US3717722A - Apparatus for printing continuous runs of material - Google Patents
Apparatus for printing continuous runs of material Download PDFInfo
- Publication number
- US3717722A US3717722A US00138006A US3717722DA US3717722A US 3717722 A US3717722 A US 3717722A US 00138006 A US00138006 A US 00138006A US 3717722D A US3717722D A US 3717722DA US 3717722 A US3717722 A US 3717722A
- Authority
- US
- United States
- Prior art keywords
- nozzles
- rows
- row
- printing fluid
- program
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims abstract description 56
- 239000012530 fluid Substances 0.000 claims abstract description 63
- 230000033001 locomotion Effects 0.000 claims abstract description 15
- 230000001276 controlling effect Effects 0.000 claims description 9
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 239000007921 spray Substances 0.000 claims description 6
- 239000003086 colorant Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- HFEFMUSTGZNOPY-UHFFFAOYSA-N OOOOOOOOOOOOOOOO Chemical compound OOOOOOOOOOOOOOOO HFEFMUSTGZNOPY-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002789 length control Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06B—TREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
- D06B23/00—Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
- D06B23/24—Means for regulating the amount of treating material picked up by the textile material during its treatment
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06B—TREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
- D06B11/00—Treatment of selected parts of textile materials, e.g. partial dyeing
- D06B11/0056—Treatment of selected parts of textile materials, e.g. partial dyeing of fabrics
- D06B11/0059—Treatment of selected parts of textile materials, e.g. partial dyeing of fabrics by spraying
Definitions
- Apparatus for printing continuous runs of material comprises rows of nozzles extending across the path of movement of the material. Colored printing fluid is supplied to each row of nozzles, each nozzle being controlled by a valve.
- a program control unit controls the pressure of fluid supplied to each row of nozzles and operation of the individual valves so as to maintain the quantity of fluid applied per unit area of the material substantially constant, irrespective of the speed of movement of the material.
- An object of the present invention is to provide apparatus for printing on continuous runs of material, in.
- apparatus for printing a continuous run of material movable along a predetermined path a plurality of rows of nozzles, each row extending transversely of said path, valve means for controlling each nozzle, a plurality of sources of colored printing fluid, means for feeding printing fluid from said sources to said rows of nozzles, regulator means for regulating the pressure of fluid fed to each row of nozzles, and program control means responsive to the speed of movement of the material along said path and controlling said value means and said regulator means to maintain the quantity of printing fluid applied per unit area of the material,
- the nozzle valves are pre-set by the control means according to the program, all the pre-set valves then being opened simultaneously, the presetting of the valves being cancelled at the end of the fluid application period.
- the program control means controls the pulse length for the valve opening times and reciprocating and pivoting movement of the rows of nozzles.
- the pressure of the printing fluid is increased by the program control means, so that the amount of fluid applied per unit surface area is discharged in a shorter time.
- the program control means varies the pulse length for thetime during which the valves of individual nozzles are. opened.
- the pressure of the printing fluid and the valve opening. times are so programmed in relation to each other that, whatever be the speed of travel of the material, theamount of printing fluid applied is always correct andthe printing fluid covers the correct lengthand width in. the position determined by the design.
- the pulselength is therefore controlled independently of the color pulsetrain.
- recorded data for color control determine which; valvesof the individual rows of nozzles are to be opened; data for pulse-length control determine how long those valves shall remain open.
- pressure-control data determines the pressure at whichthe printing fluid is sprayed onto the material.
- lf for example, compressed air ormains current be used for spraying the printing fluid
- thatparticular form of supply is likewise program controlled to ensure that the appearance of the material remains the same, even if the speed of the run of material should vary.
- the rows of nozzles can be pivoted under program control in such a way that the-spray always stays at the same point on the material.
- the rows of nozzles are both pivoted and moved transversely to the direction of travel of the material, all under program control, during which either the nozzle valves remain open or one pulse can be emitted for each position of the nozzle row, so that an individual nozzle is able to print four points.
- the control program can be stored on punched cards, perforated tapes, magnetic cards, magnetic tapes, magnetic drums, magnetic discs etc., for each individual color or on any other recording medium. Programming may also be carried out electronically by the use of, for example, magnetic tape recorders to which are fed the pulses from pick-ups employing color-sensitive heads for scanning patterns or originals. Patterns, drawings or originals, or color extracts can, if desired, also be scanned directly by a color-sensitive head, the derived values being converted into pulses in the control part of the equipment. If the resultant pattern is correct, the relevant data is recorded on the recording medium during the printing process. With this program recorded on an endless tape or the like, the pattern can be continuously printed.
- data can be recorded for all the colors, according to the arrangement of the rows of nozzles, in addition to data for pattern repeat control, tint control, nozzle setting control, nature of nozzle, color pressure and pulse duration.
- Reading heads in the program control means for the various colors take the data from the program staggered in stages, according to the nozzle tube spacing.
- the programs for each color can also be prepared on individual magnetic tapes or the like, which can then be provided, according to the nozzle row spacings, with their own pattern repeat control data and nozzle-row setting control data.
- step-by-step change-over controlled by a program of its own, from one program to another, the design or color combination can be changed in step with the run-through of the material, without waste or interruption.
- the data are picked up by the reading heads in the control unit or optically and are converted into pulses, which are-amplified and then fed through a distributor in series or parallel to the nozzle valves concerned.
- the program When the speed of the material changes, the program also providessynchronous regulation of the color pressure and pulse length.
- the reading heads in the control unit as well as the nozzle rows or groups of rows being constantly in the same position, the repeat is correct.
- Control of the valves of the individual nozzles in the rows or groups of rows may also be such that when'patterns, originals and the likeare being scanned, the pickup pulses are fed in succession directly to the valves, after suitable amplification. Bothwhen an original is being scanned for setting up a program and when there is direct control during the scanning of an original, lenses can be introduced for the enlargement or reduction. Enlargement can also be carried out by directly increasing the duration of the pulses.
- the pattern repeat at right angles to the direction of travel of the material is either allowed for in the program or arranged by group switching of the valves in the case of direct control from the original.
- the pattern repeat along the length of the material can be arranged as desired. By suitable switching, limited insertion of another program section or of control from an original can be made in the course of a program.
- the nozzles for a single color can be distributed over several rows, through which the printing fluid flows in succession, the rows being so adjusted that the nozzles deposit the color points in the desired positions.
- the nozzle rows for the various colors can be arranged at any spacing and in any sequence desired. Likewise, the nozzle rows for one color can be disposed between the nozzle rows of the other colors. This distribution may also be necessary on account of the effects obtainable.
- the nozzles themselves can be electrostatic spray nozzles, single or multi-jet nozzles or atomizer nozzles and several rows of nozzles can be used for each color. All the rows of nozzles can be connected to an electric mains supply to deposit the printing fluid electrostatically. Suction can be applied to the run of material so as to draw the printing fluid onto the material or to rows of nozzles 9 to 12, and 9a to 120 which extend transversely to the direction of movement of the material 8.
- the individual nozzles 13 in each row of nozzles are preceded by valves 13a (FIG. 3), which control the flow to the nozzles 13.
- the valves 13a are connected to a control unit 20 which so regulates the time during which the valves 13a are open that whenever the speed of travel of the material 8 changes, the same amount of color per unit surface area of material is applied at all times.
- the rows of nozzles 9 to 12, and 9a to 120 are movable by control members 14 and 15 (FIG. 3).
- the control members 14 are operable to pivot each row of nozzles about its longitudinal axis, and the control members 15 are operable to reciprocate each row of nozzles along its longitudinal axis.
- the control members 14 and 15 are also connected to the control unit 20.
- the rows of nozzles 9 to 12, and 9a to 12 are mounted in a frame, the height of which above the band 5 can be adjusted by means of positioning screws 19, for example.
- Containers 16 for colored printing ink or other colored printing fluids are connected by feed and return pipes to the rows of nozzles 9 to 12 and 9a to 12a.
- the container 16 on the far left in FIG. 1 contains yellow colored fluid, while the next three containers in succession contain red, green and violet colored fluids, these being the colors needed for fourcolor printing.
- the container on the far right in FIG. 1 also contains yellow colored fluid.
- a pressure regulator 18 operated by a program in the control unit 20, the pressure regulators l8 acting to draw ghe fluid through the material in the case of control the pressure of the fluid so that whenever the materials having a fibrous nap or fibrous surface.
- FIG. 1 is a perspective view of apparatus in accordance with the invention
- FIG. 2 is a fragmentary plan of a modified form of the apparatus shown in FIG. 1;
- FIG. 3 is a perspective view, to an enlarged scale, of part of a row of nozzles in the apparatus shown in FIG.
- FIG. 4 shows part of one form of magnetic tape for a control unit of apparatus
- FIG. 5 shows part of another form of magnetic tape for the control unit.
- roller 3 is driven by an electric motor 4 the speed of 60 which can be regulated.
- the top run of the conveyor band 5 lies over suction chambers 6, air being withdrawn from the chambers 6 by a pipe 7.
- a continuous run of material 8 is drawn off a supply roll and carried by the conveyor band 5 in the direction of the arrow in FIG. 1.
- the material 8 passes below speed of travel of the material 8 changes, the same amount of fluid is applied per unit surface area at all times.
- the program is recorded on, for example, a magnetic tape 22 fed into the control unit 20.
- the program recorded on the tape 22 determines the quantity, manner of application and point of application of the color and the design to be printed.
- the nozzles 13 in each row are always offset from the nozzles in adjacent rows by one register.
- a tap'21 is
- the row of nozzles 12a is associated with a separate container 16, it is possible to change over to another color combination while the row 12 is being overhauled, or the color itself may be changed.
- the printing fluid is fed to the rows of nozzles 9 to 12 or 9a to 12a by pumps 17 via filtering means, excess printing fluid being led back through the return pipe into the appropriate container 16.
- supplementary rows can be fitted, in which the nozzles differ from those in the rows 9 to 12 and 9a to 12a.
- These supplementary rows of nozzles are controlled by the control unit 20 according to the program.
- each group consisting of several rows such as 9, for example, connected in series and extending parallel to one another, only one such group being shown for the sake of simplicity.
- the distance a between the individual rows of nozzles, in each group is equal to the repeat length.
- This arrangement of the rows of nozzles enables the color points to be applied to the material 8 more closely together, because, clearly, the nozzles 13 in a number of rows in the group can be set closer together.
- the nozzles 13 in one row are staggered in relation to the nozzles in an adjacent row.
- nozzles of differing types can be fitted.
- a jet of printing fluid or cone of spray can be caused to track from a to b, from b to c, from c to d and from d to a whereby to cover the area thus enclosed.
- magnetic tape 22 is shown to comprise eight tracks designated A to H.
- the tracks A to D are intended for the four colors, that is to say for yellow, red, green and violet.
- the track E controls the duration of spraying by the nozzles 13.
- the program is necessarily speeded up likewise.
- the conveyor band 5 is so coupled to the control unit that the correct relation is produced between the speed of the conveyor band 5 and that at which the program is advanced.
- the track F controls the regulators l8 and hence the pressure of the printing fluid. For faster running, the individual data follow one another in closer succession.
- the pressure can be regulated non-linearly and adapted to the consistency of the printing fluid.
- the track G regulates the pivoting of the rows of nozzles 9 to 12 and 9a to 12a. If program-controlled delay be used with the pressure control track, for example, it is possible to ensure that the jet of printing fluid follows the movement of the material 8 precisely and is therefore deposited accurately in dot form.
- the data in track G can be interrupted to alter the position of the rows of nozzles 9 to 12 or 9a to 12a. Then the rest of the material is sprayed.
- it is possible to print transverse ]ines if the rows of nozzles 9 to 12 and 9a to 12a are pivoted so that the jets of printing fluid follow the motion of the material 8 and the rows of nozzles-9 to 12 and 9a to 12a carry out an axial movement.
- the track I-I controls axial movement of the rows of nozzles 9 to 12 and 9a to 12a.
- a command cancelling I the presetting of the valves 13a occurs in tracks A to D, which may be followed by a pause, after which follows the next train of data. This pause may be dispensed with, however.
- the program may also be impressed on the recording vehicle in the form of computer codings.
- the appropriate machines for reading and control must then be installed.
- FIG. 5 shows another form of magnetic tape 22 control unit in the device here proposed.
- the data used in FIG. 4 follow one another in the direction of travel of the tape 22.
- the material 8 is fed forward by the conveyor band 5 in the direction of the arrow until its leading edge lies below the row of nozzles 9 and is subject to suction from the suction chamber 6.
- the exposed part of the conveyor band 5 does not need to be shielded.
- the program for printing the design has been inserted in the control unit 20.
- the control unit 20 also contains a supplementary program with which, for example, the apparatus can be started or stopped, the programs and colors can be changed without stopping and control can be changed over from a magnetic-tape to a camera and vice versa.
- a color-sensitive picture-transmission camera, 23 (FIG. 1), if provided, this being connected to the control unit 20 and scans an appropriate colored pattern or color extracts.
- the supplementary program controls the design program pulses so that only the valves 13a of the nozzles 13 in row 9, below which the material 8 already lies, are opened.
- the row of nozzles 9 then prints line by line; and when the material 8 arrives below the row of nozzles 10, the supplementary program releases the nozzles 13 and the pivotal and axial motions of the row 10 for presetting and for opening by pulses from the design program.
- the nozzles 13 in row 10 thereupon apply printing fluid according to track B next to the color according to track A.
- the reading head in the control unit 20 scans in advance the data for the color according to track B, until the first line of color has arrived below. the row 10.
- the data for the colors may also be recorded, on the magnetic tape 22 or the like, offset, so that they can be read by a line head.
- the data for the individual colors are then positioned side by side, displaced by as many lines as there are between the individual nozzle rows 9 to 12 and 9a to 12a. This displacement, which may be whatever is desired, can be variable.
- the closure of the valves 13a of the rows of nozzles takes place in step with the runthrough of the material.
- a second program 24 is inserted into the control unit 20 and is synchronized by the supplementary pro-v gram; then this latter program changes over step from the design program pulses, in step with the run-through of the material 8, as with the starting-up of the rows of nozzles.
- the design program For changing nozzles from a jet nozzle to a spray nozzle, for example the design program cuts out the nozzle row 12 and brings the nozzle row 12a in instead, the tap 21 serving to redirect the printing fluid.
- a second row of nozzles 9a with a separate pump and container 16 is necessary for each color.
- the color pulse trains of one pattern are distributed by the program alternated line by line to the two rows of nozzles.
- Row 9 of the nozzles prints lines 1, 3 and 5 of the pattern, while the row 9a prints the lines 2, 4 and 6. It is always the last line alone which contains data for opening, shutting and cancelling, and this emits the opening, shutting and cancelling pulses for all the preset nozzle rows 9 to 12 and 9a to 12a.
- the printing speed is doubled, trebled and so on, according to the number of rows of nozzles used.
- valve means for controlling each nozzle
- regulator means for regulating the pressure of fluid fed to each row of nozzles
- program control means responsive to the speed of movement of the material along said path and controlling said value means and said regulator means to maintain the quantity of printing fluid applied per unit area of the material, substantially constant, said control means also acting to control said reciprocating and pivoting means.
- Apparatus as claimed in claim 1 comprising a supplementary row of nozzles interposed between adjacent rows of said plurality of rows of nozzles, the nozzles of said supplementary rows of nozzles being different from the nozzles of said plurality of rows of nozzles and being controlled by said program control means.
- each said source of colored printing fluid comprises a container of colored printing fluid and wherein said means for feeding printing fluid comprises pump means for delivering printing fluid from said container to said nozzles, and return pipe means extending from said nozzles to said container so that excess printing fluid is returned from said nozzles to said container.
- the nozzles are multi-jet nozzles.
- Apparatus as claimed in claim 1 comprising means for adjusting the height of each said row of nozzles above said path.
- said program control means comprises a multi-track program tape, and reading heads, said reading heads being arranged in line.
- a number of said rows of nozzles are interconnected to define a group of rows, in each said group, the rows extending parallel and the nozzles in one row being staggered relative to the nozzles in an adjacent row.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Ink Jet (AREA)
- Spray Control Apparatus (AREA)
- Treatment Of Fiber Materials (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19702020445 DE2020445A1 (de) | 1970-04-27 | 1970-04-27 | Verfahren zum kontinuierlichen mehrfarbigen Bedrucken von Bahnenmaterial unter Verwendung von Duesen zum Farbauftragen und entsprechend der Geschwindigkeit gesteuertem Faerbemitteldruck und gesteuerter Duesenoffenzeit |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3717722A true US3717722A (en) | 1973-02-20 |
Family
ID=5769470
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00138006A Expired - Lifetime US3717722A (en) | 1970-04-27 | 1971-04-27 | Apparatus for printing continuous runs of material |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US3717722A (enrdf_load_stackoverflow) |
| AT (1) | AT312545B (enrdf_load_stackoverflow) |
| DE (1) | DE2020445A1 (enrdf_load_stackoverflow) |
| FR (1) | FR2090819A5 (enrdf_load_stackoverflow) |
| GB (1) | GB1284702A (enrdf_load_stackoverflow) |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3915113A (en) * | 1972-10-26 | 1975-10-28 | Cambridge Consultants | Multicolour yarn printing apparatus |
| US3995312A (en) * | 1975-02-28 | 1976-11-30 | Seiscom Delta Inc. | Color dot display |
| US4326204A (en) * | 1980-08-25 | 1982-04-20 | The Mead Corporation | Density control system for jet drop applicator |
| US4369640A (en) * | 1980-08-20 | 1983-01-25 | Wadsworth-Greenwood Corporation | Apparatus for obtaining uniform solid colors or variegated patterns in fabrics |
| US4377080A (en) * | 1980-08-20 | 1983-03-22 | Greenwood Corp. Of America | Apparatus for obtaining variegated patterns |
| US4378564A (en) * | 1980-03-14 | 1983-03-29 | Printos B.V. Of N.L. | Ink jet printing apparatus and process |
| US4460905A (en) * | 1982-03-29 | 1984-07-17 | Ncr Corporation | Control valve for ink jet nozzles |
| US4469026A (en) * | 1979-09-20 | 1984-09-04 | Ibm Corporation | Method and apparatus for controlling drying and detaching of printed material |
| US4628330A (en) * | 1981-12-14 | 1986-12-09 | Nec | Ink-jet recording apparatus |
| US4748043A (en) * | 1986-08-29 | 1988-05-31 | Minnesota Mining And Manufacturing Company | Electrospray coating process |
| US4797686A (en) * | 1985-05-01 | 1989-01-10 | Burlington Industries, Inc. | Fluid jet applicator for uniform applications by electrostatic droplet and pressure regulation control |
| US4829793A (en) * | 1987-03-03 | 1989-05-16 | Burlington Industries, Inc. | Ultra uniform fluid application apparatus |
| US4835208A (en) * | 1987-07-01 | 1989-05-30 | Willett International Limited | Method for applying a composition to a substrate and a composition for use therein |
| EP0401472A1 (en) * | 1989-06-07 | 1990-12-12 | Banfi Trattamenti Tessili S.P.A. | Method of producing color spots in repetitive, non-regular patterns on a fabric layer and apparatus for carrying out the method |
| US5954907A (en) * | 1997-10-07 | 1999-09-21 | Avery Dennison Corporation | Process using electrostatic spraying for coating substrates with release coating compositions, pressure sensitive adhesives, and combinations thereof |
| WO2005028731A1 (en) * | 2003-09-22 | 2005-03-31 | Ten Cate Advanced Textiles B.V. | Method and device for digitally upgrading textile |
| WO2006100272A1 (en) * | 2005-03-22 | 2006-09-28 | Ten Cate Advanced Textiles B.V. | Method for providing a localised finish on a textile article |
| US20070222805A1 (en) * | 2006-02-03 | 2007-09-27 | Moscato Anthony V | Use of a sense mark to control a printing system |
| US20090016785A1 (en) * | 2007-06-29 | 2009-01-15 | Haan Henderikus A | Use of a sense mark to control a printing system |
| US20090045372A1 (en) * | 2005-03-22 | 2009-02-19 | Johannes Antonius Craamer | Composition for drop on demand finishing of a textile article |
| US20110019876A1 (en) * | 2009-07-21 | 2011-01-27 | Galoppo Travis J | Systems And Methods For Detecting Alignment Errors |
| US20180009239A1 (en) * | 2015-04-14 | 2018-01-11 | Hewlett-Packard Indigo B.V. | Fluid application |
| US10370214B2 (en) | 2017-05-31 | 2019-08-06 | Cryovac, Llc | Position control system and method |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3969779A (en) | 1974-07-30 | 1976-07-20 | Deering Milliken Research Corporation | Dyeing and printing of materials |
| ZA747960B (en) | 1974-01-03 | 1975-12-31 | Deering Milliken Res Corp | Jet dyeing apparatus |
| AT349415B (de) * | 1975-07-28 | 1979-04-10 | Zimmer Peter Ag | Spritzdruckeinrichtung zum bemustern einer ware |
| DE2511728C2 (de) * | 1975-03-18 | 1984-03-01 | Lutz & Ulmer, 7312 Kirchheim | Vorrichtung zum diskontinuierlichen Auftragen einer Flüssigkeit auf laufendes im wesentlichen eindimensionales Fasergut |
| DE2660302C2 (de) * | 1975-07-28 | 1983-03-24 | Maschinenfabrik Peter Zimmer AG, Kufstein, Tirol | Einrichtung zum Aufbringen von Mustern auf eine Ware, vorzugsweise eine Warenbahn |
| US4116626A (en) * | 1976-05-17 | 1978-09-26 | Milliken Research Corporation | Printing of pattern designs with computer controlled pattern dyeing device |
| DE2758127A1 (de) * | 1977-12-24 | 1979-06-28 | Scheibler Peltzer & Co | Vorrichtung zum farbigen, insbesondere mehrfarbigen bemustern von kontinuierlich bewegten, insbesondere textilen warenbahnen |
| JPS62501301A (ja) * | 1984-11-12 | 1987-05-21 | コモンウエルス サイエンテイフイツク アンド インダストリアル リサ−チ オ−ガナイゼイシヨン | ジュットプリンタ用液滴流整列技術 |
| DE3875368T2 (de) * | 1987-05-01 | 1993-05-19 | Milliken Res Corp | Verfahren zur herstellung von mustern auf gewebe und hergestelltes material. |
| JPH0618800Y2 (ja) * | 1988-09-27 | 1994-05-18 | 日東紡績株式会社 | 高圧流体加工装置 |
| US5855034A (en) * | 1996-12-20 | 1999-01-05 | Milliken Research Corporation | Method and apparatus for cleaning colorant applicators |
| US6013347A (en) * | 1997-07-16 | 2000-01-11 | 3M Innovative Properties Company | Method of continuous tone imaging to provide an imaged high loft mat product |
| BE1013539A6 (nl) * | 2000-05-25 | 2002-03-05 | Picanol Nv | Werkwijze en inrichting voor het aanbrengen van materie op een draad bij een textielmachine. |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2152077A (en) * | 1935-02-06 | 1939-03-28 | Behr Manning Corp | Production of piled surfaces in pattern form |
| US3135828A (en) * | 1962-04-20 | 1964-06-02 | Luther G Simjian | Apparatus for providing solid reproductions |
| US3181987A (en) * | 1961-05-08 | 1965-05-04 | Image Designs Inc | Methods and systems for reproducing color patterns in manufactured articles, particularly mosaic tile |
| US3247815A (en) * | 1962-11-06 | 1966-04-26 | Image Designs Inc | Systems and methods for reproducing colored patterns in carpets and other manufactured articles |
| US3402697A (en) * | 1964-03-13 | 1968-09-24 | Devilbiss Co | Film thickness control for electrostatic coating systems |
| US3523158A (en) * | 1967-01-30 | 1970-08-04 | Varian Associates | Electrographic color image printing apparatus employing triad color strip zone development |
| US3560641A (en) * | 1968-10-18 | 1971-02-02 | Mead Corp | Image construction system using multiple arrays of drop generators |
| US3564120A (en) * | 1968-10-18 | 1971-02-16 | Mead Corp | Image construction system with arcuately scanning drop generators |
-
1970
- 1970-04-27 DE DE19702020445 patent/DE2020445A1/de active Pending
-
1971
- 1971-04-19 AT AT331171A patent/AT312545B/de not_active IP Right Cessation
- 1971-04-26 GB GB01309/71D patent/GB1284702A/en not_active Expired
- 1971-04-27 US US00138006A patent/US3717722A/en not_active Expired - Lifetime
- 1971-04-27 FR FR7115035A patent/FR2090819A5/fr not_active Expired
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2152077A (en) * | 1935-02-06 | 1939-03-28 | Behr Manning Corp | Production of piled surfaces in pattern form |
| US3181987A (en) * | 1961-05-08 | 1965-05-04 | Image Designs Inc | Methods and systems for reproducing color patterns in manufactured articles, particularly mosaic tile |
| US3135828A (en) * | 1962-04-20 | 1964-06-02 | Luther G Simjian | Apparatus for providing solid reproductions |
| US3247815A (en) * | 1962-11-06 | 1966-04-26 | Image Designs Inc | Systems and methods for reproducing colored patterns in carpets and other manufactured articles |
| US3402697A (en) * | 1964-03-13 | 1968-09-24 | Devilbiss Co | Film thickness control for electrostatic coating systems |
| US3523158A (en) * | 1967-01-30 | 1970-08-04 | Varian Associates | Electrographic color image printing apparatus employing triad color strip zone development |
| US3560641A (en) * | 1968-10-18 | 1971-02-02 | Mead Corp | Image construction system using multiple arrays of drop generators |
| US3564120A (en) * | 1968-10-18 | 1971-02-16 | Mead Corp | Image construction system with arcuately scanning drop generators |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3915113A (en) * | 1972-10-26 | 1975-10-28 | Cambridge Consultants | Multicolour yarn printing apparatus |
| US3995312A (en) * | 1975-02-28 | 1976-11-30 | Seiscom Delta Inc. | Color dot display |
| US4469026A (en) * | 1979-09-20 | 1984-09-04 | Ibm Corporation | Method and apparatus for controlling drying and detaching of printed material |
| US4378564A (en) * | 1980-03-14 | 1983-03-29 | Printos B.V. Of N.L. | Ink jet printing apparatus and process |
| US4369640A (en) * | 1980-08-20 | 1983-01-25 | Wadsworth-Greenwood Corporation | Apparatus for obtaining uniform solid colors or variegated patterns in fabrics |
| US4377080A (en) * | 1980-08-20 | 1983-03-22 | Greenwood Corp. Of America | Apparatus for obtaining variegated patterns |
| US4326204A (en) * | 1980-08-25 | 1982-04-20 | The Mead Corporation | Density control system for jet drop applicator |
| US4628330A (en) * | 1981-12-14 | 1986-12-09 | Nec | Ink-jet recording apparatus |
| US4460905A (en) * | 1982-03-29 | 1984-07-17 | Ncr Corporation | Control valve for ink jet nozzles |
| US4797686A (en) * | 1985-05-01 | 1989-01-10 | Burlington Industries, Inc. | Fluid jet applicator for uniform applications by electrostatic droplet and pressure regulation control |
| US4748043A (en) * | 1986-08-29 | 1988-05-31 | Minnesota Mining And Manufacturing Company | Electrospray coating process |
| US4829793A (en) * | 1987-03-03 | 1989-05-16 | Burlington Industries, Inc. | Ultra uniform fluid application apparatus |
| US4835208A (en) * | 1987-07-01 | 1989-05-30 | Willett International Limited | Method for applying a composition to a substrate and a composition for use therein |
| EP0401472A1 (en) * | 1989-06-07 | 1990-12-12 | Banfi Trattamenti Tessili S.P.A. | Method of producing color spots in repetitive, non-regular patterns on a fabric layer and apparatus for carrying out the method |
| US5954907A (en) * | 1997-10-07 | 1999-09-21 | Avery Dennison Corporation | Process using electrostatic spraying for coating substrates with release coating compositions, pressure sensitive adhesives, and combinations thereof |
| US7559954B2 (en) | 2003-09-22 | 2009-07-14 | Ten Cate Advances Textiles B.V. | Method and device for digitally upgrading textile |
| WO2005028731A1 (en) * | 2003-09-22 | 2005-03-31 | Ten Cate Advanced Textiles B.V. | Method and device for digitally upgrading textile |
| US20070026213A1 (en) * | 2003-09-22 | 2007-02-01 | Craamer Johannes A | Method and device for digitally coating textile |
| US20070061980A1 (en) * | 2003-09-22 | 2007-03-22 | Craamer Johannes A | Method and device for digitally upgrading textile |
| US7892608B2 (en) | 2003-09-22 | 2011-02-22 | Ten Cate Advanced Textiles B.V. | Method and device for digitally coating textile |
| US20110033691A1 (en) * | 2003-09-22 | 2011-02-10 | Ten Cate Advanced Textiles B.V. | Composition, method and device for digitally coating textile |
| WO2006100272A1 (en) * | 2005-03-22 | 2006-09-28 | Ten Cate Advanced Textiles B.V. | Method for providing a localised finish on a textile article |
| US20090045372A1 (en) * | 2005-03-22 | 2009-02-19 | Johannes Antonius Craamer | Composition for drop on demand finishing of a textile article |
| US8293336B2 (en) | 2005-03-22 | 2012-10-23 | Ten Cate Advanced Textiles B.V. | Method of producing a textile article having a functional finish |
| US20090162621A1 (en) * | 2005-03-22 | 2009-06-25 | Johannes Antonius Craamer | Method for Providing a Localised Finish on Textile Article |
| US7967407B2 (en) | 2006-02-03 | 2011-06-28 | R.R. Donnelley | Use of a sense mark to control a printing system |
| US20070222805A1 (en) * | 2006-02-03 | 2007-09-27 | Moscato Anthony V | Use of a sense mark to control a printing system |
| US20090016785A1 (en) * | 2007-06-29 | 2009-01-15 | Haan Henderikus A | Use of a sense mark to control a printing system |
| US8753026B2 (en) | 2007-06-29 | 2014-06-17 | R.R. Donnelley & Sons Company | Use of a sense mark to control a printing system |
| US10279605B2 (en) | 2007-06-29 | 2019-05-07 | R.R. Donnelley & Sons Company | Printing system |
| US20110019876A1 (en) * | 2009-07-21 | 2011-01-27 | Galoppo Travis J | Systems And Methods For Detecting Alignment Errors |
| US9098903B2 (en) | 2009-07-21 | 2015-08-04 | R.R. Donnelley & Sons Company | Systems and methods for detecting alignment errors |
| US20180009239A1 (en) * | 2015-04-14 | 2018-01-11 | Hewlett-Packard Indigo B.V. | Fluid application |
| US10232639B2 (en) * | 2015-04-14 | 2019-03-19 | Hp Indigo B.V. | Fluid application |
| US10370214B2 (en) | 2017-05-31 | 2019-08-06 | Cryovac, Llc | Position control system and method |
Also Published As
| Publication number | Publication date |
|---|---|
| AT312545B (de) | 1974-01-10 |
| GB1284702A (en) | 1972-08-09 |
| FR2090819A5 (enrdf_load_stackoverflow) | 1972-01-14 |
| DE2020445A1 (de) | 1971-11-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3717722A (en) | Apparatus for printing continuous runs of material | |
| US4914522A (en) | Reproduction and enlarging imaging system and method using a pulse-width modulated air stream | |
| DE69333595T2 (de) | Verfahren und Vorrichtung zum Steuern eines Flüssigkeitstrahls um ein Muster zu schaffen | |
| DE69317560T2 (de) | Tintenstrahldrucker | |
| DE60028122T2 (de) | Verbessertes Mehrfarbentampondrucksystem | |
| EP0968832B1 (en) | Ink jet recording apparatus | |
| GB2242298B (en) | Ink jet recording head and ink jet recorder incorporating that recording head | |
| US4033154A (en) | Electronic control system for dyeing and printing materials | |
| AU528726B2 (en) | Control of multiple nozzle jet printers | |
| EP0500068A3 (en) | Ink jet recording head, recording apparatus using same and method for manufacturing same | |
| EP0088630A2 (en) | Variable size ink printing method and apparatus | |
| KR900702332A (ko) | 2중 모드 잉크 젯트 인쇄기 | |
| EP0941852A3 (en) | Ink jet recording apparatus and method | |
| US20020180816A1 (en) | Compensation method for overlapping print heads of an ink jet printer | |
| CN101164777B (zh) | 用于控制撒粉器的方法 | |
| DE3431577A1 (de) | Verfahren zur herstellung echter wasserzeichen in papier | |
| US5163370A (en) | Powdering device for printed articles | |
| US5216952A (en) | Brush-type dampening unit in a rotary printing machine | |
| US3541959A (en) | Fluid amplifier in ink control arrangement for printing presses | |
| US4547921A (en) | Pattern dyeing of textile materials such as carpet | |
| JP2003342867A (ja) | 糸の先染め方法及び染め装置 | |
| JPS55109672A (en) | Ink jet recording method | |
| DE10105998B4 (de) | Drucker | |
| JP2023178041A (ja) | 刺繍システム | |
| US6361134B1 (en) | Flat bed raster drawing machine |