US3730827A - Boron carbide ballistic armor modified with copper - Google Patents

Boron carbide ballistic armor modified with copper Download PDF

Info

Publication number
US3730827A
US3730827A US00201115A US3730827DA US3730827A US 3730827 A US3730827 A US 3730827A US 00201115 A US00201115 A US 00201115A US 3730827D A US3730827D A US 3730827DA US 3730827 A US3730827 A US 3730827A
Authority
US
United States
Prior art keywords
boron carbide
armor
ceramic
copper
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00201115A
Inventor
B Matchen
D Robertson
J Scott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norton Research Corp Canada Ltd
Original Assignee
Norton Research Corp Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norton Research Corp Canada Ltd filed Critical Norton Research Corp Canada Ltd
Priority to US20111571A priority Critical
Application granted granted Critical
Publication of US3730827A publication Critical patent/US3730827A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • F41H5/0421Ceramic layers in combination with metal layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • F41H5/0428Ceramic layers in combination with additional layers made of fibres, fabrics or plastics
    • F41H5/0435Ceramic layers in combination with additional layers made of fibres, fabrics or plastics the additional layers being only fibre- or fabric-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt particles, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates, anti-ballistic clothing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/404Manganese or rhenium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • C04B2237/568Using constraining layers before or during sintering made of non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/702Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the constraining layers

Abstract

COMPOSITE CERAMIC ARMOR WITH IMPROVED BALLISTIC PROPERTIES. BASIC BORON CARBIDE ARMOR IS IMPROVED BY THE DDITION TO THE BORON CARBIDE OF CERTAIN WUANTITIES OF COPPER OR COPPER ADMIXED WITH CALCIUM BORIDE, TITANIUM, MANGANESE, BORON OR CHROMIUM. IMPROVED BALLISITCS ALSO RESULT FROM A MULTILAYER CERAMIC FACE PLATE WHEREIN ONE OR MORE LAYERS OF THE ABOVE MODIFIED BORON CARBIDE IS COMBINED WITH A LAYER OF BORON CARBIDE TO FORM AN INTEGRAL CERAMIC FACE PLATE.

Description

United States Patent US. Cl. 161-493 7 Claims ABSTRACT OF THE DISCLOSURE Composite ceramic armor with improved ballistic properties. Basic boron carbide armor is improved by the addition to the boron carbide of certain quantities of copper or copper admixed with calcium boride, titanium, manganese, boron or chromium. Improved ballistics also result from a multilayer ceramic face plate wherein one or more layers of the above modified boron carbide is combined with a layer of boron carbide to form an integral ceramic face plate.

BACKGROUND OF THE INVENTION The invention relates to ceramic composites. More particularly the invention relates to ceramic composites suitable as armor plate for the protection of personnel and equipment from ballistic projectiles.

The utility of armor for the protection of personnel and equipment has long been recognized and utilized. The most successful modern armor is a composite structure consisting of a backing means or plate composed of a resin-glass fabric laminate to which has been adhered a hard ceramic face plate of e.g. boron carbide, silicon carbide, or aluminum oxide. Such a composite armor is described in detail in United States Letters Patents #3,509,933 and #3,516,898. Hard ceramic faced composite armor is also known which utilizes a metal backing in place of the aforementioned resin-glass cloth laminate backing, such as the metal backed ceramic of United States Letters Patent #3,43 1,818 which includes such metals as aluminum, aluminum alloys, and titanium having hard ceramic face plates adhered thereto. The mechanism by which the aforementioned types of armor successfully defeat ballistic projectiles, such as armor piercing bullets, is explained in detail in the cited patents. In summary however, it has been found that when a high velocity projectile such as a .50 caliber armor piercing bullet strikes the ceramic face plate of such an armor composite, the oncoming projectile is shattered or blunted, frequently with an accompanying local shattering of the ceramic spreading outwardly from the point of impact. The residual energy of the shattered or blunted projectile and the energy imparted to the shattered pieces of the ceramic face is absorbed by the relatively resilient metal or glass-resin laminate backing.

The primary advantage to the ceramic type of armor resides in the fact that it has about a 4 to 1 weight advantage over the prior art steel armor, i.e. a ceramic composite armor of a given weight per unit of protective area will have 4 times the resistance to penetration of high velocity projectiles as will a steel armor plate of equal weight per unit of protective area, or in other words, ceramic armor provides a degree of protection equal to that of a steel armor plate at about one-fourth of the weight of the latter.

Composite ceramic armor is amenable to being fabricated into many protective articles such as the personnel body armor of United States Letters Patent #3,559,210 and the protective aircraft seat of United States Letters Patent #3,581,620 as well as protective structural components for ground vehicles and aircraft in the form of panels or the like to protect engines, fuel tanks and other vital parts of the vehicle or aircraft.

SUMMARY OF THE INVENTION The ballistic properties of hot-pressed boron carbide armor can be substantially improved by addition to the boron carbide molding powder of certain quantities of copper. Furthermore, substantial improvements in ballistic properties can be realized by additions to boron carbide powder of 10 to 45% by weight of one or more material selected from each of the following groups:

(a) calcium boride, titanium, manganese, chromium,

and boron; and (b) copper.

The result is that for a given weight per unit of protective area, the so-called areal density usually expressed in pounds per square foot, the hot-pressed modified boron carbide ceramic plate of the present invention produces a composite armor with the backing that is up to about 11% superior in its ballistic properties, i.e. it will resist penetration of high velocity armor piercing projectiles travelling at a velocity approximately 11% greater than the velocity of projectiles which the conventional boron carbide armor is capable of protecting against. The practical manifestation of the foregoing, and the improvement over the prior art composite boron carbide armor, is that it provides a composite armor system with about 11% more protection capability.

The ceramic face plate portion of the invention composite armor may be made up entirely of hot-pressed boron carbide modified by addition thereto of the materials and in the manner described above.

The ceramic face plate however, may be made up of only a layer of the modified boron carbide with the remainder of the thickness of the ceramic plate being composed of conventional boron carbide. The modified boron carbide layer may be on the front or outer surface of the ceramic plate, i.e. the surface which is impacted by the high velocity projectile, or it may be on the rear or back side i.e. the side which is adhered to the fiber glass or metal backing means or plate, or, the modified boron carbide portion may be sandwiched between two layers of conventional boron carbide. Furthermore, the modified boron carbide portion of the ceramic face plate may be in more than one layer e.g. the face plate may be made up of two modified boron carbide layers between which is sandwiched a layer of conventional boron car-bide. Whatever might be the physical location of the modified boron carbide layer or layers, it must be present in the ceramic face plate in the amount of from about 20 to of the total weight of the ceramic face plate.

The hot-pressing process employed in the fabrication of the invention ceramic armor is conventional and well known as will be evident by the detailed description of the hot-press process contained in the ensuing examples. Similarly, the process used to form the multilayer ceramic plates, which preferably involves first cold-forming of each of the layers followed by hot-pressing all of the layers together to form the integral plate, is part of prior art. None of the processing involved is considered a part of the present invention.

The backing means or plate may be any of the known materials suitable for the purpose. Such materials include multiple ply resin-glass fabric laminate, metals such as aluminum, aluminum alloys, titanium and the like, or even sheet steel, although the latter is obviously undesirable because of its weight. So too, the method of unitizing the backing means and the ceramic face plate may be accomplished by any of the known techniques such as adhering the two with a polysulfide or epoxy adhesive which may or may not include a resilient energy absorbing interlayer between the backing means and the invention ceramic face plate.

- DESCRIPTION OF THE PREFERRED EMBODIMENTS In the preferred mode of practicing the present invention, commercial grade boron carbide is employed which is the same type of material used to fabricate the prior art boron carbide composite armor. A typical analysis of commercial grade boron carbide is as follows:

Constituents: Weight percent Boron 76 Carbon 21 Boron oxide 1 Iron oxide 0.5 Aluminum oxide 0.25 Copper oxide 0.1 Cobalt oxide 0.1 Calcium oxide 0.2 Manganese oxide 0.1 Trace amounts of sodium, sulfur, silicon, titanium chronium.

' The foregoing does not preclude the use of either more deficient boron or boron rich types of boron carbide. Boron carbide with a molar ratio of 3.5 to 4.5 :1 would be operable. The particle size of the boron carbide powder is not hypercritical but preferably ought to be in the range of 3 to 15 microns for the sake of attaining maximum density during the hot-pressing operation. The same is true of the partical size of the copper, calcium boride, chromium, boron, titanium, and manganese modifiers. The processing technology employed in the hot-pressing of the ceramic face plates and that for the assembly of the face plate and the resin-fiber glass backing were the conventional ones and for the numerous examples set forth below, were as follows:

Ceramic plate forming process A quantity of boron carbide powder or boron carbide powder blended with the desired weight percent of the modifier is dampened with 28 percent by weight of a 48 percent by weight aqueous emulsion of Amprol #24, an emulsifiable wax sold by Merck & Co. Inc. The dampened powder is then dried at about 82 C. to remove the water.

A predetermined amount of this molding powder, that amount sufficient to result in a hot-pressed plate approximately 6 x 6 X 0.3 inches, is placed in a mold and pressed at approximately 1 ton per square inch at room temperature resulting in a preform approximately 6 x 6 x 0.7 inches. This preformed plate is then placed in a graphite mold assembly, and the assembly placed in an induction heated press where the contents of the mold are subjected to a temperature of from 2000 to 2200 C. at a pressure of approximately 1 ton per square inch, the entire hotpressing cycle involving 1% to 2 /2 hours. The hot-pressing operation is carried out preferably in the presence of a nonoxidizing atmosphere and even more preferably in an inert atmosphere such as argon. The hot-pressed plate is then removed from the mold, fiash and/or other imperfections are removed and the plate is assembled With the backing means or plate.

When the ceramic face plate is itself a composite, then the two or more layers of the final plate are first coldformed in the following manner: Assuming that the ceramic plate is to be trilayered and is to Weight 900 grams, then 300 grams of material A is placed in a mold, spread level and then pressed at room temperature at about 1 ton per square inch; 300 grams of material B is then spread level upon the previously cold-pressed 300 gram portion, the two layers are then cold-pressed as before;

finally, a second 300 grams of material A is spread level upon the material B surface of the cold-pressed A-B composite and this composite and the final layer is then coldpressed as before. The multilayered cold-pressed plate ABA is then hot-pressed as described above.

Assembly of ceramic face plate and backing A standard 12 ply unsaturated polyester resin bonded fiber glass laminate of appropriate size, i.e. 6 x 6 inches, is mildly sandblasted to provide an optimum surface for adhesion. The ceramic face plates and the backing pieces are warmed to a range of about 32 C. to 38 C. A thermosetting polysulfide adhesive is spread over the sandblasted surface of the backing with a serrated spreader. The ceramic face plate is then placed on the cement or adhesive coated surface and forced into the adhesive by pressing and moving slightly by hand. Each composite is then clamped tightly in the center for 2 or 3 minutes to force out excess adhesive and air. The excess adhesive is removed and the composites, While still clamped, are heated at about 65 C. for 2 to 2 /2 hours in order to thermoset the polysulfide adhesive. The resin-fiber glass with ceramic face plate composite is now a finished piece of ballistic armor.

Following the procedures outlined above, composite ceramic armor with 12 ply fiber glass backing, was fabricated of various ceramic face plate compositions and having a variety of layer arrangements within the face plates made of the various compositions described above. These were tested ballistically against standard boron carbide armor. The ballistic properties of this type of armor are, amongst other things, highly dependent on the areal density (weight per unit area) of the composite and the specific gravity of the materials making up the armor. Herein the same 12 ply backing was employed in all samples and the ceramic face plate in all cases was about 0.3 inch thick. Thus the face plates composed of modified boron carbide had a different specific gravity than the control composite made with standard boron carbide. In the table to follow two columns of relative ballistic data appear. The relative ballistic data identified as Actual are based on the actual ballistic data measured, relative to the reference standard boron carbide armor, ignoring the difference in areal density of the composite armor of the present invention as compared to the reference standard boron carbide armor; the actual area density is also shown beside the Actual relative ballistic results. The ballistic results of the invention composites corrected or adjusted to an areal density of 6.55 pounds per square foot, the areal density of the boron carbide reference standard, are shown in the column identified as Corrected. The Corrected ballistic data for the invention composite armor thus shows the degree of superiority of said invention armor as compared to the standard boron carbide armor for the same areal density. The superiority of the invention armor may be taken advantage of by direct substitution of invention armor of the same areal density (weight) as the standard boron carbide armor for the latter thus providing armor that will deefat ballistic proiectiles travelling at a greater velocity than the standard boron carbide armor is capable of stopping, or, substitute invention armor of a reduced areal density (weight) for the standard boron carbide armor thus reducing the weight of the armor emloyed while providing an equal degree of protection as is afforded by the heavier standard boron carbide armor.

In the following table of examples, the data under Resistance to Penetration shows the capability of the invention ballistic armor to resist penetration by armor piercing projecticles in terms of percent related to the capability of standard prior art composite boron carbide armor as The amounts of copper listed under Composition Wt. percent are the amounts of copper added to the boron carbide powder and not the amounts of copper remaining in the ceramic plates after hot-pressing. The latter amount is always substantially less than the former, however it is the former that governs the properties of the final product and not the latter. Unless otherwise indicated, the multilayer plates are made up of equal weights of the materials used in those layers e.g. a bilayer plate could be made up of 50% B C and 50% modified B C.

of one or more of a first type of layer, said first type of layer consisting essentially of the product resulting from hot-pressing a mixture of boron carbide and copper, the remainder of said face plate being a second type of layer consisting essentially of boron carbide.

Layers in face plate Resistance to penetration 1 Cor- Actual, rected, Example Location Composition, wt. percent percent ADJ percent ADJ Control Single 100% B40 100 6. 55 100 6.55 d 5% Cu 95% B40 114 6.78 110 6.55 5% Cu 95% B40 117 7. 107 6. 55

1007 B40 Rear 5% a 95% B40 111 6. 68 109 6.55

X Percentages rounded 011 to the nearest whole percent.

1 A.D. is areal density in pounds per square foot.

3 Rear layer equal to 25% of total weight of plate.

The mechanism by which the addition of copper, preferably 1 to 5% by weight, to boron carbide powder improves the ballistic performance of composite ceramic armor made with plates hot-pressed from such a material, is not completely understood. It is believed that the copper does not react to any significant degree with boron carbide or free carbon. A substantial portion of the copper added melts and is squeezed out of the ceramic plate during the hot-pressing of said plate. For example when plate after hot-pressing, does not produce a ballistically taining 5% by weight of copper, the resulting plate contained only 1.79% by weight ofcopper. That quantity of copper which was lost was squeezed out of the ceramic composite during the hot-pressing operation. The addition of an amount of copper less than 1%, with essentially all of the amount which had been added remaining in the plate after hot-pressing, does not produce a ballistitcally superior product. However, it does appear that the copper dissolves some of the impurities in the boron carbide powder and removes said impurities from the structure when the copper melts and squeezes out during the hot-pressing operation. This would also appear to be true when the additive or modifier for the boron carbide powder is a mixture of chromium and copper.

When the second member or members of a multiconstituent modifier for the boron carbide is calcium carbide, titanium, boron, or manganese a dilferent phenonemon would occur with respect to these materials because they remain essentially in their entirety, in the ceramic plate with no loss during the hot-pressing operation.

Although the foregoing description of the preferred mode of practicing the present invention involves hotpressing of the ceramic preforms, cold-pressing to form the preforms followed by sintering is also operable. The preference for hot-pressing arises from the capability of this method of consistently producing plates of maximum and uniform density.

What is claimed is:

1. A composite ballistic armor including a backing means and an integral pressed and sintered ceramic face plate, said face plate comprising to 100% by weight 2. The ballistic armor of claim 1 wherein said backing means is a metal.

3. The ballistic armor of claim 1 wherein said backing means is a fiber glass-organic polymer laminate.

4. The ballistic armor of claim 1 wherein said face plate consists of one of said first type of layer and one of said second type of layer.

5. The ballistic armor of claim 1 wherein said face plate consists of two of said first type of layer separated by one of said second type of layer.

6. The ballistic armor of claim 1 wherein said first type of layer is the product resulting from the hot-pressing of a mixture consisting essentially of 1 to 5% by weight of copper and to 99% by weight of boron carbide.

7. A composite ballistic armor including a backing means and an integral ceramic face plate, said face plate comprising 20 to 100% by weight of one or more of a first type of layer, said first type of layer consisting essentially of a mixture of 10 to 45% by weight of one or more material selected from each of the groups:

(a) calcium boride, titanium, manganese, chromium,

and boron; and

pp with 55 to 90% of boron carbide, the remainder of said face plate being a second type of layer consisting essentially of boron carbide.

References Cited UNITED STATES PATENTS 3,516,898 6/1970 Cook 161-93 3,649,342 3/ 1972 Bartlett 1=6-140'4 X 3,671,374 6/1972 Kolarik 161-404 X ROBERT F. BURNETT, Primary Examiner M. E. MCCAMISH, Assistant Examiner US. Cl. X.R.

US00201115A 1971-11-22 1971-11-22 Boron carbide ballistic armor modified with copper Expired - Lifetime US3730827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US20111571A true 1971-11-22 1971-11-22

Publications (1)

Publication Number Publication Date
US3730827A true US3730827A (en) 1973-05-01

Family

ID=22744550

Family Applications (1)

Application Number Title Priority Date Filing Date
US00201115A Expired - Lifetime US3730827A (en) 1971-11-22 1971-11-22 Boron carbide ballistic armor modified with copper

Country Status (2)

Country Link
US (1) US3730827A (en)
CA (1) CA1000134A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005235A (en) * 1975-11-17 1977-01-25 General Electric Company Dense sintered boron carbide containing beryllium carbide
US4824624A (en) * 1984-12-17 1989-04-25 Ceradyne, Inc. Method of manufacturing boron carbide armor tiles
EP0322719A1 (en) * 1987-12-31 1989-07-05 Eltech Systems Corporation Composite for protection against armor-piercing projectiles
US5191166A (en) * 1991-06-10 1993-03-02 Foster-Miller, Inc. Survivability enhancement
US8176829B1 (en) * 2007-03-21 2012-05-15 Schott Corporation Armor system and method of manufacture
EP2612844A1 (en) * 2010-08-31 2013-07-10 Mino Ceramic CO., LTD. Boron carbide-containing ceramic bonded body and method for producing the bonded body
US20130280528A1 (en) * 2009-12-15 2013-10-24 SDCmaterials, Inc. Workflow for novel composite materials
US8603616B1 (en) 2007-09-27 2013-12-10 Schott Corporation Lightweight transparent armor window
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US9789671B2 (en) 2012-02-28 2017-10-17 Mino Ceramic Co., Ltd. Shock absorbing member

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005235A (en) * 1975-11-17 1977-01-25 General Electric Company Dense sintered boron carbide containing beryllium carbide
US4824624A (en) * 1984-12-17 1989-04-25 Ceradyne, Inc. Method of manufacturing boron carbide armor tiles
EP0322719A1 (en) * 1987-12-31 1989-07-05 Eltech Systems Corporation Composite for protection against armor-piercing projectiles
US5191166A (en) * 1991-06-10 1993-03-02 Foster-Miller, Inc. Survivability enhancement
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US8176829B1 (en) * 2007-03-21 2012-05-15 Schott Corporation Armor system and method of manufacture
US8603616B1 (en) 2007-09-27 2013-12-10 Schott Corporation Lightweight transparent armor window
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US20130280528A1 (en) * 2009-12-15 2013-10-24 SDCmaterials, Inc. Workflow for novel composite materials
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9211600B2 (en) 2010-08-31 2015-12-15 Mino Ceramic Co., Ltd. Boron carbide-containing ceramic bonded body and method for producing the bonded body
EP2612844A4 (en) * 2010-08-31 2014-05-07 Mino Ceramic Co Ltd Boron carbide-containing ceramic bonded body and method for producing the bonded body
EP2612844A1 (en) * 2010-08-31 2013-07-10 Mino Ceramic CO., LTD. Boron carbide-containing ceramic bonded body and method for producing the bonded body
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9789671B2 (en) 2012-02-28 2017-10-17 Mino Ceramic Co., Ltd. Shock absorbing member
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Also Published As

Publication number Publication date
CA1000134A (en) 1976-11-23
CA1000134A1 (en)

Similar Documents

Publication Publication Date Title
US3516898A (en) Hard faced plastic armor
US4529640A (en) Spaced armor
US4181768A (en) Body armor laminate
DE69703699T3 (en) Ceramic body armor plate for composite
EP2087307B1 (en) Spaced lightweight composite armor
JP3634367B2 (en) Lead-free bullet
DE3318831C2 (en)
US6825137B2 (en) Lightweight ballistic resistant rigid structural panel
US3832265A (en) Ballistic armor of plies of nylon fabric and plies of glass fabric
EP2146843B1 (en) Ballistic-resistant panel including high modulus ultra high molecular weight polyethylene tape
US3705558A (en) Armor
US6497966B2 (en) Laminated armor
US4739690A (en) Ballistic armor with spall shield containing an outer layer of plasticized resin
US5789327A (en) Armor panel
AU726340B2 (en) Lead-free frangible bullets and process for making same
US6135006A (en) Fiber reinforced ceramic matrix composite armor
US3000772A (en) Lightweight nonmetallic armor
US6679157B2 (en) Lightweight armor system and process for producing the same
US5435226A (en) Light armor improvement
US5693157A (en) Method of preparing beta titanium-fiber reinforced composite laminates
US6009789A (en) Ceramic tile armor with enhanced joint and edge protection
US4987033A (en) Impact resistant clad composite armor and method for forming such armor
US3722355A (en) Lightweight armor material
US3962976A (en) Composite armor structure
DE69932720T2 (en) metal bullets, ammunition and methods for manufacturing such articles degradable