effect is set up on the base of the piston head 12 which tends to reduce the rise in the piston, the suction force increasing as the volume of the space 38 increases with the rise of the piston. The maximum suction pressure is of course dictated by atmospheric pressure so that the maximum reactive force lifting the casing is always less than that due to atmospheric pressure on the flange 2a of the portion 2 of the casing below the sealing ring.

Once the piston begins its downwards compression stroke the gravitational force on the ram is supplemented by the downward suction force in the increased volume of the space 38, and the ram is accordingly accelerated by both forces, the latter force decreasing with decrease in volume of the space 38.

Since there can be expected to be some leakage of air into the space 38 while it is held at a negative gauge pressure, the pressure in the space would, without the channel 40, exceed atmospheric by a small amount at the end of he downward stroke. By interconnecting the space 38 through the channel 40 with the open upper end of the casing as the piston nears the bottom of its stroke, it is possible to ensure that this pressure is never in fact greater than atmospheric. An alternative way of achieving this effect would be to connect the bottom of the space 38 directly to atmosphere through a nonreturn relief valve (as indicated at 42 in FIG. 3) arranged to open when the internal pressure exceeds atmospheric.

In order to start the operation of the hammer, in the arrangement illustrated in FIG. 2, the piston 8 has a central cylindrical bore 44 into which projects a rod 46 carrying a terminal enlargement 48. The rod 46 extends the length of the portion 4 of the casing and has attached to its other end a suspension eye 50. The upper end of the bore 2 has a tubular plug 52 of diameter less than that of the enlargement 48 so that an abutment surface is presented to the enlargement when the rod 46 is raised and the piston 8 can thus be lifted to an uppermost position and then allowed to drop to start operation of the hammer.

An alternative starting arrangement shown in FIG. 3 employs a similar piston with a plug 52 secured to the upper end of its bore. A tube 54 is fixed to the top of the casing in this case and is a free sliding fit in the plug 52. A rod 56 with a suspension eye 58 attached to its upper end has an engagement linkage at its lower end comprising an abutment member 60 pivoted to the rod and joined to a hook member 62 by a pivot link 64. Both the abutment and hook members project through an elongate slot 66 in the tube 54. When the rod is lifted by the suspension eye, the member 60 engages the plug and the piston is then drawn up with the rod. The width of the slot is reduced in its upper region and the hook member 62 is made rather wider than the abutment member 60 so that as it reaches this region it is restrained and is pivoted inwards, the connecting link 64 being drawn downwards thereby to pivot the engagement member inwards also. As a result, the piston plug is no longer held by the engagement element and the piston is allowed to fall. The mechanism is reset to the illustrated position by lowering the rod 56 until the hook member 62 abuts pin 68, the weight of the rod then urging the engagement and hook members outwards and swinging the link 64 back past its overcenter position.

This alternative arrangement has the advantage that it is not necessary to lift the piston with a winch that has a free-fall pay-out mechanism since the rod 56 need not fall with the piston.

In order to lubricate the hammer, the casing containing the fuel pump has a separate cylinder space for the pumping of lubricating fluid, this flow being actuated by a further shoulder or piston head on the same piston rod 28. From the lubricating pump oil is directed, firstly, into the upper casing portion 4 for lubrication of the rings of the piston head 12, secondly into the lower casing portion 2 for lubrication of the rings of the piston stem 10, and thirdly to the outer circumference of the anvil block 6 for lubrication of this block in its sliding contact with the casing.

While only a diesel-powered hammer has been illustrated in the foregoing description it will be understood that the invention can be applied to hammers having other driving means, for example, compressed air, in an entirely analogous manner and no further description is therefore necessary. It will also be apparent that the invention can be applied to hammers arranged for operations other than pile-driving, as for example rock breaking.

What we claim and desire to secure by Letters Patent l. A power-operated hammer comprising, in combination, a casing, a piston reciprocable in the casing to produce a series of working impacts, an enclosure formed between the casing and a projecting part of the piston, said enclosure being partly bounded by the surface of a part of the piston to define an enclosed space the volume of which increases with the return movement of the piston from a working impact, the enclosed space being substantially sealed from its surroundings during at least a major portion of its increase in volume such that a suction force is developed during such portion of its increase in volume that acts upon the said part of the piston surface in the opposite direction to said return movement.

2. A hammer according to claim 1 wherein means are provided to open the enclosed space to atmosphere at or near the beginning of said return movement of the piston.

3. A hammer according to claim 1 wherein relief valve means are provided to limit the pressure in said enclosed space.

4. A hammer according to claim 1 wherein the casing comprises a first portion providing a space for pressure fluid to generate the working impacts, and a second portion in which said enclosed space is formed.

5. A hammer according to claim 4 wherein said first and second casing portions have different diameters, different diameter portions of a unitary piston closely fitting the respective casing portions.

6. A hammer according to claim 5 wherein the smaller diameter portions of the casing and piston cooperate to provide said working fluid space and the piston smaller diameter portion projects into the casing larger diameter portion whereby said enclosed space is formed in an annular region therebetween and is closed by the piston larger diameter portion.

7. A hammer according to claim 6 further comprising means in said second casing portion arranged to bring the regions on opposite sides of the larger diameter piston portion in communication with each other at or near the beginning of said return movement of the piston.

8. A hammer according to claim 1 arranged for diesel operation, a working fluid space between the casing and the piston forming a combustion chamber and being disposed in a lower region of the hammer, a member underneath the hammer being arranged to receive the working impacts.

9. A hammer according to claim 8 wherein a hollow core is provided in the piston, lifting means being in sertable into said hollow core to engage and lift the piston for starting operation of the hammer.

10. A hammer according to claim 9 wherein the lifting means comprises a suspended engagement element, a restriction at the upper end of said core being engageable with said element to allow the piston to be lifted therewith.

11. A hammer according to claim 10 wherein means are provided to retract said engagement element at a predetermined raised position of the piston to release the piston and allow it to fall.

12. A diesel-powered hammer comprising, in combination, a casing having a cylindrical lower portion providing the combustion space and a larger cross-section upper portion, a piston reciprocable in the casing having a lower portion forming an upper boundary of the combustion space, an enlarged head of the piston sealingly fitting said casing upper portion and defining therewith an enclosed space, an underface of said pis ton head forming an upper boundary of said enclosed space, the volume of said enclosed space increasing with the increase of volume of the combustion space, the enclosed space being substantially sealed from its surroundings during at least a major portion of its increase in volume such that, as the piston rises in the casing, a suction force is developed acting on said underface to accelerate the return of the piston in a downwards working stroke.

Claims (12)

1. A power-operated hammer comprising, in combination, a casing, a piston reciprocable in the casing to produce a series of working impacts, an enclosure formed between the casing and a projecting part of the piston, said enclosure being partly bounded by the surface of a part of the piston to define an enclosed space the volume of which increases with the return movement of the piston from a working impact, the enclosed space being substantially sealed from its surroundings during at least a major portion of its increase in volume such that a suction force is developed during such portion of its increase in volume that acts upon the said part of the piston surface in the opposite direction to said return movement.
2. A hammer according to claim 1 wherein means are provided to open the enclosed space to atmosphere at or near the beginning of said return movement of the piston.
3. A hammer according to claim 1 wherein relief valve means are provided to limit the pressure in said enclosed space.
4. A hammer according to claim 1 wherein the casing comprises a first portion providing a space for pressure fluid to generate the working impacts, and a second portion in which said enclosed space is formed.
5. A hammer according to claim 4 wherein said first and second casing portions have different diameters, different diameter portions of a unitary piston closely fitting the respective casing portions.
6. A hammer according to claim 5 wherein the smaller diameter portions of the casing and piston co-operate to provide said working fluid space and the piston smaller diameter portion projects into the casing larger diameter portion whereby said enclosed space is formed in an annular region therebetween and is closed by the piston larger diameter portion.
7. A hammer according to claim 6 further comprising means in said second casing portion arranged to bring the regions on opposite sides of the larger diameter piston portion in communication with each other at or near the beginning of said return movement of the piston.
8. A hammer according to claim 1 arranged for diesel operation, a working fluid space between the casing and the piston forming a combustion chamber and being disposed in a lower region of the hammer, a member underneath the hammer being arranged to receive the working impacts.
9. A hammer according to claim 8 wherein a hollow core is provided in the piston, lifting means being insertable into said hollow core to engage and lift the piston for starting operation of the hammer.
10. A hammer according to claim 9 wherein the lifting means comprises a suspended engagement element, a restriction at the upper end of said core being engageable with said element to allow the piston to be lifted therewith.
11. A hammer according to claim 10 wherein means are provided to retract said engagement element at a predetermined raised position of the piston to release the piston and allow it to fall.
12. A diesel-powered hammer comprising, in combination, a casing having a cylindrical lower portion providing the combustion space and a larger cross-section upper portion, a piston reciprocable in the casing having a lower portion forming an upper boundary of the combustion space, an enlarged head of the piston sealingly fitting said casing upper portion and defining therewith an enclosed space, an underface of said piston head forming an upper boundary of said enclosed space, the volume of said enclosed space increasing with the increase of volume of the combustion space, the enclosed space being substantially sealed from its surroundings during at least a major portion of its increase in volume such that, as the piston rises In the casing, a suction force is developed acting on said underface to accelerate the return of the piston in a downwards working stroke.
US3734206A 1970-05-04 1971-04-29 Power-operated hammer Expired - Lifetime US3734206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2127770 1970-05-04

Publications (1)

Publication Number Publication Date
US3734206A true US3734206A (en) 1973-05-22

Family

ID=10160182

Family Applications (1)

Application Number Title Priority Date Filing Date
US3734206A Expired - Lifetime US3734206A (en) 1970-05-04 1971-04-29 Power-operated hammer

Country Status (8)

Country Link
US (1) US3734206A (en)
JP (1) JPS5211129B1 (en)
BE (1) BE766634A (en)
CA (1) CA932223A (en)
DE (1) DE2121504C3 (en)
FR (1) FR2091176A5 (en)
GB (1) GB1340708A (en)
NL (1) NL156212B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32452E (en) * 1981-01-22 1987-07-07 Signode Corporation Portable gas-powered tool with linear motor
CN102872956A (en) * 2012-11-02 2013-01-16 马长生 Improved ore rock breaking hammer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE590777C (en) * 1931-11-18 1934-01-10 Boer G M B H De operated by a pressure medium gasfoermiges Schlagbaer for driving piles, sheet piles u. like.
DE649076C (en) * 1935-07-03 1937-11-27 Hugo Cordes Dipl Ing Starting device for Dieselrammbaeren
US2230181A (en) * 1937-02-02 1941-01-28 Cordes Hugo Starting device
DE725023C (en) * 1939-04-04 1942-09-11 Josef Wohlmeyer Dipl Ing Brennkraftschlaggeraet in the cylinder with oppositely arranged combustion chamber and rinsing or cargo pump room
DE730769C (en) * 1941-10-10 1943-01-18 Hugo Cordes Dipl Ing Dieselschlagbaer with differential piston
US2633832A (en) * 1949-07-22 1953-04-07 Syntron Co Diesel hammer
US3165885A (en) * 1959-02-04 1965-01-19 Tenney Engine
US3395688A (en) * 1966-04-14 1968-08-06 Skil Corp Gasoline powered hammer
DE1526346A1 (en) * 1966-05-17 1970-04-02 Delmag Maschinenfabrik Shock-generating Brennkraftgeraet
US3437157A (en) * 1966-12-02 1969-04-08 Fmc Corp Diesel pilehammer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32452E (en) * 1981-01-22 1987-07-07 Signode Corporation Portable gas-powered tool with linear motor
CN102872956A (en) * 2012-11-02 2013-01-16 马长生 Improved ore rock breaking hammer

Also Published As

Publication number Publication date Type
DE2121504C3 (en) 1983-11-10 grant
BE766634A (en) 1971-10-01 grant
DE2121504A1 (en) 1971-12-02 application
CA932223A1 (en) grant
BE766634A1 (en) grant
DE2121504B2 (en) 1978-11-02 application
NL7106094A (en) 1971-11-08 application
GB1340708A (en) 1973-12-12 application
FR2091176A5 (en) 1972-01-14 application
CA932223A (en) 1973-08-21 grant
JPS5211129B1 (en) 1977-03-29 grant
NL156212B (en) 1978-03-15 application

Similar Documents

Publication Publication Date Title
US3559751A (en) Percussion device
US3675714A (en) Retrievable density control valve
US4790390A (en) Valveless down-the-hole drill
US4367800A (en) Subsea pile driver
US4497376A (en) Interchangeable ram diesel pile
US4042311A (en) Pump fluid motor carrying spool valve for distributor valve actuation
US3892280A (en) Portable pneumatic impact tool
US3797585A (en) Apparatus for generating a pressure wave in an elongated body operatively connected to a drop hammer
US2366777A (en) Hydraulic lifting mechanism
US3827507A (en) Hydraulically powered demolition device
US5727639A (en) Pile driving hammer improvement
US3908767A (en) Percussion tool
US5431221A (en) Jar enhancer
US4450920A (en) Hydraulic reciprocating machines
US4552227A (en) Reciprocating linear fluid motor
US5984021A (en) Porting system for back chamber of pneumatic hammer
US5803182A (en) Bidirectional hydraulic jar
US3821992A (en) Impact device using a gas as its medium
US2432735A (en) Hydraulic pumping unit
US4013385A (en) Deep well pump system
US2287709A (en) Hydraulic well pumping mechanism
US1549175A (en) Double-acting hollow-plunger pump
US4477234A (en) Double acting engine and pump
US4932479A (en) Vacuum-compression type percussion power tool with a pumping chamber
US2755783A (en) Free piston internal combustion pile hammer

Legal Events

Date Code Title Description
AS Assignment

Owner name: BSP INTERNATIONAL FOUNDATIONS LIMITED

Free format text: CHANGE OF NAME;ASSIGNOR:BRITISH STEEL THE, PILING COMPANY LIMITED;REEL/FRAME:004478/0278

Effective date: 19710824