US3707851A - Refrigeration system efficiency monitor - Google Patents

Refrigeration system efficiency monitor Download PDF

Info

Publication number
US3707851A
US3707851A US3707851DA US3707851A US 3707851 A US3707851 A US 3707851A US 3707851D A US3707851D A US 3707851DA US 3707851 A US3707851 A US 3707851A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
system
voltage
means
refrigeration
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
R Mcashan
Original Assignee
Mach Ice Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Abstract

A monitor for monitoring and comparing the efficiency of operating conditions in a refrigeration system is disclosed. The monitor includes a first and second sensing means, such as thermistors, for sensing and comparing the values of two conditions in the system, such as an ambient temperature condition and the temperature of the refrigerant in the system, where these temperatures have a known relationship. A first alarm signal or indication is provided when the difference between these temperatures exceeds a predetermined amount, and a second alarm signal or indication is provided when the differences between these temperatures is less than a predetermined amount. The monitor also includes a delay circuit for delaying the application of voltage to the mechanism until a preset period after start up of said refrigeration system, and an alarm is also given in the event electric power is lost to the refrigeration system.

Description

United States Patent 1 McAshan, Jr.

[54] REFRIGERATION SYSTEM EFFICIENCY MONITOR [75] Inventor: Robert B. McAshan, Jr., Houston,

Tex.

[73] Assignee: Machine Ice Co., Houston, Tex.

[22] Filed: Oct. 28, 1970 [21] Appl. No.: 84,837

[52] U.S. Cl. ..62/125, 62/129, 62/130, 7

[51] Int. Cl ..F25b 49/00 [58] Field of Search ..62/l25, 127, 129, 130, 158, 62/208, 209; 165/11 [56] References Cited UNITED STATES PATENTS 3,002,226 10/1961 Warthen ..l65/ll X 3,415,071 12/1968 Kompelien ..62/158 3,127,754 4/1964 Mobarry ..62/158 2,037,155 4/1936 Stuart 62/209 3,220,206 1 H1965 Armentrout et al.... ..62/127 1 Jan.2,1973

Primary Examiner-William F. ODea Assistant ExaminerP. DQ'Ferguson Attorneyl-lyer, Eickenroht, Thompson & Turner 57 ABSTRACT A monitor for monitoring and comparing the efficiency of operating conditions in a refrigeration system is disclosed. The monitor includes a first and second sensing means, such as thermistors, for sensing and comparing the values of two conditions in the system, such as an ambient temperature condition and the temperature of the refrigerant in the system, where these temperatures have a known relationship. A first alarm signal or indication is provided when the difference between these temperatures exceeds a predetermined amount, and a second alarm signal or indication is provided when the differences between these temperatures is less than a predetermined amount. The monitor also includes a delay circuit for delaying the application of voltage to the mechanism until a preset period after start up of said refrigeration system, and an alarm is also given in the event electric power is lost to the refrigeration system.

23 Claims, 4 Drawing Figures PATENTEDJAM 2 m3 SHEET 1 OF 2 r U 0 E m 9 mm 1 WATER IN INVENTOR. ROBERT B- M AsHA-,JR.

ATTOENE Y5 SHEET 2 OF 2 PATENTEBJM 2 ms INVENTOR. Roaem B. M-CASHAMJR. BY 5 7 Mm /W ATTORNEYS REFRIGERATION SYSTEM EFFICIENCY MONITOR This invention relates to a refrigeration system efficiency monitor, and in one of its aspects to such a monitor in which the relationship between at least two operating conditions of the system are monitored and compared, and a continuous indication of this relationship is provided.

Many refrigeration system monitors or alarms have I been provided which give an alarm signal when the refrigeration system becomes inoperative, or when some unusual condition which is indicative of a malfunction exists in the system. In such systems the alarm given is an indication that the system must be shut down and a repairman called, and generally means that one or more of the components in the system is defective. These alarms do not provide for continual efficiency monitoring which is designed to discover unusual conditions in the refrigeration system well be fore malfunction of some component occurs or before it is actually necessary to shut down the system. Monitoring the efficiency of the system is particularily important in refrigeration systems as many conditions that exist, such a low or high amount of refrigerant, a clogged condenser, or a dirty filter can lead to component breakdown if not detected early, but can be corrected with little disruption of service if discovered when they begin to cause some change in operating efficiency of the system. Also, in many refrigeration systems, such as commercial ice making machines, or commercial freezers, shut down, repair, and loss of service time and loss of production incidental to shut down and repair and because of the necessary re-start period, generally means lost revenue, and possible loss of perishables. Thus, it is highly desirable that such shut downs be avoided or minimized where possible, and that service calls be scheduled on a more timely basis rather than after a breakdown.

Also, most refrigeration system alarms merely signal the state of one condition in the system without reference as to how the rest of the system is functioning. Thus, the repairman only knows that a certain component is either good or bad or that a certain pres sure or temperature is high or low, and he has to independently relate this condition to other conditions in the system in order to evaluate the performance of the whole system.

It is thus an object of this invention to provide a refrigeration system efficiency monitor which provides an alarm in response to an abnormal condition in the refrigeration system prior to the need for system shutdown or repair.

Another object of this invention is to provide such a monitor wherein more information is given concerning the condition of the refrigeration system than with previous refrigeration system monitors or condition alarm mechanisms.

It is a further object of this invention to provide such monitor in which the relationship between two or more conditions in the system is monitored and deviations in this relationship from normal are indicated.

It is a further object of this invention to provide such a monitor in which distinctive indications of different deviations in this relationship are provided.

It is another object of this invention to provide such a monitor in which a system temperature is continuously compared to an ambient temperature and distinctive indications are provided when the difference between these temperatures is greater than a predetermined amount, and when those temperature are less than a predetermined amount.

It is another object of this invention to provide an efficiency monitor requiring no entry into the sealed refrigeration system.

One of the most perplexing problems in refrigeration systems maintenance is the frequency of service calls made on systems in which power has been inadvertently lost, resulting in hours or days of disrupted service, and it is another object of this invention to provide such a monitor including an alarm which provides another distinctive indication when electric power to the refrigeration system is disrupted.

Also, it is desirable that when the refrigeration system is turned on that the monitor not be activated until the system has reached its normal operating conditions, and that this be done without the necessity of the operator first turning on the refrigeration system and then returning several minutes later to turn on the monitor. Also, the time necessary for many refrigeration systems to reach their normal operating state will vary with the prevalent weather conditions.

It is thus another object of this invention to provide such a monitor in which the monitoring of the condition of the refrigeration system is automatically delayed until a predetermined period after the refrigeration system has been turned on.

It is another object of this invention to provide such a delay which is automatically varied to compensate for changes in weather conditions or outside room tem peratures.

These and other objects are accomplished in accordance with this invention by providing a monitor or alarm mechanism having a first means responsive to a ambient first condition, such as an ambient air temperature around a refrigeration system, and a second means responsive to a second condition in the refrigeration system having a known relationship to the ambient first condition. For example, the second condition may be the temperature of a circulating liquid refrigerant at some point in the system and this temperature can be sensed by a thermistor. Since variations in the relationship between the ambient first con-' dition and the second condition are indicative of the effective heat rejection of the refrigeration system, the mechanism of this invention also includes a third means responsive to variations in the relationship of the refrigeration system conditions being monitored and providing a first indication or alarm when this relationship varies in excess of a certain amount in one direction, and a second indication or alarm distinctive of the first indication when this relationship varies in excess of a certain amount in the opposite direction. For example, if the refrigeration system is operating normally and the temperature differential between an ambient air temperature and a temperature of the liquid cooling medium is 20, then the monitor alarm mechanism of the present invention may provide an indication on a red light when this differential exceeds 21, and an indication on a green light when this differential is less than 19. By proper selection of the point at which each of the indications will register, the

system operator can be alerted of a deviation from normal in the refrigeration system well in advance of the point where it represents system breakdown. Also, depending on which color light is on he knows whether the temperature difference being monitored is high or low and can relate this to various types of malfunctions. Also, if desired another sensing means may be installed on another element such as the evaporator to indicate a change in evaporator load in concert with the other two sensors.

Another novel aspect of this invention is that a switching means is provided that responds to interruption of electric power to the refrigeration system to give a third distinctive indication when power to the refrigeration system has been interrupted.

Also, the invention includes a delay circuit connected between the source of electric power to the refrigeration system and the monitor so that the application of power to operate the alarm mechanism is automatically delayed until some predetermined period after the time that the refrigeration system is turned on. The delay period can be set for the appropriate period and the operator need only turn on the refrigeration system and the monitor will be automatically turned on after the initial start up period, and will be subsequently turned on each time any automatic device turns on the refrigeration system.

The delay circuit also includes means, such as a thermistor, which responds to outside refrigeration system air temperature or weather conditions to vary the period of delay accordingly.

In the drawings, wherein like reference numerals are used throughout to designate like parts, and wherein is illustrated a preferred and exemplary embodiment of the invention,

FIG. 1A is a schematic diagram of a typical refrigeration system utilizing the present invention,

FIG. 1B is a schematic diagram of the preferred circuitry of the monitor constituting this invention;

FIG. 2 is a perspective view, including a partial cutout, illustrating a representative form of a connector for providing a thermal connection between a thermistor and liquid refrigerant passing through the refrigeration system of FIG. 1, and

FIG. 3 is a sectional view taken at 3-3 in FIG. 2.

Referring to FIG. 1, a refrigeration system is illustrated as utilizing the invention. System 10 is an ice maker having a closed system in which a cooling medium, or refrigerant is circulated in heat exchange with air and water from which ice is formed. It is to be understood that system 10 is merely illustrative of the type of refrigeration system which may employ the present invention and that the present invention is adaptable for use on all types of refrigeration or air conditioning systems employing the same or different cooling mediums. Also, while specific temperatures in system 10 are monitored and compared by the present invention, the present invention may be used to monitor and compare other variable conditions in the system. As used herein, the term condition refers to the specific temperature, pressure or other measurable factor at particular points in the refrigeration system, the value of which has some relationship to the condition of the refrigeration system.

Refrigeration system 10 includes a condenser 11 through which air is drawn by a fan 12. Condenser 11 includes an inlet 13, an outlet 14, a compressor 15 connected to the inlet side of condenser 11, and a receiver 16 and expansion valve 17 connected to the outlet side thereof. Expansion valve 17 and compressor 15 are connected together through an evaporator or ice maker 18 through which water passes to be frozen. System 10 thus forms a closed loop and liquid-gaseous refrigerant is circulated through the system to act as the primary cooling medium. Refrigerant enters inlet 13 in a gaseous state and gives up heat in condenser 11 to the air forced over condenser 11, and emerges at outlet 14 in a liquid state. In the description that follows of the present invention and by way of illustration of the present invention, the ambient temperature of the air as it enters the condenser 11 before heat exchange with the refrigerant will be sensed and compared with the temperature of the liquified refrigerant at or near outlet 14. System 10 is connected to a source of A.C. electrical power (not shown) through a switch or thermostat 21 and a plug 22.

The ambient air temperature is sensed by a first means, illustrated as a thermistor RA which responds to the temperature of the ambient air entering into condenser 11 and provides an electrical voltage proportional to this temperature. The temperature of the liquid refrigerant is sensed by a second means illustrated as a thermistor RL, which responds to the temperature of the refrigerant at or near outlet 14 and provides a second electrical voltage proportional to this temperature. Therrnistor RA is mounted adjacent condenser 11 at 19 so that it is responsive to the ambient air temperature as it enters the condenser 11, and thermistor RL is mounted as hereinafter described in more detail at point 20 near outlet 14 where it is responsive to the temperature of the liquid refrigerant. These thermistors have the characteristic that their effective electrical resistance increases with a decrease in temperature, and decreases with an increase in temperature. Thennistors RA and RL form part of a balanced voltage divider network which includes variable resistors R, and R,. One terminal of thermistor RL is connected to a regulated voltage source or 3+ and one terminal of thermistor RA is connected to a low electrical potential reference point, such as ground. Thermistors RA and RL are connected together at their other terminals at point 23, and variable resistors R, is connected between point 23 and variable resistor R, which is connected to ground.

When system 10 is operating properly throughout its range of operating temperatures, the temperature differential between the ambient air and the temperature of the liquid refrigerant at outlet 14 will generally be within a range specified by the manufacturer. For example, in one refrigeration system using this invention the manufacturer has specified the following differentials:

Ambient Temp. F Liquid Temp. F Difference S0 65 15 Thus, at any operating temperature of the system, if this differential is varied from by any substantial amount then it is likely that some malfunction is occurring in the system. By way of example if the ambient temperature is 50, but the difference between it and the liquid temperature is l3.5 or 16.5 instead of then, in each case, the operator should be alerted that an abnormal condition exists.

The values of thermistors RA and RL and resistors R, and R,, are selected so that when system 10 is functioning normally the values of [(RA)(R,+R,,) ]/(RA+R,+R,, and Thermistor RL, are equal. Thus, if the B+ voltage applied to thermistor RL is 6 volts, the voltage at point 24 will be approximately 3 volts. The effective resistance of both thermistors RA and RL will change in response to variations in the ambient air temperature and the refrigerant liquid temperature. However, with the voltage divider network shown and with the proper setting of variable resistors R, and R,,, when system 10 is operating normally in the temperature ranges set out inTable A, the effective resistance of the thermistors will vary so that the voltage at point 24 is still approximately three volts. If either the ambient or liquid temperature varies so that the temperature difference therebetween is less than or exceeds the specified difference of Table A, then the voltage at point 24 will then either more or less than three volts, indicating a possible problem in system 10.

Thermistors RA and RL are preferably selected so that they have substantially the same effective resistance when thermistor RA is at some operating temperature of the ambient air in the mid range of the normal operating temperature, for example 77, and thermistor RL is at the corresponding normal temperature for the cooled liquid coolant, for example 85. In order to compensate for the fact that neither the usual refrigeration system or the thermistors used have completely linear relationships throughout the temperature ranges involved, R,, which is a small resistance, is adjusted to compensate for nonlinearites in the high temperature ranges, and R,,, which is a higher resistance, is adjusted to compensate for nonlinearites in the lower temperature ranges. In the circuit illustrated in FIGS. 1A and 18 a value of 30 ohms for R, is used and a value of 236,000 ohms is used for R,,. When the temperatures monitored are high, the resistances of thermistors RA and RL will be relatively low, so that R,, although small, will have some effect on the voltage at point 24.-When the temperatures are low, then the resistances of RA and RL will be high and R, will have little effect but R, will effect the voltage at point 24.

The voltage at point 24 and on line D in FIG. 1A thus bears a relationship to the condition of refrigeration system .10. In the example given, if at or near 3 volts, then the systemis operating normally. If above or below this figure by more than just a nominal amount, some malfunction or abnormal condition is indicated.

Means is also provided which responds to thelvoltage on line D to provide a first indication when this voltage exceeds its nominal value by some predetermined.

amount, and a second indication distinctive of the first indication when this voltage is less than the nominal voltage by a certain amount. As illustrated in FIG. 18 this means includes two independent power circuits 25 and 26 each for powering a distinctive indicating means, such as respectively a green light bulb I,, and a red light bulb I Each of circuits 25 and 26 are connected'at their inputs to line D. Green light I, is caused to flash when the voltage on line D is some predetermined value below the nominal three volts, indicating that the difference between ambient and liquid temperatures is lower than normal, and red light I, is caused to flash when the voltage on line D is above the nominal 3 volts, indicating that the difference between ambient and liquid temperatures is higher than normal.

Low temperature differential indicator power circuit 25 is coupled to line D through a current limiting resistor R, connected to the base of a PNP transistor 0,. Q, has the characteristic that when the voltage on line D is at some value from slightly less than 3 volts and above, then it is cut off and does not conduct. The temperature difference at points 19 and 20 may fall to some point below its normal value before a problem in the system is indicated. Thus, Q, is biased so that it is not driven to conduction until the voltage on line D reaches some predetermined level below 3 volts corresponding to a temperature differential on the low side greater than normal. For example, within the range of temperature differentials between ambient air and liquid coolant set out in Table A, the difference indicated may vary by as much as plus or minus l.0 at ambient and by higher amounts at the other temperature indicated before a problem in the refrigeration system is indicated. Thus, 0, is set to conduct when the voltage on line D is at some value below three volts which represents at 70 ambient a greater than 10 drop in the temperature differential between points 19 and 20. The point of conduction of Q, is determined by the voltageat line D. The emitter voltage of Q, is determined by the tap setting of R Resistors R R and R, constitute a voltage divider between 8+ and GND. R is preferably a variable resistor so that the emitter voltage may be varied to permit conduction of Q, at different voltage levels on line D less than 3 volts.

Transistor Q, is connected through resistor R,, to a Schmitt trigger 27 comprising transistors Q Q Q and 0 When transistor Q, is not conducting the transistor combination 0 -0 is normally on so that the voltage at the collector of Q, is low, and the transistor combination 0 -0, is normally off. When Q, conducts, Schmitt trigger 27 switches states causing the voltage at the collector of Q to go high and Q and Q, to turn on. The collector of Q, is connected to the base of a transistor 0,, which is an emitter follower through a resistor R and the change of state of Schmitt trigger 27 causes the voltage at the emitter of transistor On to raise. The emitter ofQ,, is connected through a resistor R to an oscillator circuit 28 including transistors 0,, and Q and when the voltage at the emitter of Q ,1 is high, oscillator 28 will be driven and will oscillate at a repetition rate determined by an RC timing circuit including resistors R and R and capacitor C,,,. A series of pulses will be thus provided at the rate of the oscillator. Light I, is connected on one side to the emitter of Q and on the other side to a D.C. battery 29, and as 0,, conducts its emitter is conducted to ground causing the lamp I, to light. Lamp I, will thus flash at the repetition rate of oscillator 28.

With the exception of the input section the high temperature differential indicator power circuit 26 is identical to circuit 25, and includes a Schmitt trigger 30 coupled by an emitter follower Q to an oscillator 31 which causes red light I, to flash when a higher than normal temperature differential between points 19 and 20 is present.

The input section of circuit 26 includes a transistor Q, having its base connected through a current limiting resistor R to line D. Transistor O is a NPN transistor which is normally biased ofl when the voltage on line D is from a value slightly higher than 3 volts to less values. As the temperature differential between ambient air and liquid coolant increases to some point beyond normal variations, such as 1.0 when ambient air is at 70, then the base of Q becomes more positive until O is caused to conduct. The point of conduction is determined by the values of resistors R R R and R the latter three forming a voltage divider between 3+ and the emitter of Q Resistor R is preferably a variable resistor so that the point of conduction of can be varied. When Q conducts circuit 26 functions to cause light I to flash as described with respect to the operation of circuit 25.

In order to insure that when one of lights I or I is flashing that the other light will not be inadvertently flashed, diodes D35 and D36 are connected respectively between the emitters of On nd Or; to the emitters of Q and 0 Thus, when the voltage at the emitter of O is high a voltage will be conducted through D35 to bias transistor Q14 off, and when the voltage at the emitter of Q is high a voltage will be conducted to transistor 0 to bias it off.

Also, shown in FIG. 1B is a power supply circuit 32 which provides a source of regulated B+ voltage to thermistor RL and the power circuits 25 and 26. Since it is desired that the monitoring provided by this invention not begin until some time after the refrigeration system has been turned on, it is preferred that power supply circuit 32 automatically delay the application of B+ for a predetermined period after system 10 has been turned on.

Power supply circuit 32 is connected to a source of A.C. electrical power through line B, switch 21 and plug 22. An input section 33 of power supply 32 includes a voltage regulating zener diode D a rectifier diode D and a filter section including capacitors C C and filter choke L,. A lamp I some color other than red or green, is connected in series in line E to provide an indication that plug 22 is connected to a source of A.C. power with line E connected to the ungrounded side of the A.C. A regulated DC. voltage of approximately 13 volts is thus provided at the output of section 33 and on line 34. Line 34 is the voltage supply line for the remainder of power supply 32 to be described.

Connected to the output of section 33 in power supply 32 is an oscillator 35 responding to the voltage on line 34 to provide a series of pulses at a predetermined repetition rate. In the preferred embodiment illustrated in FIG. 1B oscillator 35 includes unijunction transistor Q transistor Q and their associated components. The gate of unijunction transistor Q is preferably connected to line 34 though a thermistor RT and to ground through a charging capacitor C Thermistor RT is preferably placed where it is exposed to outside refrigeration system temperatures, such as atmospheric weather conditions, and its resistance is thus varied with changing weather conditions to change the voltage on the gate of unijunction transistor Q Thermistor RT, like thermistors RA and RL has a negative temperature coefficient. Thus, differing repetition rates of oscillator 35 can be provided to automatically vary the delay of power supply 32 to suit differing weather conditions. Of course, if the temperatures in the environment of systems 10 remains fairly constant, RT can be a fixed resistor of suitable value or a variable resistor. The repetition rate for oscillator 35 is determined by the values of RT and C When the current at the gate of Q reaches its peak point current, Q fires and C is discharged through a choke L connected between the second base of 0 and ground. Q is thus caused to conduct providing a negative pulse at the collector of Q The collector of 0 is connected through a capacitor C to the base of a PNP transistor Q in which the pulse is inverted and rectified and supplied through a diode D to a timing capacitor C which in the embodiment illustrated is 200 mfd. The gate of a unijunction transistor Q forming a second oscillator 36, is connected to C and Q conducts to discharge C when the voltage on C reaches the proper level so that the peak point current of the gate of Q is reached. Each pulse supplied to C through diode D is accumulated by capacitor C until the firing voltage is reached so that Q 21 does not fire until oscillator 35 has cycled through a large number of repetitions. A resistor R is connected to the second base of 0 and discharges C to ground when Q fires. Thus, the repetition rate of oscillator 35 is set by RT and C so that the firing voltage on C m is built up to the proper level at the end of the desired delay period.

The flrst base of Q is connected through a capacitor C to the collector of Q that a small negative pulse is provided to this base for each cycle of oscillator 35. This small negative pulse has the effect of substantially reducing the peak point current required at the gate of Q to cause it to fire.

An SCR, 0 is connected by its power electrodes across the voltage on line 34, through a resistor R connected at point 37 to Q The gate electrode of Q is connected to the second base of Q Q operates as a latch and when Q21 fires Q22 switches to cause current to conduct through R thus lowering the voltage at point 37. The base of a transistor Q23 is connected through resistor R to point 37, and through its emitter to line 34. The collector of transistor Q23 is connected through a resistor R to a zener diode D and the base of a transistor 0 Thus, when Q22 fires, Q conducts and a regulated voltage at the value of zener diode D is maintained on the base of Q21- The collector of Q is connected to line 34, and its emitter provides a 8+ output for power supply 32 which is, for example, a regulated 6 volts D.C., representing a voltage drop of 7 volts in Q21.

Another novel feature of this invention is the provision of a means for automatically signaling loss of operating power to refrigeration system 10. In FIG. 18 this means is illustrated in its preferred form as a control circuit 38 including an input power supply section 39 and an output switching circuit 40. Alternating current voltage to section 39 is obtained directly from the source of supply voltage to refrigeration system 10 at plug 22 through line C and capacitor C This voltage is rectified by diodes D and D and regulated to a 6 volt DC. at point 41 by a zener diode D Also connected to point 41 is the 6 volt D.C. battery 29 which provides the voltage for flashing lamps l, and I The regulated voltage at point 41, when AC. power is supplied to system 10, thus provides a charging voltage to battery 29.

Switching circuit 38 includes a transistor On which is connected through its collector and a resistor R to diodes D and D Diodes D and D are connected respectively to the base of in lamp control circuit 25, and the base of Q in lamp control circuit 26. The emitter of transistor Q1 is connected to point 41 and its base is connected through a diode D and capacitor C, to line C. Diode D rectifies the AC. voltage on line C and it is filtered at the base of 0,, by C and R so that when the AC. power to systems) is on, a bias voltage sufficient to bias transistor 0 off is provided at the base of 01,. However, when the AC. supply voltage is interrupted, this bias is removed and transistor Q11 conducts causing a driving voltage to be conducted through diodes D and D to drive transistor oscillators 28 and 31 simultaneously causing lamps I, and I to flash. Since the AC. input to power supply 32 is off no 8+ is provided to circuits 25 and 26 and the biasing voltages through D and D will not be present. Thus, the lamp oscillators 28 and 31 will be free running. A visual indication of disruption of power to refrigeration system is thus provided which is distinctive of the indications provided when temperatures in the system are high or low.

FIGS. 2 and 3 show a preferred means for mounting thermistor RL adjacent to outlet 14 and at point 20. A standard copper tubing tee fitting 42 is split along the bottom and it is placed around tubing 43 which conducts refrigerant from outlet 14. Therrnistor RL is suspended in the neck 44 of tee 42 so as not to physically contact the sides of the tee or tubing 43, by encasing it in a thermal conductive material 45 such as polyester resin with 10% TiO filler. Of course, other suitable means may be provided for mounting thermistor RL adjacent outlet 14.

From the foregoing, it will be seen that this invention is one well adapted to attain all of the ends and objects hereinabove set forth, together with other advantages which are obvious and which are inherent to the apparatus. a I

, It will be understood thatcertain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.

As many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.

The invention having been described, what is claimed is:

l. A monitor for monitoring and comparing different operating conditions in a refrigeration system to indicate an abnormal system condition, wherein said different operating conditions in said refrigeration system differ nonlinearly as said conditions are varied between lower and upper limits comprising, in combination: first means responsive to an ambient first condition in said refrigeration system; second means responsive to a second condition in said refrigeration system having a known relationship to said ambient first condition to provide a second electrical signal having an electrical value proportional to said second condition, said first and second electrical signals having a nonlinear relationship between limits proportional to said lower and upper limits; third means responsive to said first and second means and providing a substantially constant third electrical signal when the difference between said first and second electrical signals between said limits proportioned to said lower and upper limits represents substantially normal deviations in said conditions; and fourth means for providing first indication when said third electrical signal is greater than a first predetermined value to represent such an abnormal system condition, and a second indication distinctive of said first indication when said third electrical signal is less than a second predetermined value different from said first predetermined value to also represent an abnormal system condition whereby said first and second indications are not provided in response to substantially normal deviations between said different operating conditions.

2. The monitor of claim 1 wherein said first and second sensing means are thermistors.

3. The monitor of claim 1 wherein said last mentioned means includes means producing an electrical control voltage proportional to the difference between said first and second electrical signals, and a first indication control circuit responsive to said control voltage and providing said first indication when said control voltage exceeds a preset level, and a second indication control circuit responsive to said voltage and providing said second indication when said voltage is less than a second preset level.

4. The monitor of claim 3 further including voltage supply means providing an electrical supply voltage, and wherein said means producing an electrical control voltage includes a voltage divider network connected to said voltage supply means, said first and second sensing means being thermistors connected to and forming a part of said voltage divider network.

5. The monitor of claim 4 wherein said voltage divider network includes means connected to one of said thermistors to vary the effective resistance thereof at different resistance levels.

6. The monitor of claim 5 wherein said last mentioned means includes a first relatively low resistance resistor connected to said one thermistor, and a second relatively high resistance resistor connected to said first resistor.

7. The monitor of claim 4 wherein said voltage supply means includes a voltage delay circuit for delaying the application of said electrical supply voltage to said voltage divider network until a preset time after said refrigeration system has been activated.

8. the monitor of claim 7 further including means for varying said delay automatically in response to outside refrigeration system temperature conditions.

9. The monitor of claim 7 further including means providing an input voltage to said delay circuit in response to the activation of said refrigeration system, and wherein said delay circuit includes a first oscillator responding to said input voltage to provide a series of pulses at a predetermined repetition rate, a second oscillator responsive to said pulses and providing an output pulse upon receipt of a predetermined number of said pulses, and switching means connected to said input voltage means and the output of said second oscillator and providing said supply voltage in responses to said output pulse.

10. The monitor of claim 9 wherein said second oscillator includes an unijunction transistor, and further including means connected between said first and second oscillators for reducing the peak point firing current of said unijunction.

11. The monitor of claim 9 further including voltage regulating means connected to said switching means to provide a substantially constant supply voltage.

12. The monitor of claim 9 further including a thermistor connected between said input voltage means and said first oscillator, said thermistor adapted to be exposed to outside refrigeration system temperature conditions to automatically vary said repetition rate in response to variations in said outside refrigeration system temperature conditions.

13. The monitor of claim 1 further including delay means for automatically applying a supply voltage to said first and second means a predetermined time after activation of said refrigeration system.

14. The mechanism of claim 13 further including a thermistor connected between said input voltage means and said first oscillator, said thermistor adapted to be exposed to outside refrigeration system temperature conditions to automatically vary said repetition rate in response to variations in said outside refrigeration system temperatures.

15. The monitor of claim 1 wherein said first and second means are resistors the resistance of which varies in response to changes in said first and second conditions.

16. The monitor of claim 15 wherein said first and second conditions are temperatures and each of said resistors has a negative temperature coefficient.

17. The monitor of claim 1 wherein said first and second means are disposed exteriorly of said closed refrigerant system.

18. A monitor for monitoring and comparing different operating conditions in a refrigeration system to indicate an abnormal system condition, wherein said refrigeration system includes a heat exchanger between a first relatively cool cooling medium and a second relatively warm cooling medium to cool said second medium, while warming said first medium, comprising, in combination: first means responsive to the temperature of said first medium to provide a first electrical signal having an electrical value proportional to said temperature of said first medium; second means responsive to the temperature of said second medium in said refrigeration system to provide a second electrical signal having an electrical value proportional to said temperature of said second medium; and third means responsive to said first and second means and providing a first indication when the difference between the electrical values of said first and second electrical signals and between the temperatures of said first and second mediums, is greater than a first predetermined value to represent such an abnormal system condition, and second indication distinctive of said first indication when said difference is less than a second predetermined value different from said first predetermined value to also represent an abnormal system condition, whereby said first and second indications are not provided in response to substantially normal deviations between said different operating conditions.

19. the monitor of claim 18 wherein said heat exchanger is a condenser and said first cooling medium is air passed over said condenser, and said second medium is a liquid-gaseous coolant passing through said condenser and changing from a gaseous state at the inlet.

20. A monitor for monitoring and comparing different operating conditions in a refrigeration system to indicate an abnormal system condition, comprising, in combination: first means responsive to an ambient first condition in said system to provide a first electrical signal having an electrical value proportional to said ambient first condition in said refrigeration system; second means responsive to a second condition in said refrigeration system having a known relationship to said ambient first condition to provide a second electrical signal having an electrical value proportional to said second condition; and third means responsive to said first and second means and providing a first indication when the difference between the electrical values of said first and second electrical signals is greater than a first predetermined value to represent such an abnormal system condition, and a second indication distinctive of said first indication when said difference is less than a second predetermined value different from said first predetermined value to also represent an abnormal system condition whereby said first and second indications are not provided in response to substantially normal deviations between said different operating conditions; delaymeans for automatically applying a supply voltage to said first and second means a predetermined time after activation of said refrigeration system; and means for varying said delay automatically in response to outside refrigeration system temperature conditions.

21. The monitor of claim 20 wherein said delay means is a delay circuit including means providing an input voltage to said circuit in response to the activation of said refrigeration system, a first oscillator responding to said input voltage to provide a series of pulses at a predetermined repetition rate, a second oscillator responsive to said pulses and providing an output signal upon receipt of a predetermined number of said pulses, and switching means connected to said input voltage means and the output of said second oscillator and switching to provide said supply voltage in response to said output signal.

22. The monitor of claim 21 wherein said second oscillator includes a unijunction transistor and further including means connected between said first and second oscillators for reducing the peak point firing current of said unijunction.

23. A monitor for monitoring and comparing different operating conditions in a refrigeration system to indicate an abnormal system condition, said refrigeration system being connected to a source of electrical power,comprising, in combination: first means responsive to an ambient first condition in said system to provide a first electrical signal having an electrical value proportional to said ambient first condition in said refrigeration system; second means responsive to a second condition in said refrigeration system having a known relationship to said ambient first condition to provide a second electrical signal having an electrical value proportional to said second condition; and third means responsive to said first and second means and providing a first indication when the difference between the electrical values of said first and second electrical signals is greater than a first predetermined value to represent such an abnormal system condition, and second indication distinctive of said first indication when said difference is less than a second predetermined value different from said first predetermined value to also represent an abnormal system condition whereby said first and second indications are not provided in response to substantially normal deviations between said different operating conditions; and means connected to said source of electrical power and said third means and responding to the interruption of said power to said refrigeration system to alternatively provide said first and second indications.

Claims (23)

1. A monitor for monitoring and comparing different operating conditions in a refrigeration system to indicate an abnormal system condition, wherein said different operating conditions in said refrigeration system differ nonlinearly as said conditions are varied between lower and upper limits comprising, in combination: first means responsive to an ambient first condition in said refrigeration system; second means responsive to a second condition in said refrigeration system having a known relationship to said ambient first condition to provide a second electrical signal having an electrical value proportional to said second condition, said first and second electrical signals having a nonlinear relationship between limits proportional to said lower and upper limits; third means responsive to said first and second means and providing a substantially constant third electrical signal when the difference between said first and second electrical signals between said limits proportioned to said lower and upper limits represents substantially normal deviations in said conditions; and fourth means for providing first indication when said third electrical signal is greater than a first predetermined value to represent such an abnormal system condition, and a second indication distinctive of said first indication when said third electrical signal is less than a second predetermined value different from said first predetermined value to also represent an abnormal system condition whereby said first and second indications are not provided in response to substantially normal deviations between said different operating conditions.
2. The monitor of claim 1 wherein said first and second sensing means are thermistors.
3. The monitor of claim 1 wherein said last mentioned means includes means producing an electrical control voltage proportional to the difference between said first and second electrical signals, and a first indication control circuit responsive to said control voltage and providing said first indication when said control voltage exceeds a preset level, and a second indication control circuit responsive to said voltage and providing said second indication when said voltage is less than a second preset level.
4. The monitor of claim 3 further including voltage supply means providing an electrical supply voltage, and whereiN said means producing an electrical control voltage includes a voltage divider network connected to said voltage supply means, said first and second sensing means being thermistors connected to and forming a part of said voltage divider network.
5. The monitor of claim 4 wherein said voltage divider network includes means connected to one of said thermistors to vary the effective resistance thereof at different resistance levels.
6. The monitor of claim 5 wherein said last mentioned means includes a first relatively low resistance resistor connected to said one thermistor, and a second relatively high resistance resistor connected to said first resistor.
7. The monitor of claim 4 wherein said voltage supply means includes a voltage delay circuit for delaying the application of said electrical supply voltage to said voltage divider network until a preset time after said refrigeration system has been activated.
8. the monitor of claim 7 further including means for varying said delay automatically in response to outside refrigeration system temperature conditions.
9. The monitor of claim 7 further including means providing an input voltage to said delay circuit in response to the activation of said refrigeration system, and wherein said delay circuit includes a first oscillator responding to said input voltage to provide a series of pulses at a predetermined repetition rate, a second oscillator responsive to said pulses and providing an output pulse upon receipt of a predetermined number of said pulses, and switching means connected to said input voltage means and the output of said second oscillator and providing said supply voltage in responses to said output pulse.
10. The monitor of claim 9 wherein said second oscillator includes an unijunction transistor, and further including means connected between said first and second oscillators for reducing the peak point firing current of said unijunction.
11. The monitor of claim 9 further including voltage regulating means connected to said switching means to provide a substantially constant supply voltage.
12. The monitor of claim 9 further including a thermistor connected between said input voltage means and said first oscillator, said thermistor adapted to be exposed to outside refrigeration system temperature conditions to automatically vary said repetition rate in response to variations in said outside refrigeration system temperature conditions.
13. The monitor of claim 1 further including delay means for automatically applying a supply voltage to said first and second means a predetermined time after activation of said refrigeration system.
14. The mechanism of claim 13 further including a thermistor connected between said input voltage means and said first oscillator, said thermistor adapted to be exposed to outside refrigeration system temperature conditions to automatically vary said repetition rate in response to variations in said outside refrigeration system temperatures.
15. The monitor of claim 1 wherein said first and second means are resistors the resistance of which varies in response to changes in said first and second conditions.
16. The monitor of claim 15 wherein said first and second conditions are temperatures and each of said resistors has a negative temperature coefficient.
17. The monitor of claim 1 wherein said first and second means are disposed exteriorly of said closed refrigerant system.
18. A monitor for monitoring and comparing different operating conditions in a refrigeration system to indicate an abnormal system condition, wherein said refrigeration system includes a heat exchanger between a first relatively cool cooling medium and a second relatively warm cooling medium to cool said second medium, while warming said first medium, comprising, in combination: first means responsive to the temperature of said first medium to provide a first electrical signal having an electrical value proportional to said temperature of said first medium; secoNd means responsive to the temperature of said second medium in said refrigeration system to provide a second electrical signal having an electrical value proportional to said temperature of said second medium; and third means responsive to said first and second means and providing a first indication when the difference between the electrical values of said first and second electrical signals and between the temperatures of said first and second mediums, is greater than a first predetermined value to represent such an abnormal system condition, and second indication distinctive of said first indication when said difference is less than a second predetermined value different from said first predetermined value to also represent an abnormal system condition, whereby said first and second indications are not provided in response to substantially normal deviations between said different operating conditions.
19. the monitor of claim 18 wherein said heat exchanger is a condenser and said first cooling medium is air passed over said condenser, and said second medium is a liquid-gaseous coolant passing through said condenser and changing from a gaseous state at the inlet.
20. A monitor for monitoring and comparing different operating conditions in a refrigeration system to indicate an abnormal system condition, comprising, in combination: first means responsive to an ambient first condition in said system to provide a first electrical signal having an electrical value proportional to said ambient first condition in said refrigeration system; second means responsive to a second condition in said refrigeration system having a known relationship to said ambient first condition to provide a second electrical signal having an electrical value proportional to said second condition; and third means responsive to said first and second means and providing a first indication when the difference between the electrical values of said first and second electrical signals is greater than a first predetermined value to represent such an abnormal system condition, and a second indication distinctive of said first indication when said difference is less than a second predetermined value different from said first predetermined value to also represent an abnormal system condition whereby said first and second indications are not provided in response to substantially normal deviations between said different operating conditions; delay means for automatically applying a supply voltage to said first and second means a predetermined time after activation of said refrigeration system; and means for varying said delay automatically in response to outside refrigeration system temperature conditions.
21. The monitor of claim 20 wherein said delay means is a delay circuit including means providing an input voltage to said circuit in response to the activation of said refrigeration system, a first oscillator responding to said input voltage to provide a series of pulses at a predetermined repetition rate, a second oscillator responsive to said pulses and providing an output signal upon receipt of a predetermined number of said pulses, and switching means connected to said input voltage means and the output of said second oscillator and switching to provide said supply voltage in response to said output signal.
22. The monitor of claim 21 wherein said second oscillator includes a unijunction transistor and further including means connected between said first and second oscillators for reducing the peak point firing current of said unijunction.
23. A monitor for monitoring and comparing different operating conditions in a refrigeration system to indicate an abnormal system condition, said refrigeration system being connected to a source of electrical power,comprising, in combination: first means responsive to an ambient first condition in said system to provide a first electrical signal having an electrical value proportional to said ambient first condition in said refrigeration system; second means Responsive to a second condition in said refrigeration system having a known relationship to said ambient first condition to provide a second electrical signal having an electrical value proportional to said second condition; and third means responsive to said first and second means and providing a first indication when the difference between the electrical values of said first and second electrical signals is greater than a first predetermined value to represent such an abnormal system condition, and second indication distinctive of said first indication when said difference is less than a second predetermined value different from said first predetermined value to also represent an abnormal system condition whereby said first and second indications are not provided in response to substantially normal deviations between said different operating conditions; and means connected to said source of electrical power and said third means and responding to the interruption of said power to said refrigeration system to alternatively provide said first and second indications.
US3707851A 1970-10-28 1970-10-28 Refrigeration system efficiency monitor Expired - Lifetime US3707851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US8483770 true 1970-10-28 1970-10-28

Publications (1)

Publication Number Publication Date
US3707851A true US3707851A (en) 1973-01-02

Family

ID=22187527

Family Applications (1)

Application Number Title Priority Date Filing Date
US3707851A Expired - Lifetime US3707851A (en) 1970-10-28 1970-10-28 Refrigeration system efficiency monitor

Country Status (1)

Country Link
US (1) US3707851A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995686A (en) * 1975-06-05 1976-12-07 Laube Herbert L Energy consumption indicating system
US4114448A (en) * 1976-09-13 1978-09-19 Merritt Joseph E Servicing apparatus
US4161106A (en) * 1977-02-28 1979-07-17 Water Chemists, Inc. Apparatus and method for determining energy waste in refrigeration units
US4167858A (en) * 1976-10-27 1979-09-18 Nippondenso Co., Ltd. Refrigerant deficiency detecting apparatus
US4179680A (en) * 1977-11-03 1979-12-18 Whirlpool Corporation Temperature sensor
US4186563A (en) * 1978-04-24 1980-02-05 General Electric Company Cooling efficiency meter circuit for an air conditioner
US4217761A (en) * 1978-09-28 1980-08-19 Cornaire James L Heat pump output indicator
US4256258A (en) * 1979-11-19 1981-03-17 Mark Controls Corporation Temperature monitor and alarm system
US4262736A (en) * 1979-10-18 1981-04-21 Gilkeson Robert F Apparatus for heat pump malfunction detection
US4315413A (en) * 1979-12-31 1982-02-16 Whirlpool Corporation Selective temperature control system
US4325223A (en) * 1981-03-16 1982-04-20 Cantley Robert J Energy management system for refrigeration systems
US4376510A (en) * 1981-05-06 1983-03-15 Allard Wayne H Warning device and method for a heating system
US4407141A (en) * 1982-01-04 1983-10-04 Whirlpool Corporation Temperature sensing means for refrigerator
US4510576A (en) * 1982-07-26 1985-04-09 Honeywell Inc. Specific coefficient of performance measuring device
EP0159281A2 (en) * 1984-04-06 1985-10-23 Carrier Corporation High-low superheat protection for a refrigeration system compressor
US4604871A (en) * 1985-01-17 1986-08-12 General Electric Company Over-temperature warning system for refrigerator appliance
US4611470A (en) * 1983-06-02 1986-09-16 Enstroem Henrik S Method primarily for performance control at heat pumps or refrigerating installations and arrangement for carrying out the method
EP0216547A2 (en) * 1985-09-18 1987-04-01 York International Corporation Diagnostic system for detecting faulty sensors in liquid chiller air conditioning system
EP0217558A2 (en) * 1985-09-18 1987-04-08 York International Corporation Diagnostic system for detecting faulty sensors in a refrigeration system
FR2589561A1 (en) * 1985-11-05 1987-05-07 Froilabo Method for protection of a refrigeration system against the deposits of additives in the heat transfer fluid circuit, and Central implementing such a process a
US4781064A (en) * 1984-03-26 1988-11-01 Yates Maurice A Protection for hydraulic machines
US4798055A (en) * 1987-10-28 1989-01-17 Kent-Moore Corporation Refrigeration system analyzer
WO1989005428A2 (en) * 1987-12-10 1989-06-15 Murray Corporation A method for determining the cause of a malfunction in an air conditioning system
US4991404A (en) * 1989-02-02 1991-02-12 Emile Yassa Vacuum pressure monitoring system
US5074516A (en) * 1990-12-17 1991-12-24 Franklin Machine Products, Inc. Apparatus for rotatable attachment of an instrument with respect to environmental structure
US5262758A (en) * 1991-09-19 1993-11-16 Nam Young K System and method for monitoring temperature
ES2161654A1 (en) * 2000-06-05 2001-12-01 Electrolux Siegen Gmbh Absorber fridge for cooling a refrigerator has a controller to regulate a capacity level in a cooling circuit and a temperature sensor to give the controller a temperature level for a cooling agent's temperature in a vaporizer.
US6354093B2 (en) * 2000-01-07 2002-03-12 Traulsen & Company, Inc. Control system and related methods for refrigeration and freezer units
WO2003089855A1 (en) * 2002-04-22 2003-10-30 Danfoss A/S Method for evaluating a non-measured operating variable in a refrigeration plant
US6701725B2 (en) 2001-05-11 2004-03-09 Field Diagnostic Services, Inc. Estimating operating parameters of vapor compression cycle equipment
US6725180B2 (en) 2001-01-12 2004-04-20 Ingersoll-Rand Company Environmental monitoring system
US20040111239A1 (en) * 2001-05-11 2004-06-10 Rossi Todd M. Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US20040111186A1 (en) * 2001-05-11 2004-06-10 Rossi Todd M. Apparatus and method for servicing vapor compression cycle equipment
US20040144106A1 (en) * 2002-07-08 2004-07-29 Douglas Jonathan D. Estimating evaporator airflow in vapor compression cycle cooling equipment
US20050166609A1 (en) * 2002-07-08 2005-08-04 Danfoss A/S Method and a device for detecting flash gas
US20050172647A1 (en) * 2002-04-22 2005-08-11 Danfoss A/S Method for detecting changes in a first flux of a heat or cold transport medium in a refrigeration system
US20050251293A1 (en) * 2001-05-15 2005-11-10 Seigel Lawrence J Method and system for evaluating the efficiency of an air conditioning apparatus
US20060032606A1 (en) * 2002-10-15 2006-02-16 Claus Thybo Method and a device for detecting an abnormality of a heat exchanger and the use of such a device
US20080072618A1 (en) * 2006-09-23 2008-03-27 Lawes Roland C Absorption space cooler with no forced pumping
US20080196444A1 (en) * 2007-02-20 2008-08-21 Roland Lawes Pumpless absorption refrigerator using a jet
US20110112814A1 (en) * 2009-11-11 2011-05-12 Emerson Retail Services, Inc. Refrigerant leak detection system and method
US20130167567A1 (en) * 2010-10-14 2013-07-04 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US8974573B2 (en) 2004-08-11 2015-03-10 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9121407B2 (en) 2004-04-27 2015-09-01 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9310094B2 (en) 2007-07-30 2016-04-12 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US9885507B2 (en) 2006-07-19 2018-02-06 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2037155A (en) * 1933-08-07 1936-04-14 William W Stuart Control structure
US3002226A (en) * 1959-06-15 1961-10-03 Owens Corning Fiberglass Corp Method and apparatus for controlling formation of fibers by calorimetry
US3127754A (en) * 1962-10-04 1964-04-07 Honeywell Regulator Co Refrigeration control apparatus with time delay means
US3220206A (en) * 1963-07-05 1965-11-30 Gen Motors Corp Refrigerating apparatus including means to indicate power failure
US3415071A (en) * 1966-04-04 1968-12-10 Honeywell Inc Refrigeration condenser fan speed control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2037155A (en) * 1933-08-07 1936-04-14 William W Stuart Control structure
US3002226A (en) * 1959-06-15 1961-10-03 Owens Corning Fiberglass Corp Method and apparatus for controlling formation of fibers by calorimetry
US3127754A (en) * 1962-10-04 1964-04-07 Honeywell Regulator Co Refrigeration control apparatus with time delay means
US3220206A (en) * 1963-07-05 1965-11-30 Gen Motors Corp Refrigerating apparatus including means to indicate power failure
US3415071A (en) * 1966-04-04 1968-12-10 Honeywell Inc Refrigeration condenser fan speed control system

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995686A (en) * 1975-06-05 1976-12-07 Laube Herbert L Energy consumption indicating system
US4114448A (en) * 1976-09-13 1978-09-19 Merritt Joseph E Servicing apparatus
US4167858A (en) * 1976-10-27 1979-09-18 Nippondenso Co., Ltd. Refrigerant deficiency detecting apparatus
US4161106A (en) * 1977-02-28 1979-07-17 Water Chemists, Inc. Apparatus and method for determining energy waste in refrigeration units
US4179680A (en) * 1977-11-03 1979-12-18 Whirlpool Corporation Temperature sensor
US4186563A (en) * 1978-04-24 1980-02-05 General Electric Company Cooling efficiency meter circuit for an air conditioner
US4217761A (en) * 1978-09-28 1980-08-19 Cornaire James L Heat pump output indicator
US4262736A (en) * 1979-10-18 1981-04-21 Gilkeson Robert F Apparatus for heat pump malfunction detection
US4256258A (en) * 1979-11-19 1981-03-17 Mark Controls Corporation Temperature monitor and alarm system
US4315413A (en) * 1979-12-31 1982-02-16 Whirlpool Corporation Selective temperature control system
WO1982003269A1 (en) * 1981-03-16 1982-09-30 Robert J Cantley Energy management system for refrigeration systems
US4325223A (en) * 1981-03-16 1982-04-20 Cantley Robert J Energy management system for refrigeration systems
US4376510A (en) * 1981-05-06 1983-03-15 Allard Wayne H Warning device and method for a heating system
US4407141A (en) * 1982-01-04 1983-10-04 Whirlpool Corporation Temperature sensing means for refrigerator
US4510576A (en) * 1982-07-26 1985-04-09 Honeywell Inc. Specific coefficient of performance measuring device
US4611470A (en) * 1983-06-02 1986-09-16 Enstroem Henrik S Method primarily for performance control at heat pumps or refrigerating installations and arrangement for carrying out the method
US4781064A (en) * 1984-03-26 1988-11-01 Yates Maurice A Protection for hydraulic machines
EP0159281A3 (en) * 1984-04-06 1988-01-20 Carrier Corporation High-low superheat protection for a refrigeration system compressor
EP0159281A2 (en) * 1984-04-06 1985-10-23 Carrier Corporation High-low superheat protection for a refrigeration system compressor
US4604871A (en) * 1985-01-17 1986-08-12 General Electric Company Over-temperature warning system for refrigerator appliance
EP0216547A2 (en) * 1985-09-18 1987-04-01 York International Corporation Diagnostic system for detecting faulty sensors in liquid chiller air conditioning system
EP0217558A3 (en) * 1985-09-18 1988-04-27 York International Corporation Diagnostic system for detecting faulty sensors in a refrigeration system
EP0216547A3 (en) * 1985-09-18 1988-04-27 York International Corporation Diagnostic system for detecting faulty sensors in liquid chiller air conditioning system
EP0217558A2 (en) * 1985-09-18 1987-04-08 York International Corporation Diagnostic system for detecting faulty sensors in a refrigeration system
FR2589561A1 (en) * 1985-11-05 1987-05-07 Froilabo Method for protection of a refrigeration system against the deposits of additives in the heat transfer fluid circuit, and Central implementing such a process a
EP0227504A1 (en) * 1985-11-05 1987-07-01 FROILABO, Société Anonyme: Method of protecting a refrigeration plant against deposits of additives in the refrigerant circuit
US4798055A (en) * 1987-10-28 1989-01-17 Kent-Moore Corporation Refrigeration system analyzer
WO1989005428A2 (en) * 1987-12-10 1989-06-15 Murray Corporation A method for determining the cause of a malfunction in an air conditioning system
WO1989005428A3 (en) * 1987-12-10 1989-08-10 Murray Corp A method for determining the cause of a malfunction in an air conditioning system
US4991404A (en) * 1989-02-02 1991-02-12 Emile Yassa Vacuum pressure monitoring system
US5074516A (en) * 1990-12-17 1991-12-24 Franklin Machine Products, Inc. Apparatus for rotatable attachment of an instrument with respect to environmental structure
US5262758A (en) * 1991-09-19 1993-11-16 Nam Young K System and method for monitoring temperature
US6354093B2 (en) * 2000-01-07 2002-03-12 Traulsen & Company, Inc. Control system and related methods for refrigeration and freezer units
ES2161654A1 (en) * 2000-06-05 2001-12-01 Electrolux Siegen Gmbh Absorber fridge for cooling a refrigerator has a controller to regulate a capacity level in a cooling circuit and a temperature sensor to give the controller a temperature level for a cooling agent's temperature in a vaporizer.
US6725180B2 (en) 2001-01-12 2004-04-20 Ingersoll-Rand Company Environmental monitoring system
US20040204881A1 (en) * 2001-01-12 2004-10-14 Ingersoll-Rand Company Environmental monitoring system
US6701725B2 (en) 2001-05-11 2004-03-09 Field Diagnostic Services, Inc. Estimating operating parameters of vapor compression cycle equipment
US7079967B2 (en) 2001-05-11 2006-07-18 Field Diagnostic Services, Inc. Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US20040111186A1 (en) * 2001-05-11 2004-06-10 Rossi Todd M. Apparatus and method for servicing vapor compression cycle equipment
US20060041335A9 (en) * 2001-05-11 2006-02-23 Rossi Todd M Apparatus and method for servicing vapor compression cycle equipment
US20060259276A1 (en) * 2001-05-11 2006-11-16 Rossi Todd M Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US20040111239A1 (en) * 2001-05-11 2004-06-10 Rossi Todd M. Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US20050251293A1 (en) * 2001-05-15 2005-11-10 Seigel Lawrence J Method and system for evaluating the efficiency of an air conditioning apparatus
US7349824B2 (en) * 2001-05-15 2008-03-25 Chillergy Systems, Llc Method and system for evaluating the efficiency of an air conditioning apparatus
US20080114569A1 (en) * 2001-05-15 2008-05-15 Seigel Lawrence J Method and system for evaluating the efficiency of an air conditioning apparatus
US7945423B2 (en) 2001-05-15 2011-05-17 Chillergy Systems, Llc Method and system for evaluating the efficiency of an air conditioning apparatus
US20050166608A1 (en) * 2002-04-22 2005-08-04 Danfoss A/S Method for evaluating a non-measured operating variable in a refrigeration plant
US7685830B2 (en) 2002-04-22 2010-03-30 Danfoss A/S Method for detecting changes in a first media flow of a heat or cooling medium in a refrigeration system
WO2003089855A1 (en) * 2002-04-22 2003-10-30 Danfoss A/S Method for evaluating a non-measured operating variable in a refrigeration plant
US20050172647A1 (en) * 2002-04-22 2005-08-11 Danfoss A/S Method for detecting changes in a first flux of a heat or cold transport medium in a refrigeration system
US7650758B2 (en) 2002-04-22 2010-01-26 Danfoss A/S Method for evaluating a non-measured operating variable in a refrigeration plant
US20040144106A1 (en) * 2002-07-08 2004-07-29 Douglas Jonathan D. Estimating evaporator airflow in vapor compression cycle cooling equipment
US20050166609A1 (en) * 2002-07-08 2005-08-04 Danfoss A/S Method and a device for detecting flash gas
US6973793B2 (en) 2002-07-08 2005-12-13 Field Diagnostic Services, Inc. Estimating evaporator airflow in vapor compression cycle cooling equipment
US7681407B2 (en) 2002-07-08 2010-03-23 Danfoss A/S Method and a device for detecting flash gas
US8100167B2 (en) 2002-10-15 2012-01-24 Danfoss A/S Method and a device for detecting an abnormality of a heat exchanger, and the use of such a device
US20090126899A1 (en) * 2002-10-15 2009-05-21 Danfoss A/S Method and a device for detecting an abnormality of a heat exchanger, and the use of such a device
US20060032606A1 (en) * 2002-10-15 2006-02-16 Claus Thybo Method and a device for detecting an abnormality of a heat exchanger and the use of such a device
US9669498B2 (en) 2004-04-27 2017-06-06 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9121407B2 (en) 2004-04-27 2015-09-01 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9081394B2 (en) 2004-08-11 2015-07-14 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9046900B2 (en) 2004-08-11 2015-06-02 Emerson Climate Technologies, Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9304521B2 (en) 2004-08-11 2016-04-05 Emerson Climate Technologies, Inc. Air filter monitoring system
US9690307B2 (en) 2004-08-11 2017-06-27 Emerson Climate Technologies, Inc. Method and apparatus for monitoring refrigeration-cycle systems
US8974573B2 (en) 2004-08-11 2015-03-10 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9017461B2 (en) 2004-08-11 2015-04-28 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9021819B2 (en) 2004-08-11 2015-05-05 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9023136B2 (en) 2004-08-11 2015-05-05 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9086704B2 (en) 2004-08-11 2015-07-21 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9885507B2 (en) 2006-07-19 2018-02-06 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US7490482B2 (en) 2006-09-23 2009-02-17 Lawes Roland C Absorption space cooler with no forced pumping
US20080072618A1 (en) * 2006-09-23 2008-03-27 Lawes Roland C Absorption space cooler with no forced pumping
US20080196444A1 (en) * 2007-02-20 2008-08-21 Roland Lawes Pumpless absorption refrigerator using a jet
US9310094B2 (en) 2007-07-30 2016-04-12 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
US9194894B2 (en) 2007-11-02 2015-11-24 Emerson Climate Technologies, Inc. Compressor sensor module
US20110112814A1 (en) * 2009-11-11 2011-05-12 Emerson Retail Services, Inc. Refrigerant leak detection system and method
US9829231B2 (en) * 2010-10-14 2017-11-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US20130167567A1 (en) * 2010-10-14 2013-07-04 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US9703287B2 (en) 2011-02-28 2017-07-11 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US9876346B2 (en) 2012-01-11 2018-01-23 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9590413B2 (en) 2012-01-11 2017-03-07 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9762168B2 (en) 2012-09-25 2017-09-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics

Similar Documents

Publication Publication Date Title
US3478534A (en) Thermistor controlled refrigeration expansion valve
US3238737A (en) Heated receiver winter control for refrigeration systems
US3390539A (en) Apparatus for controlling refrigeration systems
US3312081A (en) Control apparatus for refrigeration system
US4387578A (en) Electronic sensing and display system for a refrigerator
US4633681A (en) Refrigerant expansion device
US3377816A (en) Compressor control arrangement
US4505125A (en) Super-heat monitoring and control device for air conditioning refrigeration systems
US4430866A (en) Pressure control means for refrigeration systems of the energy conservation type
US4395886A (en) Refrigerant charge monitor and method for transport refrigeration system
US4934155A (en) Refrigeration system
US4644755A (en) Emergency refrigerant containment and alarm system apparatus and method
US5493867A (en) Fuzzy logic adaptive defrost control
US4882908A (en) Demand defrost control method and apparatus
US4060997A (en) Water chiller control
US4602484A (en) Refrigeration system energy controller
US4238931A (en) Waste heat recovery system controller
US8550368B2 (en) Interactive control system for an HVAC system
US4381075A (en) Microprocessor based controller for heating system
US20060185373A1 (en) Interactive control system for an HVAC system
US6463747B1 (en) Method of determining acceptability of a selected condition in a space temperature conditioning system
US4926649A (en) Method and apparatus for saving energy in an air conditioning system
US5042264A (en) Method for detecting and correcting reversing valve failures in heat pump systems having a variable speed compressor
US3324672A (en) Electrically controlled conditioning system
US20050240312A1 (en) Integrated HVACR control and protection system