US3731680A - Pressure regulating controller - Google Patents

Pressure regulating controller Download PDF

Info

Publication number
US3731680A
US3731680A US00191307A US3731680DA US3731680A US 3731680 A US3731680 A US 3731680A US 00191307 A US00191307 A US 00191307A US 3731680D A US3731680D A US 3731680DA US 3731680 A US3731680 A US 3731680A
Authority
US
United States
Prior art keywords
pressure
debubbler
tubing
blood
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00191307A
Inventor
F Wright
T Hargest
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3731680A publication Critical patent/US3731680A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/03Heart-lung

Definitions

  • This invention relates to a pressure monitor and control device. More particularly, the present invention provides a pressure monitor and control device for use in a method for extra-corporeal hemodialysis for minimizing dangers of equipment malfunction as well as minimizing attention required by an operator of the system.
  • Devices are known to the art for effecting extra-corporeal hemodialysis. These devices are typically employed as a therapeutic measure when kidneys no longer perform their blood purifying function resulting in accumulation of toxic wastes in the blood.
  • blood is made to flow between semipermeable membranes which permit passage of toxic wastes into a circulating dialysis solution, while restricting passage of blood.
  • Toxic wastes in the blood notably urea, creatinine, uric acid, and other deleterious products move through the semipermeable membranes because of the difference in the concentration gradient between that present in the blood, and that of the dialysis fluid, the latter being essentially zero.
  • prior art dialyzers require constant atten tion for signs of blockage or restricted flow and do not provide means for regulating and monitoring these effects relative to the patient. Accordingly, the present invention provides means for positive monitor and control of pressure, with further means for activating an alarm system in the event pressure varies beyond a preestablished range.
  • the present device includes a pressure monitor means disposed relative to a debubbler in the blood return line of a dialysis machine. Pressure may be monitored from air vents of the debubbler, and by means which communicate this pressure monitor with an electro-mechanical clamp on the venous tube, control of blood circulation may be maintained.
  • the electro-mechanical clamp includes a reversible motor connected, if required, through a speed reduction unit for driving a movable anvil relative to venous tubing and a stationary anvil.
  • a decrease of pressure sensed by the pressure monitor means effects, through appropriate electrical circuity, a signal to drive the movable anvil against a venous tube in a tube closing direction.
  • a closing pressure or restriction in the tubing there results a counter increase in the pressure of the blood in the system.
  • the reverse sequence is effected when the pressure monitor means senses an increase in pressure of blood in the dialysis system with resulting opening of the restriction applied by the movable anvil onto the venous tubing.
  • the pressure monitor means and the associated electrical circuity causes an alarm to activate along with effecting disabling of the hemodialysis machine by the movable anvil and dialysis pump control means.
  • FIG. 1 illustrates in block diagram operation of the present invention
  • FIG. 2 illustrates in perspective view the present pressure monitor and control device in position on a venous tube
  • FIG. 3 illustrates diagrammatically the positioning and method of operation of the present device during extra-corporeal hemodialysis
  • FIG. 4 is a side elevational view of the electromechanical clamp of the present device taken in partial section;
  • FIG. 5 is a left side elevational view of the clamp of FIG. 4.
  • FIG. 6 is a right side elevational view of the clamp of FIG. 4.
  • FIG. 1 where the general sequence of operation of the present invention is illustrated, electrical power controlled by a switch is supplied to the unit.
  • tubing is positioned in the electro-mechanical clamp described in detail subsequently, and adjusted to obtain a desired pressure which is read from a gauge.
  • the unit after being connected to the dialysis machine is ready for operation.
  • the electronic amplifier responding to signals of pressure monitored by a transducer taken through a pressure set point relative to the venous tubing causes the electro-mechanical clamp to either tighten or release clamping relative to the venous tubing depending upon whether increase or decrease of pressure is desired. Should failure of the system result, a signal is provided from the transducer such as if pressure failure results causing an alarm to sound or other warning device to activate, as desired.
  • FIG. 2 illustrates the pressure monitor and control device of the present invention generally illustrated as portable unit 10 having control box 12, and electromechanical clamp 14 disposed about venous tubing 16. Operation of unit 10 in extra-corporeal hemodialysis is more particularly illustrated in FIG. 3.
  • patient 20 is prepared for extra-corporeal hemodialysis according to conventional practice.
  • the dialyzer is similarly prepared such as by effecting prior rinse, sterilization, testing and the like prior to actual operation.
  • hemodialysis begins.
  • Whole blood is received through tube 22 from the patient by conventional pump 24 suited for extra-corporeal dialysis such as a peristaltic or roller pump 26.
  • This blood proceeds through line 28 into conventional dialysis assembly 30.
  • dialysis fluid in line 27 is pumped into assembly 30 from which it is removed with waste substances through line 29.
  • the composition of dialysis fluid may be changed in accordance with the therapy required for a particular patient.
  • compositions of dialysis fluid are described in Hemo-dialysis for Chronic Renal Failure by Freeman, Maher & Schreiner in Annals of lntemal Medicine, Vol. 62, No. 3, March 1965.
  • a temperature control may be provided, as desired, with heating means to properly control and maintain the temperature of the dialysis fluid at a prescribed level.
  • dialysis assembly 30 As blood moves from the radial artery inlet tube 22, it proceeds to dialysis assembly 30 in between semipermeable layers where dialysis is effected and out by line 31 to debubbler 32 from line exit 34. From the debubbler, the blood proceeds through venous line 16 to the vein of patient 20 by outlet 37. Meanwhile, fresh dialysis solution under action of suitable pump means is drawn through line 27 and into interstitial compartments of dialysis assembly 30. Although fresh dialysis solution is indicated as passing through assembly 30 to outlet 29 in parallel flow to blood passing through the unit, it is recognized that other flow patterns including countercurrent flow may be used as desired.
  • Toxic wastes dialysates such as urea and the like proceed through line 29 for removal from the unit by conventional practice.
  • Electromechanical clamp 14 of device 10 is positioned on venous tubing 16, with electrical connection to pump 26 for control of the pumping action in the event of blockage or zero pressure in the assembly.
  • Pressure monitor and control device 10 further includes line 36 with associated pressure reading means attached to debubbler 32. Pressure of the debubbler is monitored by the reading means illustrated as a gauge and the signal therefrom is returned to device 10 for electrical interpretation. Electrical power is presented into device 10 by outlet 38.
  • Clamp 14 includes speed reducing gear unit 39 receiving drive from reversible motor 40.
  • Unit 39 is mounted onto end plate 41. End plate 41 is maintained in relative position from front plate 43 by spacers 42 and bolts 45.
  • positioning screw 44 is connected to enter advance or retract movable anvil 46 relative to a positionable anvil 48 normally fixed after initially set.
  • anvil 48 is considered as being fixed although it is recognized that relative movement thereof is possible using turnable hand set 50 within L-shaped support block 52.
  • block 47 which insures accurate movement of movable anvil 46, and venous tubing 16 disposed between movable anvil 46 and anvil 48.
  • electro-mechanical clamp 14 is positioned on venous tube 16 and anvil 48 is moved to establish a predetermined pressure by clamping against tube 16.
  • the moveable anvil 46 is then controlled by increasing or decreasing pressure of tubing 16. This pressure will be determined by the pressure monitored at debubbler 32. Should the pressure begin to fall within venous tubing 16, motor 40 will activate moving anvil 46 to restrict fluid passage within tubing 16 thereby resulting in an increase of pressure in the system. The converse also results should an increase in the pressure of the system be sensed through debubbler 32. In the event the pressure of the system drops to zero by clogging or the like, a signal is transmitted from device 10 through line 25 to terminate the pumping action of pump 26. In the latter situation, alarm sensors and warning devices as previously indicated may be actuated.
  • An electro-mechanical pressure monitor and control system for controlling the flow of blood through a tube connected to the circulatory system of a body, during extra-corporeal hemodialysis, which system comprises in combination, a fluid pressure monitor means disposed in communication with an electronic amplifier, said amplifier disposed in further communication with an electro-mechanical clamp, said clamp having a reversible motor and a position screw terminated by a relatively movable anvil, said relatively movable anvil disposed for effecting or removing clamping pressure on said tubing by being positionable between the relatively movable anvil and a relatively stationary anvil, said relative stationary anvil being hand positionable for initial positioning relative to the said tubing, a debubbler, a venous tubing connected thereto, and a pump disposed relative to tubing receiving blood from a patient, said pressure monitor means disposed relative to the debubbler, means responsive to said pressure monitor to operate said clamp disposed relative to the venous tubing to provide a means for which a fall of pressure sensed at the debubbler results
  • warning devices are in communication with an alarm sensor which further 5 monitors signals from the means for monitoring the pressure of the debubbler.

Abstract

The invention disclosed is for a pressure monitor and control device having particular utility in medical technology were constant monitor of hydro-static pressure is required. The disclosed device is especially useful in a method for effecting extra-corporeal hemodialysis.

Description

PATENTEDPW' 81913 SHEET 3 OF 4 FIG. 3
INVENTORS FLOYD A. WRIGHT THOMAS S. HARGEST l w ATTORNEY PATENTED 819B 3.731.680
SHEET 1; 0F 4 lllllll I! INVENTORS FLOYD A. WRIGHT THOMAS S. HARGEST ATTORNEY PRESSURE REGULATING CONTROLLER This invention relates to a pressure monitor and control device. More particularly, the present invention provides a pressure monitor and control device for use in a method for extra-corporeal hemodialysis for minimizing dangers of equipment malfunction as well as minimizing attention required by an operator of the system.
Devices are known to the art for effecting extra-corporeal hemodialysis. These devices are typically employed as a therapeutic measure when kidneys no longer perform their blood purifying function resulting in accumulation of toxic wastes in the blood. In hemodialysis, blood is made to flow between semipermeable membranes which permit passage of toxic wastes into a circulating dialysis solution, while restricting passage of blood. Toxic wastes in the blood, notably urea, creatinine, uric acid, and other deleterious products move through the semipermeable membranes because of the difference in the concentration gradient between that present in the blood, and that of the dialysis fluid, the latter being essentially zero.
During extra-corporeal hemodialysis, the operation must be precisely controlled and monitored as blood moves from its normal physiological confines to the extra-corporeal environment for processing.
Typically, prior art dialyzers require constant atten tion for signs of blockage or restricted flow and do not provide means for regulating and monitoring these effects relative to the patient. Accordingly, the present invention provides means for positive monitor and control of pressure, with further means for activating an alarm system in the event pressure varies beyond a preestablished range.
Generally stated, the present device includes a pressure monitor means disposed relative to a debubbler in the blood return line of a dialysis machine. Pressure may be monitored from air vents of the debubbler, and by means which communicate this pressure monitor with an electro-mechanical clamp on the venous tube, control of blood circulation may be maintained. The electro-mechanical clamp includes a reversible motor connected, if required, through a speed reduction unit for driving a movable anvil relative to venous tubing and a stationary anvil.
In the method of operation using the device of the present invention, a decrease of pressure sensed by the pressure monitor means effects, through appropriate electrical circuity, a signal to drive the movable anvil against a venous tube in a tube closing direction. By effecting a closing pressure or restriction in the tubing there results a counter increase in the pressure of the blood in the system. The reverse sequence is effected when the pressure monitor means senses an increase in pressure of blood in the dialysis system with resulting opening of the restriction applied by the movable anvil onto the venous tubing. In the event of pressure loss, such as by rupture or clogging of the venous tube, or a loss of electrical power, the pressure monitor means and the associated electrical circuity causes an alarm to activate along with effecting disabling of the hemodialysis machine by the movable anvil and dialysis pump control means.
Referring to the drawings in which like elements are designated throughout the several views:
FIG. 1 illustrates in block diagram operation of the present invention;
FIG. 2 illustrates in perspective view the present pressure monitor and control device in position on a venous tube;
FIG. 3 illustrates diagrammatically the positioning and method of operation of the present device during extra-corporeal hemodialysis;
FIG. 4 is a side elevational view of the electromechanical clamp of the present device taken in partial section;
FIG. 5 is a left side elevational view of the clamp of FIG. 4; and
FIG. 6 is a right side elevational view of the clamp of FIG. 4.
Referring to FIG. 1, where the general sequence of operation of the present invention is illustrated, electrical power controlled by a switch is supplied to the unit. Next, tubing is positioned in the electro-mechanical clamp described in detail subsequently, and adjusted to obtain a desired pressure which is read from a gauge. The unit after being connected to the dialysis machine is ready for operation. The electronic amplifier responding to signals of pressure monitored by a transducer taken through a pressure set point relative to the venous tubing causes the electro-mechanical clamp to either tighten or release clamping relative to the venous tubing depending upon whether increase or decrease of pressure is desired. Should failure of the system result, a signal is provided from the transducer such as if pressure failure results causing an alarm to sound or other warning device to activate, as desired.
FIG. 2 illustrates the pressure monitor and control device of the present invention generally illustrated as portable unit 10 having control box 12, and electromechanical clamp 14 disposed about venous tubing 16. Operation of unit 10 in extra-corporeal hemodialysis is more particularly illustrated in FIG. 3.
In FIG. 3, patient 20 is prepared for extra-corporeal hemodialysis according to conventional practice. Also, the dialyzer is similarly prepared such as by effecting prior rinse, sterilization, testing and the like prior to actual operation. After all the equipment has passed check-out, hemodialysis begins. Whole blood is received through tube 22 from the patient by conventional pump 24 suited for extra-corporeal dialysis such as a peristaltic or roller pump 26. This blood proceeds through line 28 into conventional dialysis assembly 30. correspondingly, dialysis fluid in line 27 is pumped into assembly 30 from which it is removed with waste substances through line 29. The composition of dialysis fluid may be changed in accordance with the therapy required for a particular patient. Generally, compositions of dialysis fluid are described in Hemo-dialysis for Chronic Renal Failure by Freeman, Maher & Schreiner in Annals of lntemal Medicine, Vol. 62, No. 3, March 1965. A temperature control may be provided, as desired, with heating means to properly control and maintain the temperature of the dialysis fluid at a prescribed level.
As blood moves from the radial artery inlet tube 22, it proceeds to dialysis assembly 30 in between semipermeable layers where dialysis is effected and out by line 31 to debubbler 32 from line exit 34. From the debubbler, the blood proceeds through venous line 16 to the vein of patient 20 by outlet 37. Meanwhile, fresh dialysis solution under action of suitable pump means is drawn through line 27 and into interstitial compartments of dialysis assembly 30. Although fresh dialysis solution is indicated as passing through assembly 30 to outlet 29 in parallel flow to blood passing through the unit, it is recognized that other flow patterns including countercurrent flow may be used as desired.
Toxic wastes dialysates such as urea and the like proceed through line 29 for removal from the unit by conventional practice.
Connected to dialysis assembly 30 is pressure monitor and control device of the present invention. Electromechanical clamp 14 of device 10 is positioned on venous tubing 16, with electrical connection to pump 26 for control of the pumping action in the event of blockage or zero pressure in the assembly. Pressure monitor and control device 10 further includes line 36 with associated pressure reading means attached to debubbler 32. Pressure of the debubbler is monitored by the reading means illustrated as a gauge and the signal therefrom is returned to device 10 for electrical interpretation. Electrical power is presented into device 10 by outlet 38.
The electro-mechanical clamp 14 is illustrated in greater detail in FIGS. 4-6. Clamp 14 includes speed reducing gear unit 39 receiving drive from reversible motor 40. Unit 39 is mounted onto end plate 41. End plate 41 is maintained in relative position from front plate 43 by spacers 42 and bolts 45.
Through gear unit 39, positioning screw 44 is connected to enter advance or retract movable anvil 46 relative to a positionable anvil 48 normally fixed after initially set. For practical purposes of this invention, anvil 48 is considered as being fixed although it is recognized that relative movement thereof is possible using turnable hand set 50 within L-shaped support block 52.
Also illustrated as parts of the electro-mechanical clamp 14 are block 47 which insures accurate movement of movable anvil 46, and venous tubing 16 disposed between movable anvil 46 and anvil 48.
In operation of device 10, electro-mechanical clamp 14 is positioned on venous tube 16 and anvil 48 is moved to establish a predetermined pressure by clamping against tube 16. The moveable anvil 46 is then controlled by increasing or decreasing pressure of tubing 16. This pressure will be determined by the pressure monitored at debubbler 32. Should the pressure begin to fall within venous tubing 16, motor 40 will activate moving anvil 46 to restrict fluid passage within tubing 16 thereby resulting in an increase of pressure in the system. The converse also results should an increase in the pressure of the system be sensed through debubbler 32. In the event the pressure of the system drops to zero by clogging or the like, a signal is transmitted from device 10 through line 25 to terminate the pumping action of pump 26. In the latter situation, alarm sensors and warning devices as previously indicated may be actuated.
The various elements of the present apparatus unless otherwise indicated may be secured to adjoining elements by any suitable means such as bolts, welding, rivets or the like. In addition, auxiliary support of reinforcement members may also be included as part of the apparatus where required.
Although a preferred embodiment of the invention has been illustrated herein, it is to be understood that various changes and modifications may be made in the construction and arrangement of elements without departing from the spirit and scope of the invention as defined.
What is claimed is:
1. In a method for extra-corporeal hemodialysis wherein blood is pumped through venous tubing from a patient into a dialysis assembly having means for effecting dialysis of waste materials from the blood and into a dialysis fluid flowing through the dialysis assembly, with further means for passing dialyzed blood through a debubbler prior to return through a venous tubing to the patient, the improvement which comprises:
A. providing a pressure indicating means for the debubbler;
B. generating a signal responsive to the pressure in the debubbler;
C. monitoring the indicated pressure signal of the debubbler;
D. amplifying said signal;
E. applying clamping pressure on the venous tubing in response to a falling pressure signal from the debubbler to provide an increase of pressure in the venous tubing;
F. removing clamping pressure on the venous tubing in response to an increasing pressure signal from the debubbler;
G. actuating a pump disabling and terminating means upon a zero signal from said pressure indicating means; and
H. providing an alarm sensor and transmitter for terminating operation of the pump.
2. The method of claim 1 wherein said monitoring of the pressure of the debubbler is by a transducer.
3. The method of claim 1 wherein said clamping is effected using an electromechanical clamp.
4. An electro-mechanical pressure monitor and control system for controlling the flow of blood through a tube connected to the circulatory system of a body, during extra-corporeal hemodialysis, which system comprises in combination, a fluid pressure monitor means disposed in communication with an electronic amplifier, said amplifier disposed in further communication with an electro-mechanical clamp, said clamp having a reversible motor and a position screw terminated by a relatively movable anvil, said relatively movable anvil disposed for effecting or removing clamping pressure on said tubing by being positionable between the relatively movable anvil and a relatively stationary anvil, said relative stationary anvil being hand positionable for initial positioning relative to the said tubing, a debubbler, a venous tubing connected thereto, and a pump disposed relative to tubing receiving blood from a patient, said pressure monitor means disposed relative to the debubbler, means responsive to said pressure monitor to operate said clamp disposed relative to the venous tubing to provide a means for which a fall of pressure sensed at the debubbler results in relative clamping of the venous tubing and an increase of pressure sensed at the debubbler results in relative removing of clamping of the venous tubing.
5. The system of claim 4 wherein the pressure monitor means is a transducer.
6. The system of claim 4 wherein an alarm sensor is in communication with a warning device and the pressure transducer.
7. The system of claim 4 wherein warning devices are in communication with an alarm sensor which further 5 monitors signals from the means for monitoring the pressure of the debubbler.

Claims (7)

1. In a method for extra-corporeal hemodialysis wherein blood is pumped through venous tubing from a patient into a dialysis assembly having means for effecting dialysis of waste materials from the blood and into a dialysis fluid flowing through the dialysis assembly, with further means for passing dialyzed blood through a debubbler prior to return through a venous tubing to the patient, the improvement which comprises: A. providing a pressure indicating means for the debubbler; B. generating a signal responsive to the pressure in thE debubbler; C. monitoring the indicated pressure signal of the debubbler; D. amplifying said signal; E. applying clamping pressure on the venous tubing in response to a falling pressure signal from the debubbler to provide an increase of pressure in the venous tubing; F. removing clamping pressure on the venous tubing in response to an increasing pressure signal from the debubbler; G. actuating a pump disabling and terminating means upon a zero signal from said pressure indicating means; and H. providing an alarm sensor and transmitter for terminating operation of the pump.
2. The method of claim 1 wherein said monitoring of the pressure of the debubbler is by a transducer.
3. The method of claim 1 wherein said clamping is effected using an electromechanical clamp.
4. An electro-mechanical pressure monitor and control system for controlling the flow of blood through a tube connected to the circulatory system of a body, during extra-corporeal hemodialysis, which system comprises in combination, a fluid pressure monitor means disposed in communication with an electronic amplifier, said amplifier disposed in further communication with an electro-mechanical clamp, said clamp having a reversible motor and a position screw terminated by a relatively movable anvil, said relatively movable anvil disposed for effecting or removing clamping pressure on said tubing by being positionable between the relatively movable anvil and a relatively stationary anvil, said relative stationary anvil being hand positionable for initial positioning relative to the said tubing, a debubbler, a venous tubing connected thereto, and a pump disposed relative to tubing receiving blood from a patient, said pressure monitor means disposed relative to the debubbler, means responsive to said pressure monitor to operate said clamp disposed relative to the venous tubing to provide a means for which a fall of pressure sensed at the debubbler results in relative clamping of the venous tubing and an increase of pressure sensed at the debubbler results in relative removing of clamping of the venous tubing.
5. The system of claim 4 wherein the pressure monitor means is a transducer.
6. The system of claim 4 wherein an alarm sensor is in communication with a warning device and the pressure transducer.
7. The system of claim 4 wherein warning devices are in communication with an alarm sensor which further monitors signals from the means for monitoring the pressure of the debubbler.
US00191307A 1971-10-21 1971-10-21 Pressure regulating controller Expired - Lifetime US3731680A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19130771A 1971-10-21 1971-10-21

Publications (1)

Publication Number Publication Date
US3731680A true US3731680A (en) 1973-05-08

Family

ID=22704961

Family Applications (1)

Application Number Title Priority Date Filing Date
US00191307A Expired - Lifetime US3731680A (en) 1971-10-21 1971-10-21 Pressure regulating controller

Country Status (1)

Country Link
US (1) US3731680A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830234A (en) * 1971-06-04 1974-08-20 Vital Assists Dialysis control system and method
US3882861A (en) * 1973-09-24 1975-05-13 Vital Assists Auxiliary control for a blood pump
US3951147A (en) * 1975-04-07 1976-04-20 Metal Bellows Company Implantable infusate pump
US3982535A (en) * 1974-03-15 1976-09-28 Per Svante Bahrton Signal device for dialysis apparatus
US4024059A (en) * 1974-04-23 1977-05-17 Rhone-Poulenc Industries Artificial kidney
US4063553A (en) * 1976-04-08 1977-12-20 Bell & Howell Company Pressure transducing methods and apparatus
US4098274A (en) * 1976-10-18 1978-07-04 Baxter Travenol Laboratories, Inc. Digital memory with power outage and memory overload logic in a dialysis system
US4155362A (en) * 1976-01-26 1979-05-22 Baxter Travenol Laboratories, Inc. Method and apparatus for metered infusion of fluids
US4191182A (en) * 1977-09-23 1980-03-04 Hemotherapy Inc. Method and apparatus for continuous plasmaphersis
US4207871A (en) * 1978-06-07 1980-06-17 Imed Corporation System for controlling the flow of intravenous fluids to a patient
WO1981001656A1 (en) * 1979-12-13 1981-06-25 Baxter Travenol Lab Method and apparatus for metered infusion of fluids
US4299705A (en) * 1979-09-07 1981-11-10 Russell Richard T Method of treating blood during operative procedures
US4365635A (en) * 1981-03-03 1982-12-28 Bell & Howell Company Pressure transducing methods and apparatus
US4369780A (en) * 1979-08-24 1983-01-25 Sharp Kabushiki Kaisha Blocking condition detection device in a medical fluid injection system
US4373525A (en) * 1980-02-12 1983-02-15 Terumo Corporation Method and apparatus for detecting occlusion in fluid-infusion tube of peristaltic type fluid-infusion pump
US4382753A (en) * 1979-03-09 1983-05-10 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
US4391600A (en) * 1979-03-09 1983-07-05 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
US4410322A (en) * 1979-03-09 1983-10-18 Avi, Inc. Nonpulsating TV pump and disposable pump chamber
US4411786A (en) * 1979-09-07 1983-10-25 Russell Richard T Method and apparatus for separating blood from other fluids during operative procedures
USRE31688E (en) * 1977-09-23 1984-09-25 Hemotherapy, Inc. Method and apparatus for continuous plasmapheresis
US4492531A (en) * 1982-04-30 1985-01-08 Kuraray Co., Ltd. Apparatus for producing a controlled pulsed liquid flow
US4501583A (en) * 1983-06-15 1985-02-26 Extracorporeal, Inc. Hemodialysis access monitors
WO1997011770A1 (en) * 1995-09-27 1997-04-03 Fresenius Usa, Inc. Method for testing dialyzer integrity before use
US5731083A (en) * 1991-12-09 1998-03-24 Courtaulds Plc Cellulosic fibres
US20130023776A1 (en) * 2009-12-28 2013-01-24 Gambro Lundia Ab Monitoring a property of the cardiovascular system of a subject

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2569748A (en) * 1946-08-22 1951-10-02 Grave Thomas De Strainer apparatus
US2689565A (en) * 1952-12-08 1954-09-21 Gobel Charles Blood pump
US2705493A (en) * 1952-04-09 1955-04-05 Jefferson Medical College Of P Extracorporeal circulation device pumping system
US2721732A (en) * 1952-01-03 1955-10-25 Nat Res Dev Apparatus for mixing liquids and gases
US3197068A (en) * 1964-04-27 1965-07-27 Corbin Farnsworth Inc Apparatus for monitoring the dispensing of liquid
US3456648A (en) * 1967-05-03 1969-07-22 Lpt Corp Automatic venous infusion monitoring apparatus
US3518982A (en) * 1968-02-09 1970-07-07 Abcor Inc Device and method for monitoring of gases in the blood stream
US3526481A (en) * 1968-01-29 1970-09-01 Jeanette L Rubricius Blood oxygenator
US3598727A (en) * 1969-04-07 1971-08-10 Charles B Willock Artificial kidney
US3648694A (en) * 1968-09-25 1972-03-14 Inst Oncologic Bucharest Automatic system with perfusion protection against malfunction

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2569748A (en) * 1946-08-22 1951-10-02 Grave Thomas De Strainer apparatus
US2721732A (en) * 1952-01-03 1955-10-25 Nat Res Dev Apparatus for mixing liquids and gases
US2705493A (en) * 1952-04-09 1955-04-05 Jefferson Medical College Of P Extracorporeal circulation device pumping system
US2689565A (en) * 1952-12-08 1954-09-21 Gobel Charles Blood pump
US3197068A (en) * 1964-04-27 1965-07-27 Corbin Farnsworth Inc Apparatus for monitoring the dispensing of liquid
US3456648A (en) * 1967-05-03 1969-07-22 Lpt Corp Automatic venous infusion monitoring apparatus
US3526481A (en) * 1968-01-29 1970-09-01 Jeanette L Rubricius Blood oxygenator
US3518982A (en) * 1968-02-09 1970-07-07 Abcor Inc Device and method for monitoring of gases in the blood stream
US3648694A (en) * 1968-09-25 1972-03-14 Inst Oncologic Bucharest Automatic system with perfusion protection against malfunction
US3598727A (en) * 1969-04-07 1971-08-10 Charles B Willock Artificial kidney

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830234A (en) * 1971-06-04 1974-08-20 Vital Assists Dialysis control system and method
US3882861A (en) * 1973-09-24 1975-05-13 Vital Assists Auxiliary control for a blood pump
US3982535A (en) * 1974-03-15 1976-09-28 Per Svante Bahrton Signal device for dialysis apparatus
US4024059A (en) * 1974-04-23 1977-05-17 Rhone-Poulenc Industries Artificial kidney
US3951147A (en) * 1975-04-07 1976-04-20 Metal Bellows Company Implantable infusate pump
FR2306712A1 (en) * 1975-04-07 1976-11-05 Metal Bellons Cy PUMP, FOR INFUSING FLUIDS, SUITABLE TO BE IMPLANTED
US4155362A (en) * 1976-01-26 1979-05-22 Baxter Travenol Laboratories, Inc. Method and apparatus for metered infusion of fluids
US4063553A (en) * 1976-04-08 1977-12-20 Bell & Howell Company Pressure transducing methods and apparatus
US4098274A (en) * 1976-10-18 1978-07-04 Baxter Travenol Laboratories, Inc. Digital memory with power outage and memory overload logic in a dialysis system
USRE31688E (en) * 1977-09-23 1984-09-25 Hemotherapy, Inc. Method and apparatus for continuous plasmapheresis
US4191182A (en) * 1977-09-23 1980-03-04 Hemotherapy Inc. Method and apparatus for continuous plasmaphersis
US4207871A (en) * 1978-06-07 1980-06-17 Imed Corporation System for controlling the flow of intravenous fluids to a patient
US4382753A (en) * 1979-03-09 1983-05-10 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
US4391600A (en) * 1979-03-09 1983-07-05 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
US4410322A (en) * 1979-03-09 1983-10-18 Avi, Inc. Nonpulsating TV pump and disposable pump chamber
US4369780A (en) * 1979-08-24 1983-01-25 Sharp Kabushiki Kaisha Blocking condition detection device in a medical fluid injection system
US4299705A (en) * 1979-09-07 1981-11-10 Russell Richard T Method of treating blood during operative procedures
US4411786A (en) * 1979-09-07 1983-10-25 Russell Richard T Method and apparatus for separating blood from other fluids during operative procedures
WO1981001656A1 (en) * 1979-12-13 1981-06-25 Baxter Travenol Lab Method and apparatus for metered infusion of fluids
US4278085A (en) * 1979-12-13 1981-07-14 Baxter Travenol Laboratories, Inc. Method and apparatus for metered infusion of fluids
US4373525A (en) * 1980-02-12 1983-02-15 Terumo Corporation Method and apparatus for detecting occlusion in fluid-infusion tube of peristaltic type fluid-infusion pump
US4365635A (en) * 1981-03-03 1982-12-28 Bell & Howell Company Pressure transducing methods and apparatus
US4492531A (en) * 1982-04-30 1985-01-08 Kuraray Co., Ltd. Apparatus for producing a controlled pulsed liquid flow
US4501583A (en) * 1983-06-15 1985-02-26 Extracorporeal, Inc. Hemodialysis access monitors
US5731083A (en) * 1991-12-09 1998-03-24 Courtaulds Plc Cellulosic fibres
WO1997011770A1 (en) * 1995-09-27 1997-04-03 Fresenius Usa, Inc. Method for testing dialyzer integrity before use
US5711883A (en) * 1995-09-27 1998-01-27 Fresenius Usa, Inc. Method for testing dialyzer integrity prior to use
US20130023776A1 (en) * 2009-12-28 2013-01-24 Gambro Lundia Ab Monitoring a property of the cardiovascular system of a subject
US10478076B2 (en) * 2009-12-28 2019-11-19 Gambro Lundia Ab Monitoring a property of the cardiovascular system of a subject

Similar Documents

Publication Publication Date Title
US3731680A (en) Pressure regulating controller
US3946731A (en) Apparatus for extracorporeal treatment of blood
US4828543A (en) Extracorporeal circulation apparatus
CA1323312C (en) Fluid flow apparatus control and monitoring
CA1042747A (en) Cardiopulmonary bypass system
JP4235556B2 (en) Method and element for monitoring the supply of replacement fluid during extracorporeal blood treatment
JP4267917B2 (en) Diafiltration module
US5431811A (en) Artificial kidney with device for filtering dialysis liquid
CA2444794C (en) Technique for extracorporeal treatment of blood
JP4384044B2 (en) Blood treatment equipment
US7540851B2 (en) Method to control blood and filtrate flowing through an extracorporeal device
US3416664A (en) Artificial kidney
US4464164A (en) Flowrate control for a blood flow system
EP0104895B1 (en) Dual phase blood/flow system and method of operation
JPS61143074A (en) Blood dialyzer
EP0052004A1 (en) System and method for controlling and monitoring blood or biologic fluid flow
US4647378A (en) Blood dialyzing method and apparatus
US20210379266A1 (en) Extracorporeal blood treatment apparatus and method for monitoring pressures in an extracorporeal blood treatment apparatus
JP3994436B2 (en) Dialysis machine
JPH0113384B2 (en)
JP2013248337A (en) Blood purifier
JPH01232970A (en) Artificial dialyzer
JPH048912Y2 (en)
JPH0113385B2 (en)
JPH0238228B2 (en)