US3703259A - Air blast fuel atomizer - Google Patents

Air blast fuel atomizer Download PDF

Info

Publication number
US3703259A
US3703259A US139408A US3703259DA US3703259A US 3703259 A US3703259 A US 3703259A US 139408 A US139408 A US 139408A US 3703259D A US3703259D A US 3703259DA US 3703259 A US3703259 A US 3703259A
Authority
US
United States
Prior art keywords
fuel
primary
air
atomizer
shroud member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US139408A
Inventor
Geoffrey John Sturgess
Jacob Sherman Hoffman
John William Vdoviak
Robert Hirschkron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US3703259A publication Critical patent/US3703259A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2211/00Thermal dilatation prevention or compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • ABSTRACT An air blast fuel atomizer for establishing a highly atomized fuel dispersion at the confluence of two counter-rotating air swirls, wherein a uniform concentration of fuel is disposed on a circumferential shroud and directed to the atomization forces at the lip of the shroud.
  • This invention relates to an air-blast atomizer and, more particularly, to an air-blast liquid fuel atomizer wherein an injector distributes fuel in a manner that enables a concentration of liquid fuel to form on the interior surface of a generally cylindrical shroud. Counter-rotating flows generate aerodynamic forces which establish high shear stresses at the lip of the shroud so as to uniformly disperse and highly atomize fuel directed to the lip.
  • Fuel injection into a continuous flow combustion chamber as, for example, in a gas turbine engine has posed continuing design problems. Difficulties have been encountered in injecting fuel in a highly dispersed manner so as to achieve complete and efficient combustion of the fuel, and at the same time minimize the occurrence of fuel-rich pockets which upon combustion produce carbon or smoke. Fuel injection difficulties have been further complicated by the recent introduction of gas turbine engines having increased combustor pressure capabilities.
  • the air-blast fuel atomizer of this invention generally includes a cylindrical primary shroud member having a downstream circumferential lip.
  • Fuel injection means are provided to dispose a concentration of liquid fuel which may include a continuous liquid fuel layer, on or near the interior surface of the primary shroud member.
  • a primary air swirler positioned in upstream flow communication with the interior surface of the primary shroud member introduces a primary air swirl into the confines of the primary shroud member thereby imparting both an axial and a tangential velocity component to the concentrated fuel.
  • a secondary air swirler is in upstream flow communication with the primary shroud lip, and introduces an air swirl having a circumferential velocity component opposing that of the primary air swirl. Liquid fuel reaching the lip is atomized by the high shear stresses developed by the counter-rotating aerodynamic forces at the confluence of the primary and secondary air streams.
  • Flow means are provided for introducing an air flow tothe primary and secondary air swirlers.
  • the fuel injection means may be housed in a generally cylindrical hollow centerbody within the primary shroud member and spaced apart therefrom, so as to define a substantially annular air passage therebetween for the primary air swirl.
  • a plurality of circumferentially spaced apart fuel injection ports would pass through the centerbody.
  • the ports may be slanted both tangentially and axially aft to impart initial circumferential and axial velocity components to the fuel.
  • the cylindrical primary shroud member may include at least one fuel injection port through the primary shroud member for establishing a concentration of liquid fuel on the interior surface of the primary shroud. Again the port may be slanted both tangentially and axially aft to impart initial circumferential and axial velocity components to the fuel.
  • FIG. 1 shows a cross-sectional view of a typical jet engine combustion chamber including the air-blast fuel atomizer of this invention.
  • FIG. 2 shows a detailed cutaway perspective view of the air-blast fuel atomizer of FIG. 1.
  • FIG. 3 shows an alternate arrangement for the swirl vanes of the air-blast fuel atomizer of FIGS. 1 and 2.
  • FIG. 4 shows another arrangement for the swirl vanes of the air-blast fuel atomizer of FIGS. 1 and 2.
  • FIG. 5 shows a detailed preferred arrangement partly in cross-section for the fuel injection ports of the airblast fuel atomizer of FIGS. 1 and 2.
  • FIG. 6 is a cross-section taken on line 6-6 of FIG. 5 of the fuel injection ports of the air-blast fuel atomizer of FIGS. 1 and 2.
  • FIG. 7 shows a detailed cutaway perspective view of an alternate arrangement for the fuel injection means of the air-blast fuel atomizer of FIGS. 1 and 2.
  • FIG. 8 shows a cross-section taken on line 8--8 of FIG. 7 of an alternate arrangement for the fuel injection ports of the air-blast fuel atomizer of FIG. 7.
  • FIG. 9 shows a cross-section taken on line 8-8 of FIG. 7 of another arrangement for the fuel injection ports of the air-blast fuel atomizer of FIG. 7.
  • FIG. 10 shows a cross-section taken on line 10-10 of FIG. 9.
  • FIG. 11 shows an alternate arrangement for the swirl vanes of the air-blast fuel atomizer of FIG. 7.
  • FIG. 12 shows another arrangement for the swirl vanes of the air-blast fuel atomizer of FIG. 7.
  • FIG. 13 shows a partial cross-section of a variable geometry air-blast fuel atomizer.
  • a continuous burning combustion apparatus of the type suitable for use in a gas turbine engine has been shown generally at 10 as comprising a hollow body 12 defining a combustion chamber 14 therein.
  • the hollow body 12 includes a domed upstream closure member 16 having a plurality of circumferentially spaced apart openings 18 of which only one is shown in the drawing.
  • the openings 18 receive the air-blast atomizers of this invention, one of which is shown generally at 34.
  • the domed closure member 16 also includes a plurality of air ports 15.
  • the domed upstream closure member 16 and air-blast atomizer 34 define the upstream end of the chamber 14, with the domed member 16 suitably secured to the hollow body 12.
  • the combustion chamber 14 may be of the annular type or the cannular type. I
  • An outer shell 20 may be provided to enclose the hollow body 12 and define passages 22 and 24 in cooperation with the hollow body 12 and an upstream extension 26 of the hollow body 12.
  • the passages 22 and 24 are adapted to deliver a flow of pressurized air from a suitable source, such as a compressor 28, into the combustor chamber 14 through suitable apertures or louvers 30 for cooling of the hollow body 12 and dilution of the gaseous products of combustion as is well known in the art.
  • the upstream extension 26 of the hollow body 12 is adapted to function as a flow splitter to divide the pressurized air delivered from the compressor 28 between passages 22, 24 and an upstream end opening 32 of the extension 26.
  • the opening 32 communicates with a chamber 33 which is defined internally of the extension 26 and the domed member 16.
  • FIGS. 1 and 2 one embodiment of the air-blast atomizer of this invention has been shown generally at 34 as including a hollow cylindrical centerbody 36 having circumferentially spaced apart fuel injection ports 40 through the sides thereof.
  • Centerbody 36 is integrally formed with hollow stem 38, which is retained in position by connection to the outer shell 20 at fitting 50.
  • Hollow stem 38 includes a suitable fuel delivery means which extends through the outer shell 20, and communicates with a source of pressurized fuel [not shown] so as to provide fuel to the injection ports 40.
  • a generally cylindrical primary shroud member 42 surrounds the centerbody 36, and is radially spaced apart therefrom so as to define a substantially annular air passage 39 therebetween.
  • the primary shroud member 42 includes a downstream circumferential lip 52.
  • a primary air swirler is shown generally at 45 as including a plurality of axial swirl vanes 44 which are circumferentially spaced apart around centerbody 36, and retained in spaced relationship by means of a primary vane shroud 47, which may be attached to or formed integrally with the primary shroud member 42.
  • the primary shroud members 42, 47 coact to establish flow communication from the upstream air swirler 45 tothe fuel injection port 40 and to the downstream lip of the primary shroud member designated at 52.
  • a secondary air swirler is shown generally at 49 as including a plurality of circumferentially spaced radial swirl vanes 46 retained in spaced relationship by circumferential retaining walls 51 and 53 which are axially spaced apart.
  • a generally cylindrical secondary shroud member 43 circumscribes the primary shroud member, and is spaced apart therefrom, to define a substantially annular air passage 55 therebetween, so as to direct flow of the secondary swirl air over the primary lip 52.
  • Domed closure member 16 plugs into a floating ferrule 48, thereby accommodating both circumferential and radial thermal growth.
  • Floating ferrule 48 may be attached to or formed integrally with either radial wall member 53 or secondary shroud 43.
  • the floating ferrule 48 maintains the concentricity of the primary shroud 42 with respect to the centerbody 36 upon thermal expansion.
  • the centerbody 36 is shown as comprising an annular fuel manifold 56 which provides fuel to the circumferentially spaced apart fuel injection ports 40.
  • the fuel delivery means within stem 38 are shown as including a fuel conduit 58 in flow connection with annular fuel manifold 56.
  • Centerbody 36 may also include an auxiliary fuel spray atomizer 60 having a spray nozzle 62 serviced by an auxiliary fuel conduit 64.
  • the auxiliary fuel spray atomizer may be utilized for initial ignition or when the situation is such as to demand assisted atomization. However, for most applications it is possible to dispense entirely with such assistance by the auxiliary fuel spray atomizer and use only the fuel injection ports.
  • suitable ignition means 61 such as an electrical spark are provided within the combustion chamber 14 to provide initial ignition of the combustible air fuel mixture discharged by apparatus 34.
  • liquid fuel is delivered to annular fuel manifold 56 through fuel conduit 58.
  • Pressurized fuel is sprayed from the fuel manifold through fuel injection ports 40, impinging on the interior surface of the primary shroud member 42 so as to deposit a concentration of fuel thereon.
  • the fuel injection ports 40 may be radial, although it has been preferable preferably to have the fuel injection ports slanting axially aft as shown in the detailed illustration of the centerbody 36 in FIG. 5. Slanting the fuel injection ports axially aft imparts a downstream velocity component to the fuel as it is ejected. It has also been found preferable to align the fuel injection ports 40 in a tangential direction as shown in FIG.
  • the fuel flows from the ports with initial tangential and axial velocity components which act to centrifuge the fuel so as to form a concentration of fuel on the interior surface of the primary shroud 42 and to drive the fuel along the interior surface toward the downstream circumferential lip 52.
  • the upstream primary axial swirl vanes 44 receive compressor discharge air and impart a circumferential velocity component thereto, such that the aerodynamic forces of the air emanating from the swirl vanes act to further centrifuge the concentration of fuel on the interior surface of the primary shroud member.
  • the deposited concentration of fuel is centrifugally driven or pushed along the interior surface of the primary shroud member towards the downstream circumferential lip 52.
  • Depositing and concentrating the fuel over the interior surface of the primary shroud member serves to increase the fuel to air contact ratio before atomization, by a factor equal to the area of the interior surface of the primary shroud member divided by the area of the fuel injection ports.
  • Circumferential and axial velocity components are imparted to the concentrated fuel by initially jetting the fuel through the tangentially and axially slanted ports and by the aerodynamic forces of the primary air swirl, which combine to drive the fuel towards the primary shroud lip, imparting substantial kinetic energy to the fuel.
  • the secondary, circumferentially spaced apart, axial swirl vanes 46 receive compressor discharge air and impart a circumferential velocity component thereto in the opposing direction of the primary swirl air.
  • the primary swirl air discharges from the air blast fuel atomizer in a substantially vortical flow 70 and would be seen from a downstream position as having clockwise circumferential velocity component, while the secondary swirl air also discharges in a substantially vortical flow 72, and would be seen as having a counter-clockwise circumferential velocity component.
  • a conical area of turbulent air-flow exists on the boundary 74 between the primary and secondary vortices.
  • Fuel delivered to the primary shroud lip 52 is highly atomized by the high aerodynamic shear stresses developed at the confluence of the counter-rotating primary and secondary streams of air. The atomized fuel droplets become highly dispersed by the turbulent air-flow at the boundary area 74 between the primary and secondary vortical flow.
  • the fuel droplets are ignited by ignition means 61 whereupon the flame subsequently stabilizes in the stagnation zones 78 near the domed closure member.
  • the stagnation zones are enhanced by the recirculation of compressor discharge air entrained through the dome air ports 15.
  • the core 76 of the primary vortical flow is at a reduced pressure, thereby entraining a portion of the hot products of combustion and causing a recirculation thereof so as to maintain continuous ignition within the combustion chamber 14.
  • Auxiliary fuel spray atomizer 60 may be incorporated within centerbody 36 to assist in the situation where there is insufficient aerodynamic energy available for efficient air blast atomization, or in a situation where an auxiliary fuel source would provide improved performance for special requirements.
  • the auxiliary fuel spray atomizer 60 may provide starting fuel flows at initial ignition by spray atomization at relatively low fuel pressures.
  • the auxiliary fuel spray atomizer is not utilized it is continuously purged with an air flow through the spray nozzle 62 in order to prevent blocking of the orifice and buildup of carbon on the face during engine operation.
  • FIGS. 1 and 2 there is shown an alternate arrangement for the primary and secondary swirl vanes.
  • the primary and secondary swirlers 45a and 49a are shown as comprising a plurality of circumferentially spaced apart swirl vanes, 44a and 46a respectively, each of which is in a radial configuration.
  • FIG. 4 shows still another suitable arrangement for the primary and secondary swirl vanes of FIGS. 1 and 3.
  • Primary swirlers 45b and secondary swirlers 49b are shown as including a plurality of circumferentially spaced apart swirl vanes, 44b and 46b respectively, each of which is in an axial configuration.
  • FIG. 7 there is shown an alternate arrangement for the fuel injection means as included in the air-blast fuel atomizer of this invention which is shown generally at 34 where like numerals refer to previously described components.
  • the fuel injection means are shown as including at least one substantially tangential fuel injection port 80 through the primary shroud member 42.
  • Pressurized fuel may be supplied to the fuel injection port 80 by means of an annular fuel manifold 82 around the primary shroud 42.
  • Annular fuel manifold 82 is defined by a radially extending circumferential wall 84 and an axially extending circumferential wall 86 cooperating with the exterior surface of primary shroud member 42 and the radially extending circumferential wall 51.
  • Pressurized fuel is introduced into fuel manifold 82 by means of fuel conduit 58 which is in direct flow connection to an external source of pressurized fuel [not shown].
  • liquid fuel is delivered to annular fuel manifold 80 through fuel conduit 58.
  • Pressurized fuel flows from the fuel manifold 80 through fuel injection port 80 which is preferably formed so as to discharge fuel in a direction substantially tangential to the interior surface of the primary shroud member.
  • the fuel injection port is also preferably slanted axially aft so as to impart a downstream velocity component to the fuel as it is ejected.
  • the fuel flows from the port with initial tangential and axial velocity components which act to centrifuge the fuel so as to form a concentration of fuel on the interior surface of the primary shroud member 42.
  • the concentrated fuel approaches a discrete swirling film travelling downstream along the interior surface of the primary shroud toward the circumferential lip 52.
  • the upstream primary axial swirl 44 receive compressor discharge air and impart a circumferential velocity component thereto, such that the aerodynamic forces of the air emanating from the swirl vanes act to further centrifuge the concentrated fuel on the interior surface of the primary shroud member.
  • the fuel is centrifugally driven or pushed along the interior surface of the primary shroud member toward the down-stream circumferential lip 52.
  • the primary swirl air may also induce wave instabilities into the swirling fuel which subsequently enhance the atomization of fuel at the lip 52 of the primary shroud.
  • the distance from the fuel injection port 80 to the lip 52 of the primary shroud member may be selected as a function of the diameter of the primary shroud.
  • the fuel is subsequently atomized at the primary shroud lip 52 by the high aerodynamic shear stresses developed at the confluence of the counterrotating primary and secondary streams of air in the same manner as previously described in reference to FIGS. 1 and 2.
  • FIG. 7 The intended scope of invention for the arrangement of FIG. 7 shouldnot be limited to the single fuel injection port, but may also include a plurality of circumferentially spaced apart fuel injection ports passing tangentially through the primary shroud member.
  • the cross-sectional view of FIG. 8 shows a scheme for a twin port fuel injection system including duel fuel injection ports 80 and 80.
  • FIGS. 9 and 10 show an alternate scheme whereby primary shroud member 42 includes a circumferential recessed slot 88 in the interior surface thereof. The swirling fuel spills over the edge 90 of the slot 88 onto the interior surface of the shroud and flows downstream.
  • the slot configuration is not limited to the rectangular cross-section shown, but may be of almost any cross-section, such as a V shape or a curvilinear cross-section, as long as the slot extends circumferentially around the primary shroud and in some way indents the interior surface of the primary shroud.
  • FIG. 7 there is shown an arrangement for the primary and secondary swirl vanes.
  • the primary and secondary swirlers 4S and 49 are shown as comprising a plurality of circumferentially spaced apart swirl vanes, 44 and 46 respectively, each of which is in a radial configuration.
  • Annular fuel manifolds 82 is disposed between the axial swirl vanes.
  • FIG. 12 shows still another arrangement for the primary and secondary swirl vanes of FIG. 7.
  • Primary swirlers 45 and secondary swirlers 49 are shown as including a plurality of circumferentially spaced apart swirl vanes 44 and 46" respectively, each of which is in an axial configuration.
  • Annular manifold 82' is shown as circumscribing the primary shroud member 42.
  • FIG. 13 shows a variable geometry configuration for conveniently adjusting the spray angle of the atomized fuel by varying the distance (A) from the lip 52 of the primary shroud 42 to the end of the secondary shroud 43.
  • the primary shroud 42 is slidably retained with respect to both the radially extending circum ferential wall 51 and the primary air swirler 45.
  • Linkage arm 98 may be fixedly attached to the wall 86. The other end of linkage arm 98 is not shown, but may be connected through a series of linkages or hydraulic means to an engine fuel control system [not shown].
  • Conduit 58 includes an expansible and contractible section 104 to allow unrestrained translation of primary shroud 42.
  • the spray-angle of the atomized fuel may be varied through actuation of linkage arm 98 through the fuel control system.
  • Actuation of linkage arm 98 imparts an axial translation to the primary shroud member 42.
  • Reduced spray angles may be achieved by translating the lever arm 98 in a forward direction resulting in an increased distance (A) between the lip 52 of the primary shroud 42 and the end of the secondary shroud 43.
  • the present invention provides an improved apparatus for efficiently and satisfactorily introducing fuel into a combustion chamber in a positive and controlled manner over a wide range of operating conditions.
  • Initially concentrating fuel on the interior of a primary shroud member serves to greatly increase the fuel to air contact ratio before atomization.
  • Counter-rotating primary and secondary air swirlers impart substantial kinetic energy to the fuel and establish high shear stresses to insure efficient atomization at the confluence of the two air streams.
  • the air-blast fuel atomizer has been depicted as satisfying a specific gas turbine application as a fuel injector and atomizer, it should be understood that the concept of this invention has broad applicability as to atomizing all types of liquid fuels as utilized in various combustion processes.
  • the air-blast fuel atomizer of this invention could be utilized as a fuel injector for a supercharged automotive engine. Accordingly, while preferred embodiments and a preferred application of the present invention have been depicted and described, it will be appreciated by those skilled in the art that many modifications, substitutions, and changes may be made thereto without departing from the inventions fundamental theme.
  • An air blast fuel atomizer for atomizing fuel in the combustion chamber of a gas turbine engine comprismg:
  • a primary air swirler in upstream flow communication with the interior surface of said primary shroud member so as to introduce a primary air swirl into the confines of said primary shroud member, said air swirl imparting both an axial and circumferential velocity component to said concentration of fuel;
  • a secondary air swirler in upstream flow communication with said lip, so as to introduce an air swirl having a circumferential velocity component opposing that of said primary air swirl such that fuel reaching said lip is atomized by the high shear stresses developed by the counter-rotating aerodynamic forces at the confluence of said primary and secondary air swirls;
  • said centerbody is hollow and said fuel injection means includes at least one fuel injection port through said centerbody, through which fuel may be directed onto the interior surface of said primary shroud to form a concentration of fuel thereon, and also wherein said fuel injection port is tangentially slanted to impart a circumferential velocity component to the fuel in the same general direction as the circumferential component of said primary air swirl.
  • the atomizer of claim 1 wherein the primary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes.
  • the atomizer of claim 1 wherein the primary air swirler includes a plurality of circumferentially spaced apart, axial vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart axial swirl vanes.
  • An air blast fuel atomizer for atomizing fuel in the combustion chamber of a gas turbine engine comprismg:
  • fuel injection means for establishing a concentration of fuel on the interior surface of said primary shroud member wherein said fuel injection means includes at least one fuel injection port through said primary shroud member so as to accommodate the formation of a concentration of fuel on the interior surface of said primary shroud, together with fuel delivery means for directing fuel to the injection port;
  • a primary air swirler in upstream flow communication with the interior surface of said primary shroud member so as to introduce a primary air swirl into the confines of said primary shroud member, said air swirl imparting both an axial and circumferential velocity component to said concentration of fuel a secondary air swirler 1n upstream flow communication with said lip, so as to introduce an air swirl having a circumferential velocity component opposing that of said primary air swirl such that fuel reaching said lip is atomized by the high shear stresses developed by the counter-rotating aerodynamic forces at the confluence of said primary and secondary air swirls;
  • said fuel delivery means includes a substantially annular manifold circumscribing said primary shroud member and in direct flow communication with a plurality of circumferentially spaced apart fuel injection ports through said primary shroud member, together with conduit means for directing the flow of fuel to said manifold.
  • the atomizer of claim 7 including a recessed circumferential slot in the interior surface of said primary shroud member, said slot being in direct flow connection to said fuel injection slot.
  • the atomizer of claim 7 wherein the primary air swirler includes a plurality of circumferentially spaced apart, axial swirl vanes, and the secondary swirler includes a plurality of circumferentially spaced apart, radial swirl vanes.
  • the atomizer of claim 7 including a generally cylindrical centerbody within said primary shroud member and spaced apart therefrom so as to define a substantially annular air passage therebetween, said centerbody further housing an auxiliary fuel injection means of the fuel pressure spray atomizer type for providing fuel dispersions at relatively low aerodynamic energies.
  • the atomizer of claim 1 including a generally cylindrical secondary shroud member circumscribing the primary shroud member and spaced apart therefrom to define a substantially annular air passage therebetween wherein said primary shroud member is slidably retained in respect to said secondary shroud for translation in a generally axial direction thereby permitting adjustment of the spray angle of said atomized fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

An air blast fuel atomizer for establishing a highly atomized fuel dispersion at the confluence of two counter-rotating air swirls, wherein a uniform concentration of fuel is disposed on a circumferential shroud and directed to the atomization forces at the lip of the shroud.

Description

United States Patent Sturgess et al.
[54] AIR BLAST FUEL ATOMIZER [72] Inventors: Geoffrey John Sturgess, Swampscott; Jacob Sherman Hoffman, Peabody; John William Vdoviak; Robert Hirschkron, both of Marblehead, all of Mass.
[73] Assignee: General Electric Company [22] Filed: May 3, 1971 211 App]. No.: 139,408
[52] US. Cl ..239/400, 239/404, 60/3974 R [51] Int. Cl. ..B05b 7/10 [58] Field of Search ..239/400, 405; 60/3974 [56] References Cited UNITED STATES PATENTS 3,254,846 6/1966 Schreter et al. ..239/400 [451 Nov. 21, 1972 3,283,502 ll/l966 Lefebure ..60/39.74 R 2,044,296 6/1936 l-lardgrove ..239/400 3,153,438 10/1964 BrZOZOWSki ..239/405 X 2,850,875 9/1958 Gahwyler ..60/39.74 R 2,999,359 9/1961 Murray ..60/39.74 R
Primary Examiner-Lloyd L. King Attorney-Edward S. Roman, Derek P. Lawrence, Frank L. Neuhauser, Oscar B. Waddell and Joseph B. Forman [5 7] ABSTRACT An air blast fuel atomizer for establishing a highly atomized fuel dispersion at the confluence of two counter-rotating air swirls, wherein a uniform concentration of fuel is disposed on a circumferential shroud and directed to the atomization forces at the lip of the shroud.
V lo tllaims, 13 Drawing Figures PATENTED WV 21 I97? 3 703, 259
sum 3 or 3 in/ 6M manly- AIR BLAST FUEL ATOMIZER BACKGROUND OF THE INVENTION This invention relates to an air-blast atomizer and, more particularly, to an air-blast liquid fuel atomizer wherein an injector distributes fuel in a manner that enables a concentration of liquid fuel to form on the interior surface of a generally cylindrical shroud. Counter-rotating flows generate aerodynamic forces which establish high shear stresses at the lip of the shroud so as to uniformly disperse and highly atomize fuel directed to the lip.
Fuel injection into a continuous flow combustion chamber as, for example, in a gas turbine engine has posed continuing design problems. Difficulties have been encountered in injecting fuel in a highly dispersed manner so as to achieve complete and efficient combustion of the fuel, and at the same time minimize the occurrence of fuel-rich pockets which upon combustion produce carbon or smoke. Fuel injection difficulties have been further complicated by the recent introduction of gas turbine engines having increased combustor pressure capabilities. Existing fuel sprays atomizer efficiency decreases as combustor pressure is increased, resulting in a more non-uniform dispersion of fuel, together with an increase in the fuel-rich zones within the combustion chamber which cause reduced burner efficiency, excessive exhaust smoke, and a nonuniform heating of the combustor shell, a condition commonly referred to as hot-streaking, which can lead to rapid deterioration of the shell. Also, the recent use of economical heavy hydrocarbon fuels of high viscosity has further reduced the efficiency of existing fuel spray atomizers.
High fuel pressure spray atomizers have been suggested to overcome these adverse effects, but have not proved entirely satisfactory because of present fuel pump pressure limitations. Systems for vaporizing fuel upon injection into the combustor have also proved to be severely limited due to the dependence of the vaporization process on the temperature of the fuel and air entering the combustor.
Recently suggested atomizers employing a system of counter-rotational primary and secondary swirl vanes have proved highly successful in overcoming many of the aforementioned difficulties. In such systems a fuelair mixture is introduced upstream of the primary swirl vanes and the fuel is subsequently atomized by'the high shear stresses developed at the downstream confluence of the counter-rotating air streams. However, this introduction of fuel and its presentation to the air flow upstream of the primary swirl vanes may adversely affect flame stability, and uniform circumferential fuel distribution at the discharge into the chamber.
Therefore, it is a primary object of this invention to provide a fuel injection apparatus that will uniformly disperse fuel in a highly atomized manner for application in high combustor pressure engines.
It is also an object of this invention to provide a fuel injection apparatus whose performance remains substantially unaffected by the introduction of economical heavy hydrocarbon fuels.
It is a further object of this invention to provide a fuel injection apparatus wherein a concentration of fuel becomes highly atomized by the high shear stresses developed at the confluence of the counter-rotating air streams.
It is another object of this invention to provide a fuel injection apparatus whereby flame stability and discharge uniformity is improved by the initial introduction of fuel to air, downstream of the prima swirl vanes.
SUMMARY OF THE INVENTION The air-blast fuel atomizer of this invention generally includes a cylindrical primary shroud member having a downstream circumferential lip. Fuel injection means are provided to dispose a concentration of liquid fuel which may include a continuous liquid fuel layer, on or near the interior surface of the primary shroud member. A primary air swirler positioned in upstream flow communication with the interior surface of the primary shroud member introduces a primary air swirl into the confines of the primary shroud member thereby imparting both an axial and a tangential velocity component to the concentrated fuel. A secondary air swirler is in upstream flow communication with the primary shroud lip, and introduces an air swirl having a circumferential velocity component opposing that of the primary air swirl. Liquid fuel reaching the lip is atomized by the high shear stresses developed by the counter-rotating aerodynamic forces at the confluence of the primary and secondary air streams. Flow means are provided for introducing an air flow tothe primary and secondary air swirlers.
The fuel injection means may be housed in a generally cylindrical hollow centerbody within the primary shroud member and spaced apart therefrom, so as to define a substantially annular air passage therebetween for the primary air swirl. A plurality of circumferentially spaced apart fuel injection ports would pass through the centerbody. The ports may be slanted both tangentially and axially aft to impart initial circumferential and axial velocity components to the fuel. Altematively; the cylindrical primary shroud member may include at least one fuel injection port through the primary shroud member for establishing a concentration of liquid fuel on the interior surface of the primary shroud. Again the port may be slanted both tangentially and axially aft to impart initial circumferential and axial velocity components to the fuel.
BRIEF DESCRIPTION OF THE DRAWINGS A The invention may be better understood upon reading the following description of the preferred embodiment in conjunction with the accompanying drawings.
FIG. 1 shows a cross-sectional view of a typical jet engine combustion chamber including the air-blast fuel atomizer of this invention.
FIG. 2 shows a detailed cutaway perspective view of the air-blast fuel atomizer of FIG. 1.
FIG. 3 shows an alternate arrangement for the swirl vanes of the air-blast fuel atomizer of FIGS. 1 and 2.
FIG. 4 shows another arrangement for the swirl vanes of the air-blast fuel atomizer of FIGS. 1 and 2.
FIG. 5 shows a detailed preferred arrangement partly in cross-section for the fuel injection ports of the airblast fuel atomizer of FIGS. 1 and 2.
FIG. 6 is a cross-section taken on line 6-6 of FIG. 5 of the fuel injection ports of the air-blast fuel atomizer of FIGS. 1 and 2.
FIG. 7 shows a detailed cutaway perspective view of an alternate arrangement for the fuel injection means of the air-blast fuel atomizer of FIGS. 1 and 2.
FIG. 8 shows a cross-section taken on line 8--8 of FIG. 7 of an alternate arrangement for the fuel injection ports of the air-blast fuel atomizer of FIG. 7.
FIG. 9 shows a cross-section taken on line 8-8 of FIG. 7 of another arrangement for the fuel injection ports of the air-blast fuel atomizer of FIG. 7.
FIG. 10 shows a cross-section taken on line 10-10 of FIG. 9.
FIG. 11 shows an alternate arrangement for the swirl vanes of the air-blast fuel atomizer of FIG. 7.
FIG. 12 shows another arrangement for the swirl vanes of the air-blast fuel atomizer of FIG. 7.
FIG. 13 shows a partial cross-section of a variable geometry air-blast fuel atomizer.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings, and particularly to FIG. 1, a continuous burning combustion apparatus of the type suitable for use in a gas turbine engine has been shown generally at 10 as comprising a hollow body 12 defining a combustion chamber 14 therein. The hollow body 12 includes a domed upstream closure member 16 having a plurality of circumferentially spaced apart openings 18 of which only one is shown in the drawing. The openings 18 receive the air-blast atomizers of this invention, one of which is shown generally at 34. The domed closure member 16 also includes a plurality of air ports 15. The domed upstream closure member 16 and air-blast atomizer 34 define the upstream end of the chamber 14, with the domed member 16 suitably secured to the hollow body 12. As will be understood by those skilled in the art, the combustion chamber 14 may be of the annular type or the cannular type. I
An outer shell 20 may be provided to enclose the hollow body 12 and define passages 22 and 24 in cooperation with the hollow body 12 and an upstream extension 26 of the hollow body 12. As will be understood, the passages 22 and 24 are adapted to deliver a flow of pressurized air from a suitable source, such as a compressor 28, into the combustor chamber 14 through suitable apertures or louvers 30 for cooling of the hollow body 12 and dilution of the gaseous products of combustion as is well known in the art.
The upstream extension 26 of the hollow body 12 is adapted to function as a flow splitter to divide the pressurized air delivered from the compressor 28 between passages 22, 24 and an upstream end opening 32 of the extension 26. The opening 32 communicates with a chamber 33 which is defined internally of the extension 26 and the domed member 16.
Referring now to both FIGS. 1 and 2, one embodiment of the air-blast atomizer of this invention has been shown generally at 34 as including a hollow cylindrical centerbody 36 having circumferentially spaced apart fuel injection ports 40 through the sides thereof. Centerbody 36 is integrally formed with hollow stem 38, which is retained in position by connection to the outer shell 20 at fitting 50. Hollow stem 38 includes a suitable fuel delivery means which extends through the outer shell 20, and communicates with a source of pressurized fuel [not shown] so as to provide fuel to the injection ports 40. A generally cylindrical primary shroud member 42 surrounds the centerbody 36, and is radially spaced apart therefrom so as to define a substantially annular air passage 39 therebetween. The primary shroud member 42 includes a downstream circumferential lip 52. A primary air swirler is shown generally at 45 as including a plurality of axial swirl vanes 44 which are circumferentially spaced apart around centerbody 36, and retained in spaced relationship by means of a primary vane shroud 47, which may be attached to or formed integrally with the primary shroud member 42. The primary shroud members 42, 47 coact to establish flow communication from the upstream air swirler 45 tothe fuel injection port 40 and to the downstream lip of the primary shroud member designated at 52.
A secondary air swirler is shown generally at 49 as including a plurality of circumferentially spaced radial swirl vanes 46 retained in spaced relationship by circumferential retaining walls 51 and 53 which are axially spaced apart. A generally cylindrical secondary shroud member 43 circumscribes the primary shroud member, and is spaced apart therefrom, to define a substantially annular air passage 55 therebetween, so as to direct flow of the secondary swirl air over the primary lip 52.
Domed closure member 16 plugs into a floating ferrule 48, thereby accommodating both circumferential and radial thermal growth. Floating ferrule 48 may be attached to or formed integrally with either radial wall member 53 or secondary shroud 43. The floating ferrule 48 maintains the concentricity of the primary shroud 42 with respect to the centerbody 36 upon thermal expansion.
The centerbody 36 is shown as comprising an annular fuel manifold 56 which provides fuel to the circumferentially spaced apart fuel injection ports 40. The fuel delivery means within stem 38 are shown as including a fuel conduit 58 in flow connection with annular fuel manifold 56. Centerbody 36 may also include an auxiliary fuel spray atomizer 60 having a spray nozzle 62 serviced by an auxiliary fuel conduit 64. The auxiliary fuel spray atomizer may be utilized for initial ignition or when the situation is such as to demand assisted atomization. However, for most applications it is possible to dispense entirely with such assistance by the auxiliary fuel spray atomizer and use only the fuel injection ports. As will be understood, suitable ignition means 61 such as an electrical spark are provided within the combustion chamber 14 to provide initial ignition of the combustible air fuel mixture discharged by apparatus 34.
In operation, liquid fuel is delivered to annular fuel manifold 56 through fuel conduit 58. Pressurized fuel is sprayed from the fuel manifold through fuel injection ports 40, impinging on the interior surface of the primary shroud member 42 so as to deposit a concentration of fuel thereon. The fuel injection ports 40 may be radial, although it has been preferable preferably to have the fuel injection ports slanting axially aft as shown in the detailed illustration of the centerbody 36 in FIG. 5. Slanting the fuel injection ports axially aft imparts a downstream velocity component to the fuel as it is ejected. It has also been found preferable to align the fuel injection ports 40 in a tangential direction as shown in FIG. 6 to impart a circumferential velocity component to the fuel in the same direction as the circumferential velocity component imparted by the primary air swirler 45. Therefore the fuel flows from the ports with initial tangential and axial velocity components which act to centrifuge the fuel so as to form a concentration of fuel on the interior surface of the primary shroud 42 and to drive the fuel along the interior surface toward the downstream circumferential lip 52. The upstream primary axial swirl vanes 44 receive compressor discharge air and impart a circumferential velocity component thereto, such that the aerodynamic forces of the air emanating from the swirl vanes act to further centrifuge the concentration of fuel on the interior surface of the primary shroud member.
The deposited concentration of fuel is centrifugally driven or pushed along the interior surface of the primary shroud member towards the downstream circumferential lip 52. Depositing and concentrating the fuel over the interior surface of the primary shroud member, by itself, serves to increase the fuel to air contact ratio before atomization, by a factor equal to the area of the interior surface of the primary shroud member divided by the area of the fuel injection ports. Circumferential and axial velocity components are imparted to the concentrated fuel by initially jetting the fuel through the tangentially and axially slanted ports and by the aerodynamic forces of the primary air swirl, which combine to drive the fuel towards the primary shroud lip, imparting substantial kinetic energy to the fuel.
The secondary, circumferentially spaced apart, axial swirl vanes 46 receive compressor discharge air and impart a circumferential velocity component thereto in the opposing direction of the primary swirl air. The primary swirl air discharges from the air blast fuel atomizer in a substantially vortical flow 70 and would be seen from a downstream position as having clockwise circumferential velocity component, while the secondary swirl air also discharges in a substantially vortical flow 72, and would be seen as having a counter-clockwise circumferential velocity component. A conical area of turbulent air-flow exists on the boundary 74 between the primary and secondary vortices. Fuel delivered to the primary shroud lip 52 is highly atomized by the high aerodynamic shear stresses developed at the confluence of the counter-rotating primary and secondary streams of air. The atomized fuel droplets become highly dispersed by the turbulent air-flow at the boundary area 74 between the primary and secondary vortical flow.
It is believed that the majority of atomized fuel droplets are centrifuged into the secondary vortical flow 72 where they are driven generally outward toward the hollow body 12. The high differential velocity component between the counter-rotating air swirls permits a high relative velocity component for the fuel droplets without having to accelerate the fuel droplets to such a high absolute velocity. It is further believed that a low pressure area exists between the domed closure member 16 and the secondary vortical flow 72. This low pressure area causes the highly atomized fuel droplets to recirculate toward the domed closure member as shown by the flow lines of FIG. 1.
It is also believed that the fuel droplets are ignited by ignition means 61 whereupon the flame subsequently stabilizes in the stagnation zones 78 near the domed closure member. The stagnation zones are enhanced by the recirculation of compressor discharge air entrained through the dome air ports 15. The core 76 of the primary vortical flow is at a reduced pressure, thereby entraining a portion of the hot products of combustion and causing a recirculation thereof so as to maintain continuous ignition within the combustion chamber 14.
Auxiliary fuel spray atomizer 60 may be incorporated within centerbody 36 to assist in the situation where there is insufficient aerodynamic energy available for efficient air blast atomization, or in a situation where an auxiliary fuel source would provide improved performance for special requirements. For instance, the auxiliary fuel spray atomizer 60 may provide starting fuel flows at initial ignition by spray atomization at relatively low fuel pressures. Preferably when the auxiliary fuel spray atomizer is not utilized it is continuously purged with an air flow through the spray nozzle 62 in order to prevent blocking of the orifice and buildup of carbon on the face during engine operation.
Although the primary and secondary swirl vanes have been shown in FIGS. 1 and 2 as axial and radial respectively, the actual scope of invention is substantially broader and may include many alternative configurations for the swirl vanes. Referring now to FIG. 3, there is shown an alternate arrangement for the primary and secondary swirl vanes. The primary and secondary swirlers 45a and 49a are shown as comprising a plurality of circumferentially spaced apart swirl vanes, 44a and 46a respectively, each of which is in a radial configuration. FIG. 4 shows still another suitable arrangement for the primary and secondary swirl vanes of FIGS. 1 and 3. Primary swirlers 45b and secondary swirlers 49b are shown as including a plurality of circumferentially spaced apart swirl vanes, 44b and 46b respectively, each of which is in an axial configuration.
Referring now to FIG. 7 there is shown an alternate arrangement for the fuel injection means as included in the air-blast fuel atomizer of this invention which is shown generally at 34 where like numerals refer to previously described components. The fuel injection means are shown as including at least one substantially tangential fuel injection port 80 through the primary shroud member 42. Pressurized fuel may be supplied to the fuel injection port 80 by means of an annular fuel manifold 82 around the primary shroud 42. Annular fuel manifold 82 is defined by a radially extending circumferential wall 84 and an axially extending circumferential wall 86 cooperating with the exterior surface of primary shroud member 42 and the radially extending circumferential wall 51. Pressurized fuel is introduced into fuel manifold 82 by means of fuel conduit 58 which is in direct flow connection to an external source of pressurized fuel [not shown].
In operation, liquid fuel is delivered to annular fuel manifold 80 through fuel conduit 58. Pressurized fuel flows from the fuel manifold 80 through fuel injection port 80 which is preferably formed so as to discharge fuel in a direction substantially tangential to the interior surface of the primary shroud member. The fuel injection port is also preferably slanted axially aft so as to impart a downstream velocity component to the fuel as it is ejected. The fuel flows from the port with initial tangential and axial velocity components which act to centrifuge the fuel so as to form a concentration of fuel on the interior surface of the primary shroud member 42. The concentrated fuel approaches a discrete swirling film travelling downstream along the interior surface of the primary shroud toward the circumferential lip 52. The upstream primary axial swirl 44 receive compressor discharge air and impart a circumferential velocity component thereto, such that the aerodynamic forces of the air emanating from the swirl vanes act to further centrifuge the concentrated fuel on the interior surface of the primary shroud member. The
fuel is centrifugally driven or pushed along the interior surface of the primary shroud member toward the down-stream circumferential lip 52. The primary swirl air may also induce wave instabilities into the swirling fuel which subsequently enhance the atomization of fuel at the lip 52 of the primary shroud. In order to W maximize the enhancing effect of the wave instabilities, the distance from the fuel injection port 80 to the lip 52 of the primary shroud member may be selected as a function of the diameter of the primary shroud. The fuel is subsequently atomized at the primary shroud lip 52 by the high aerodynamic shear stresses developed at the confluence of the counterrotating primary and secondary streams of air in the same manner as previously described in reference to FIGS. 1 and 2.
The intended scope of invention for the arrangement of FIG. 7 shouldnot be limited to the single fuel injection port, but may also include a plurality of circumferentially spaced apart fuel injection ports passing tangentially through the primary shroud member. The cross-sectional view of FIG. 8 shows a scheme for a twin port fuel injection system including duel fuel injection ports 80 and 80. FIGS. 9 and 10 show an alternate scheme whereby primary shroud member 42 includes a circumferential recessed slot 88 in the interior surface thereof. The swirling fuel spills over the edge 90 of the slot 88 onto the interior surface of the shroud and flows downstream. The slot configuration is not limited to the rectangular cross-section shown, but may be of almost any cross-section, such as a V shape or a curvilinear cross-section, as long as the slot extends circumferentially around the primary shroud and in some way indents the interior surface of the primary shroud.
Although the primary and secondary swirl vanes have been shown in FIG. 7 as axial and radial respectively, again the actual scope of invention issubstantially broader and may include many alternative configurations for the swirl vanes. Referring now to FIG. 1 1, there is shown an arrangement for the primary and secondary swirl vanes. The primary and secondary swirlers 4S and 49 are shown as comprising a plurality of circumferentially spaced apart swirl vanes, 44 and 46 respectively, each of which is in a radial configuration. Annular fuel manifolds 82 is disposed between the axial swirl vanes. FIG. 12 shows still another arrangement for the primary and secondary swirl vanes of FIG. 7. Primary swirlers 45 and secondary swirlers 49 are shown as including a plurality of circumferentially spaced apart swirl vanes 44 and 46" respectively, each of which is in an axial configuration. Annular manifold 82' is shown as circumscribing the primary shroud member 42.
The spray angle of fuel atomized off the lip of the primary shroud member may be critical for effective burning of fuel. FIG. 13 shows a variable geometry configuration for conveniently adjusting the spray angle of the atomized fuel by varying the distance (A) from the lip 52 of the primary shroud 42 to the end of the secondary shroud 43. The primary shroud 42 is slidably retained with respect to both the radially extending circum ferential wall 51 and the primary air swirler 45. Linkage arm 98 may be fixedly attached to the wall 86. The other end of linkage arm 98 is not shown, but may be connected through a series of linkages or hydraulic means to an engine fuel control system [not shown]. Conduit 58 includes an expansible and contractible section 104 to allow unrestrained translation of primary shroud 42.
In operation the spray-angle of the atomized fuel may be varied through actuation of linkage arm 98 through the fuel control system. Actuation of linkage arm 98 imparts an axial translation to the primary shroud member 42. Reduced spray angles may be achieved by translating the lever arm 98 in a forward direction resulting in an increased distance (A) between the lip 52 of the primary shroud 42 and the end of the secondary shroud 43.
From the foregoing, it will be appreciated that the present invention provides an improved apparatus for efficiently and satisfactorily introducing fuel into a combustion chamber in a positive and controlled manner over a wide range of operating conditions. Initially concentrating fuel on the interior of a primary shroud member serves to greatly increase the fuel to air contact ratio before atomization. Counter-rotating primary and secondary air swirlers impart substantial kinetic energy to the fuel and establish high shear stresses to insure efficient atomization at the confluence of the two air streams.
While the air-blast fuel atomizer has been depicted as satisfying a specific gas turbine application as a fuel injector and atomizer, it should be understood that the concept of this invention has broad applicability as to atomizing all types of liquid fuels as utilized in various combustion processes. As an example, the air-blast fuel atomizer of this invention could be utilized as a fuel injector for a supercharged automotive engine. Accordingly, while preferred embodiments and a preferred application of the present invention have been depicted and described, it will be appreciated by those skilled in the art that many modifications, substitutions, and changes may be made thereto without departing from the inventions fundamental theme.
What is claimed is:
1. An air blast fuel atomizer for atomizing fuel in the combustion chamber of a gas turbine engine comprismg:
a generally cylindrical primary shroud member having a downstream circumferential lip;
fuel injection means for establishing a concentration of fuel on the interior surface of said primary shroud member;
a primary air swirler in upstream flow communication with the interior surface of said primary shroud member so as to introduce a primary air swirl into the confines of said primary shroud member, said air swirl imparting both an axial and circumferential velocity component to said concentration of fuel;
a secondary air swirler in upstream flow communication with said lip, so as to introduce an air swirl having a circumferential velocity component opposing that of said primary air swirl such that fuel reaching said lip is atomized by the high shear stresses developed by the counter-rotating aerodynamic forces at the confluence of said primary and secondary air swirls;
flow means for introducing an air flow to said primary and secondary swirlers;
and a generally cylindrical centerbody within said primary shroud member and concentrically spaced apart therefrom so as to define a substantially annular air passage therebetween wherein said centerbody is hollow and said fuel injection means includes at least one fuel injection port through said centerbody, through which fuel may be directed onto the interior surface of said primary shroud to form a concentration of fuel thereon, and also wherein said fuel injection port is tangentially slanted to impart a circumferential velocity component to the fuel in the same general direction as the circumferential component of said primary air swirl.
2. The atomizer of claim 1 wherein said centerbody further includes an auxiliary fuel injection means of the fuel pressure spray atomizer type for providing fuel dispersions at relatively low aerodynamic energies.
3. The atomizer of claim 1 wherein said fuel injection port is slanted axially downstream to impart a downstream velocity component to the fuel.
4. The atomizer of claim 1 wherein the primary air swirler includes a plurality of circumferentially spaced apart, axial swirl vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes.
5. The atomizer of claim 1 wherein the primary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes.
6. The atomizer of claim 1 wherein the primary air swirler includes a plurality of circumferentially spaced apart, axial vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart axial swirl vanes.
7. An air blast fuel atomizer for atomizing fuel in the combustion chamber of a gas turbine engine comprismg:
a generally cylindrical primary shroud member having a downstream circumferential lip;
fuel injection means for establishing a concentration of fuel on the interior surface of said primary shroud member wherein said fuel injection means includes at least one fuel injection port through said primary shroud member so as to accommodate the formation of a concentration of fuel on the interior surface of said primary shroud, together with fuel delivery means for directing fuel to the injection port;
a primary air swirler in upstream flow communication with the interior surface of said primary shroud member so as to introduce a primary air swirl into the confines of said primary shroud member, said air swirl imparting both an axial and circumferential velocity component to said concentration of fuel a secondary air swirler 1n upstream flow communication with said lip, so as to introduce an air swirl having a circumferential velocity component opposing that of said primary air swirl such that fuel reaching said lip is atomized by the high shear stresses developed by the counter-rotating aerodynamic forces at the confluence of said primary and secondary air swirls;
and flow means for introducing an air flow to said primary and secondary air swirlers.
8. The atomizer of claim 7 wherein said fuel injection port is in substantial tangential relation to the interior surface of said primary shroud member so that said concentration of fuel approaches a discrete swirling film of fuel.
9. The atomizer of claim 7 wherein said fuel injection port is slanted axially aft to impart an axial velocity component to the concentrated fuel.
10. The atomizer of claim 7 wherein said fuel delivery means includes a substantially annular manifold circumscribing said primary shroud member and in direct flow communication with a plurality of circumferentially spaced apart fuel injection ports through said primary shroud member, together with conduit means for directing the flow of fuel to said manifold.
11. The atomizer of claim 7 including a recessed circumferential slot in the interior surface of said primary shroud member, said slot being in direct flow connection to said fuel injection slot.
12. The atomizer of claim 7 wherein the primary air swirler includes a plurality of circumferentially spaced apart, axial swirl vanes, and the secondary swirler includes a plurality of circumferentially spaced apart, radial swirl vanes.
13. The atomizer of claim 7 wherein the primary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes.
14. The atomizer of claim 7 wherein the primary air swirler includes a plurality of circumferentially spaced apart, axial swirl vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart axial swirl vanes.
15. The atomizer of claim 7 including a generally cylindrical centerbody within said primary shroud member and spaced apart therefrom so as to define a substantially annular air passage therebetween, said centerbody further housing an auxiliary fuel injection means of the fuel pressure spray atomizer type for providing fuel dispersions at relatively low aerodynamic energies.
16. The atomizer of claim 1 including a generally cylindrical secondary shroud member circumscribing the primary shroud member and spaced apart therefrom to define a substantially annular air passage therebetween wherein said primary shroud member is slidably retained in respect to said secondary shroud for translation in a generally axial direction thereby permitting adjustment of the spray angle of said atomized fuel.

Claims (16)

1. An air blast fuel atomizer for atomizing fuel in the combustion chamber of a gas turbine engine comprising: a generally cylindrical primary shroud member having a downstream circumferential lip; fuel injection means for establishing a concentration of fuel on the interior surface of said primary shroud member; a primary air swirler in upstream flow communication with the interior surface of said primary shroud member so as to introduce a primary air swirl into the confines of said primary shroud member, said air swirl imparting both an axial and circumferential velocity component to said concentration of fuel; a secondary air swirler in upstream flow communication with said lip, so as to introduce an air swirl having a circumferential velocitY component opposing that of said primary air swirl such that fuel reaching said lip is atomized by the high shear stresses developed by the counter-rotating aerodynamic forces at the confluence of said primary and secondary air swirls; flow means for introducing an air flow to said primary and secondary swirlers; and a generally cylindrical centerbody within said primary shroud member and concentrically spaced apart therefrom so as to define a substantially annular air passage therebetween wherein said centerbody is hollow and said fuel injection means includes at least one fuel injection port through said centerbody, through which fuel may be directed onto the interior surface of said primary shroud to form a concentration of fuel thereon, and also wherein said fuel injection port is tangentially slanted to impart a circumferential velocity component to the fuel in the same general direction as the circumferential component of said primary air swirl.
1. An air blast fuel atomizer for atomizing fuel in the combustion chamber of a gas turbine engine comprising: a generally cylindrical primary shroud member having a downstream circumferential lip; fuel injection means for establishing a concentration of fuel on the interior surface of said primary shroud member; a primary air swirler in upstream flow communication with the interior surface of said primary shroud member so as to introduce a primary air swirl into the confines of said primary shroud member, said air swirl imparting both an axial and circumferential velocity component to said concentration of fuel; a secondary air swirler in upstream flow communication with said lip, so as to introduce an air swirl having a circumferential velocitY component opposing that of said primary air swirl such that fuel reaching said lip is atomized by the high shear stresses developed by the counter-rotating aerodynamic forces at the confluence of said primary and secondary air swirls; flow means for introducing an air flow to said primary and secondary swirlers; and a generally cylindrical centerbody within said primary shroud member and concentrically spaced apart therefrom so as to define a substantially annular air passage therebetween wherein said centerbody is hollow and said fuel injection means includes at least one fuel injection port through said centerbody, through which fuel may be directed onto the interior surface of said primary shroud to form a concentration of fuel thereon, and also wherein said fuel injection port is tangentially slanted to impart a circumferential velocity component to the fuel in the same general direction as the circumferential component of said primary air swirl.
2. The atomizer of claim 1 wherein said centerbody further includes an auxiliary fuel injection means of the fuel pressure spray atomizer type for providing fuel dispersions at relatively low aerodynamic energies.
3. The atomizer of claim 1 wherein said fuel injection port is slanted axially downstream to impart a downstream velocity component to the fuel.
4. The atomizer of claim 1 wherein the primary air swirler includes a plurality of circumferentially spaced apart, axial swirl vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes.
5. The atomizer of claim 1 wherein the primary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes.
6. The atomizer of claim 1 wherein the primary air swirler includes a plurality of circumferentially spaced apart, axial vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart axial swirl vanes.
7. An air blast fuel atomizer for atomizing fuel in the combustion chamber of a gas turbine engine comprising: a generally cylindrical primary shroud member having a downstream circumferential lip; fuel injection means for establishing a concentration of fuel on the interior surface of said primary shroud member wherein said fuel injection means includes at least one fuel injection port through said primary shroud member so as to accommodate the formation of a concentration of fuel on the interior surface of said primary shroud, together with fuel delivery means for directing fuel to the injection port; a primary air swirler in upstream flow communication with the interior surface of said primary shroud member so as to introduce a primary air swirl into the confines of said primary shroud member, said air swirl imparting both an axial and circumferential velocity component to said concentration of fuel; a secondary air swirler in upstream flow communication with said lip, so as to introduce an air swirl having a circumferential velocity component opposing that of said primary air swirl such that fuel reaching said lip is atomized by the high shear stresses developed by the counter-rotating aerodynamic forces at the confluence of said primary and secondary air swirls; and flow means for introducing an air flow to said primary and secondary air swirlers.
8. The atomizer of claim 7 wherein said fuel injection port is in substantial tangential relation to the interior surface of said primary shroud member so that said concentration of fuel approaches a discrete swirling film of fuel.
9. The atomizer of claim 7 wherein said fuel injection port is slanted axially aft to impart an axial velocity component to the concentrated fuel.
10. The atomizer of claim 7 wherein said fuel delivery means includes a substantially annular manifold circumscribing said primary shroud member and in direct flow communication with a plurality of cirCumferentially spaced apart fuel injection ports through said primary shroud member, together with conduit means for directing the flow of fuel to said manifold.
11. The atomizer of claim 7 including a recessed circumferential slot in the interior surface of said primary shroud member, said slot being in direct flow connection to said fuel injection slot.
12. The atomizer of claim 7 wherein the primary air swirler includes a plurality of circumferentially spaced apart, axial swirl vanes, and the secondary swirler includes a plurality of circumferentially spaced apart, radial swirl vanes.
13. The atomizer of claim 7 wherein the primary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart, radial swirl vanes.
14. The atomizer of claim 7 wherein the primary air swirler includes a plurality of circumferentially spaced apart, axial swirl vanes, and the secondary air swirler includes a plurality of circumferentially spaced apart axial swirl vanes.
15. The atomizer of claim 7 including a generally cylindrical centerbody within said primary shroud member and spaced apart therefrom so as to define a substantially annular air passage therebetween, said centerbody further housing an auxiliary fuel injection means of the fuel pressure spray atomizer type for providing fuel dispersions at relatively low aerodynamic energies.
US139408A 1971-05-03 1971-05-03 Air blast fuel atomizer Expired - Lifetime US3703259A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13940871A 1971-05-03 1971-05-03

Publications (1)

Publication Number Publication Date
US3703259A true US3703259A (en) 1972-11-21

Family

ID=22486494

Family Applications (1)

Application Number Title Priority Date Filing Date
US139408A Expired - Lifetime US3703259A (en) 1971-05-03 1971-05-03 Air blast fuel atomizer

Country Status (2)

Country Link
US (1) US3703259A (en)
CA (1) CA942512A (en)

Cited By (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793828A (en) * 1970-09-26 1974-02-26 Secr Defence Combustion system deflector plate
US3811278A (en) * 1973-02-01 1974-05-21 Gen Electric Fuel injection apparatus
US3834159A (en) * 1973-08-03 1974-09-10 Gen Electric Combustion apparatus
US3853273A (en) * 1973-10-01 1974-12-10 Gen Electric Axial swirler central injection carburetor
US3866413A (en) * 1973-01-22 1975-02-18 Parker Hannifin Corp Air blast fuel atomizer
DE2442895A1 (en) * 1973-09-10 1975-03-13 Gen Electric FUEL INJECTION DEVICE
US3872664A (en) * 1973-10-15 1975-03-25 United Aircraft Corp Swirl combustor with vortex burning and mixing
US3899881A (en) * 1974-02-04 1975-08-19 Gen Motors Corp Combustion apparatus with secondary air to vaporization chamber and concurrent variance of secondary air and dilution air in a reverse sense
US3901446A (en) * 1974-05-09 1975-08-26 Us Air Force Induced vortex swirler
US3903692A (en) * 1972-07-24 1975-09-09 Us Army Hot gas generator
US3927520A (en) * 1974-02-04 1975-12-23 Gen Motors Corp Combustion apparatus with combustion and dilution air modulating means
US3930369A (en) * 1974-02-04 1976-01-06 General Motors Corporation Lean prechamber outflow combustor with two sets of primary air entrances
US3932988A (en) * 1972-10-25 1976-01-20 Beaufrere Albert H Fuel slinger combustor
US3937011A (en) * 1972-11-13 1976-02-10 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Fuel injector for atomizing and vaporizing fuel
US3938323A (en) * 1971-12-15 1976-02-17 Phillips Petroleum Company Gas turbine combustor with controlled fuel mixing
JPS5121011A (en) * 1974-08-16 1976-02-19 Mitsubishi Heavy Ind Ltd NENSHO SOCHI
US3955361A (en) * 1971-12-15 1976-05-11 Phillips Petroleum Company Gas turbine combustor with controlled fuel mixing
US3972182A (en) * 1973-09-10 1976-08-03 General Electric Company Fuel injection apparatus
US4023351A (en) * 1974-04-30 1977-05-17 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Injecting and igniting device
US4050238A (en) * 1975-03-14 1977-09-27 Daimler-Benz Aktiengesellschaft Film evaporating combustion chamber
JPS5390510A (en) * 1977-01-20 1978-08-09 Koukuu Uchiyuu Gijiyutsu Kenki Fuel atomizer for gas turbine
DE2825431A1 (en) * 1977-06-10 1978-12-14 Rolls Royce BURNERS FOR GAS TURBINE ENGINES
DE2845619A1 (en) * 1977-10-21 1979-04-26 Rolls Royce COMBUSTION DEVICE FOR A GAS TURBINE ENGINE
US4170108A (en) * 1975-04-25 1979-10-09 Rolls-Royce Limited Fuel injectors for gas turbine engines
US4198815A (en) * 1975-12-24 1980-04-22 General Electric Company Central injection fuel carburetor
US4216652A (en) * 1978-06-08 1980-08-12 General Motors Corporation Integrated, replaceable combustor swirler and fuel injector
US4237694A (en) * 1978-03-28 1980-12-09 Rolls-Royce Limited Combustion equipment for gas turbine engines
US4373342A (en) * 1977-02-04 1983-02-15 Rolls-Royce Limited Combustion equipment
US4373325A (en) * 1980-03-07 1983-02-15 International Harvester Company Combustors
DE3323490A1 (en) * 1982-07-06 1984-01-12 General Electric Co., Schenectady, N.Y. MIXING DEVICE AND METHOD FOR CONTROLLING THE EXHAUST SPRAY ANGLE THEREOF
US4441323A (en) * 1981-04-16 1984-04-10 Rolls-Royce Limited Combustion equipment for a gas turbine engine including a fuel burner capable of accurate positioning and installation as a unit in a flame tube
US4463568A (en) * 1981-07-28 1984-08-07 Rolls-Royce Limited Fuel injector for gas turbine engines
JPS59158916A (en) * 1983-02-28 1984-09-08 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Combustion apparatus for gas turbing engine
US4470262A (en) * 1980-03-07 1984-09-11 Solar Turbines, Incorporated Combustors
US4532762A (en) * 1982-07-22 1985-08-06 The Garrett Corporation Gas turbine engine variable geometry combustor apparatus
US4534166A (en) * 1980-10-01 1985-08-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flow modifying device
EP0153842A1 (en) * 1984-02-29 1985-09-04 LUCAS INDUSTRIES public limited company Combustion equipment
US4598553A (en) * 1981-05-12 1986-07-08 Hitachi, Ltd. Combustor for gas turbine
US4693074A (en) * 1983-11-26 1987-09-15 Rolls-Royce Plc Combustion apparatus for a gas turbine engine
DE3642122C1 (en) * 1986-12-10 1988-06-09 Mtu Muenchen Gmbh Fuel injector
DE3729861A1 (en) * 1987-09-05 1989-03-16 Deutsche Forsch Luft Raumfahrt SOOT FILTER DEVICE FOR A DIESEL ENGINE
WO1989006307A1 (en) * 1987-12-28 1989-07-13 Sundstrand Corporation Gas turbine with forced vortex fuel injection
FR2626043A1 (en) * 1988-01-14 1989-07-21 Gen Electric TURBULENCE-FUEL INJECTOR FORMATION DEVICE FOR A COMBUSTION ASSEMBLY IN A GAS TURBINE
US4893475A (en) * 1986-12-10 1990-01-16 Rolls-Royce Plc Combustion apparatus for a gas turbine
WO1990007088A1 (en) * 1988-12-12 1990-06-28 Sundstrand Corporation Spray nozzle
US4974416A (en) * 1987-04-27 1990-12-04 General Electric Company Low coke fuel injector for a gas turbine engine
US4982570A (en) * 1986-11-25 1991-01-08 General Electric Company Premixed pilot nozzle for dry low Nox combustor
US4996837A (en) * 1987-12-28 1991-03-05 Sundstrand Corporation Gas turbine with forced vortex fuel injection
US5016443A (en) * 1988-09-07 1991-05-21 Hitachi, Ltd. Fuel-air premixing device for a gas turbine
US5037585A (en) * 1988-06-03 1991-08-06 Industrielle Du Ponant Sa Air conditioning humidifier
EP0500256A1 (en) * 1991-02-22 1992-08-26 General Electric Company Air fuel mixer for gas turbine combustor
US5193346A (en) * 1986-11-25 1993-03-16 General Electric Company Premixed secondary fuel nozzle with integral swirler
EP0561591A2 (en) * 1992-03-16 1993-09-22 General Electric Company Swirler for combustor
US5251447A (en) * 1992-10-01 1993-10-12 General Electric Company Air fuel mixer for gas turbine combustor
US5431019A (en) * 1993-04-22 1995-07-11 Alliedsignal Inc. Combustor for gas turbine engine
US5444982A (en) * 1994-01-12 1995-08-29 General Electric Company Cyclonic prechamber with a centerbody
DE4424599A1 (en) * 1994-07-13 1996-01-18 Abb Research Ltd Method and device for operating a combined burner for liquid and gaseous fuels
EP0769657A2 (en) * 1995-10-19 1997-04-23 General Electric Company Low emissions combustor premixer
US5636510A (en) * 1994-05-25 1997-06-10 Westinghouse Electric Corporation Gas turbine topping combustor
FR2753779A1 (en) * 1996-09-26 1998-03-27 Snecma AERODYNAMIC INJECTION SYSTEM FOR A FUEL AIR MIXTURE
US6311473B1 (en) * 1999-03-25 2001-11-06 Parker-Hannifin Corporation Stable pre-mixer for lean burn composition
EP1253380A2 (en) * 2001-04-27 2002-10-30 General Electric Company Methods and apparatus for cooling gas turbine engine combustors
US6474569B1 (en) * 1997-12-18 2002-11-05 Quinetiq Limited Fuel injector
FR2825778A1 (en) * 2001-06-06 2002-12-13 Snecma Moteurs Coupling between fuel injector nozzle and turbine combustion chamber base has metal mixer/deflector assembly sliding in composition base aperture
US20030010034A1 (en) * 2001-07-16 2003-01-16 Snecma Moteurs Aeromechanical injection system with a primary anti-return swirler
US6547163B1 (en) 1999-10-01 2003-04-15 Parker-Hannifin Corporation Hybrid atomizing fuel nozzle
US20030150932A1 (en) * 2002-02-11 2003-08-14 Gunter Eberspach Atomizing nozzle for a burner
US20030155435A1 (en) * 2002-02-21 2003-08-21 Gunter Eberspach Atomizing nozzle for a burner, especially for a heater that can be used on a vehicle
US20040003596A1 (en) * 2002-04-26 2004-01-08 Jushan Chin Fuel premixing module for gas turbine engine combustor
US20040040311A1 (en) * 2002-04-30 2004-03-04 Thomas Doerr Gas turbine combustion chamber with defined fuel input for the improvement of the homogeneity of the fuel-air mixture
US20040118121A1 (en) * 2002-12-18 2004-06-24 Kenneth Parkman Low cost combustor floating collar with improved sealing and damping
US20050034460A1 (en) * 2003-08-11 2005-02-17 Mcmasters Marie Ann Combustor dome assembly of a gas turbine engine having a free floating swirler
EP1512912A2 (en) 2003-09-04 2005-03-09 Rolls-Royce Deutschland Ltd & Co KG Homogeneous mixture formation by swirled injection of the fuel
JP2005061822A (en) * 2003-08-11 2005-03-10 General Electric Co <Ge> Combustor dome assembly for gas turbine engine having contoured swirler
DE102004015904A1 (en) * 2004-03-31 2005-10-20 Alstom Technology Ltd Baden Method of liquid fuel atomization in a premix burner and premix burner
US20050257530A1 (en) * 2004-05-21 2005-11-24 Honeywell International Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
US20060059915A1 (en) * 2004-09-23 2006-03-23 Snecma Effervescence injector for an aero-mechanical system for injecting air/fuel mixture into a turbomachine combustion chamber
US20060174625A1 (en) * 2005-02-04 2006-08-10 Siemens Westinghouse Power Corp. Can-annular turbine combustors comprising swirler assembly and base plate arrangements, and combinations
US20070089397A1 (en) * 2003-11-15 2007-04-26 Maeding Chris U Injection element
US20070224562A1 (en) * 2006-03-23 2007-09-27 Hiromitsu Nagayoshi Burner for combustion chamber and combustion method
EP1873457A1 (en) * 2006-06-29 2008-01-02 Snecma Device for injecting a mix of air and fuel, combustion chamber and turbomachine equipped with such a device
JP2008534903A (en) * 2005-03-31 2008-08-28 アルストム テクノロジー リミテッド Premix burner used in gas turbine combustor
US7513098B2 (en) 2005-06-29 2009-04-07 Siemens Energy, Inc. Swirler assembly and combinations of same in gas turbine engine combustors
US20090100837A1 (en) * 2007-10-18 2009-04-23 Ralf Sebastian Von Der Bank Lean premix burner for a gas-turbine engine
US20090139240A1 (en) * 2007-09-13 2009-06-04 Leif Rackwitz Gas-turbine lean combustor with fuel nozzle with controlled fuel inhomogeneity
US20100050646A1 (en) * 2008-09-03 2010-03-04 United Technologies Corp. Systems and Methods Involving Improved Fuel Atomization in Air-Blast Fuel Nozzles of Gas Turbine Engines
CN101046298B (en) * 2006-03-30 2010-06-23 斯奈克玛 Apparatus to inject a mixture of air and fuel, combustion chamber and turbine engine equipped with such an apparatus
US20110000214A1 (en) * 2009-07-01 2011-01-06 David Andrew Helmick Methods and systems to thermally protect fuel nozzles in combustion systems
US20110252803A1 (en) * 2010-04-14 2011-10-20 General Electric Company Apparatus and method for a fuel nozzle
US20110272486A1 (en) * 2004-12-15 2011-11-10 Harry Metzger Method for spraying a medium and spraying nozzle
US20110289933A1 (en) * 2010-05-26 2011-12-01 Gregory Allen Boardman Hybrid Prefilming Airblast, Prevaporizing, Lean-Premixing Dual-Fuel Nozzle for a Gas Turbine Combustor
US20120186259A1 (en) * 2011-01-26 2012-07-26 United Technologies Corporation Fuel injector assembly
EP2481982A1 (en) * 2011-01-26 2012-08-01 United Technologies Corporation Mixer assembly for a gas turbine engine
US20140060060A1 (en) * 2012-07-09 2014-03-06 Alstom Technology Ltd Burner arrangement
US20140137557A1 (en) * 2012-11-20 2014-05-22 Masamichi KOYAMA Gas turbine combustor
EP2735797A1 (en) * 2012-11-23 2014-05-28 Niigata Power Systems Co., Ltd. Gas turbine combustor
US8893500B2 (en) 2011-05-18 2014-11-25 Solar Turbines Inc. Lean direct fuel injector
US8919132B2 (en) 2011-05-18 2014-12-30 Solar Turbines Inc. Method of operating a gas turbine engine
US8943834B2 (en) 2012-11-20 2015-02-03 Niigata Power Systems Co., Ltd. Pre-mixing injector with bladeless swirler
JPWO2012165614A1 (en) * 2011-06-02 2015-02-23 川崎重工業株式会社 Gas turbine combustor
US20150285502A1 (en) * 2014-04-08 2015-10-08 General Electric Company Fuel nozzle shroud and method of manufacturing the shroud
US9182124B2 (en) 2011-12-15 2015-11-10 Solar Turbines Incorporated Gas turbine and fuel injector for the same
US20150354825A1 (en) * 2013-03-11 2015-12-10 Mitsubishi Hitachi Power Systems, Ltd. Fuel spray nozzle
US20160161122A1 (en) * 2014-03-28 2016-06-09 Delavan Inc. Airblast nozzle with upstream fuel distribution and near-exit swirl
US20170350598A1 (en) * 2016-06-03 2017-12-07 General Electric Company Contoured shroud swirling pre-mix fuel injector assembly
US9920932B2 (en) 2011-01-26 2018-03-20 United Technologies Corporation Mixer assembly for a gas turbine engine
EP3312509A1 (en) * 2009-05-27 2018-04-25 Siemens Aktiengesellschaft Burner
FR3080437A1 (en) * 2018-04-24 2019-10-25 Safran Aircraft Engines INJECTION SYSTEM FOR AN ANNULAR TURBOMACHINE COMBUSTION CHAMBER
US10508812B2 (en) * 2014-05-12 2019-12-17 General Electric Company Pre-film liquid fuel cartridge
US10570780B2 (en) 2017-11-03 2020-02-25 Rohr, Inc. Exhaust assembly mounting configuration
US20210254832A1 (en) * 2020-02-14 2021-08-19 United Technologies Corporation Integrated fuel swirlers
EP4094019A4 (en) * 2020-01-22 2023-07-05 Turbogen Ltd. Atomizer for gas turbine engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2044296A (en) * 1932-05-10 1936-06-16 Fuller Lehigh Co Burner
US2850875A (en) * 1952-08-15 1958-09-09 Bbc Brown Boveri & Cie Gas burner
US2999359A (en) * 1956-04-25 1961-09-12 Rolls Royce Combustion equipment of gas-turbine engines
US3153438A (en) * 1961-04-17 1964-10-20 Witold B Brzozowski Dual fuel burner
US3254846A (en) * 1965-01-21 1966-06-07 Hauck Mfg Co Oil atomizing burner using low pressure air
US3283502A (en) * 1964-02-26 1966-11-08 Arthur H Lefebvre Fuel injection system for gas turbine engines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2044296A (en) * 1932-05-10 1936-06-16 Fuller Lehigh Co Burner
US2850875A (en) * 1952-08-15 1958-09-09 Bbc Brown Boveri & Cie Gas burner
US2999359A (en) * 1956-04-25 1961-09-12 Rolls Royce Combustion equipment of gas-turbine engines
US3153438A (en) * 1961-04-17 1964-10-20 Witold B Brzozowski Dual fuel burner
US3283502A (en) * 1964-02-26 1966-11-08 Arthur H Lefebvre Fuel injection system for gas turbine engines
US3254846A (en) * 1965-01-21 1966-06-07 Hauck Mfg Co Oil atomizing burner using low pressure air

Cited By (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793828A (en) * 1970-09-26 1974-02-26 Secr Defence Combustion system deflector plate
US3955361A (en) * 1971-12-15 1976-05-11 Phillips Petroleum Company Gas turbine combustor with controlled fuel mixing
US3938323A (en) * 1971-12-15 1976-02-17 Phillips Petroleum Company Gas turbine combustor with controlled fuel mixing
US3903692A (en) * 1972-07-24 1975-09-09 Us Army Hot gas generator
US3932988A (en) * 1972-10-25 1976-01-20 Beaufrere Albert H Fuel slinger combustor
US3937011A (en) * 1972-11-13 1976-02-10 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Fuel injector for atomizing and vaporizing fuel
US3866413A (en) * 1973-01-22 1975-02-18 Parker Hannifin Corp Air blast fuel atomizer
US3811278A (en) * 1973-02-01 1974-05-21 Gen Electric Fuel injection apparatus
US3834159A (en) * 1973-08-03 1974-09-10 Gen Electric Combustion apparatus
DE2442895A1 (en) * 1973-09-10 1975-03-13 Gen Electric FUEL INJECTION DEVICE
US3972182A (en) * 1973-09-10 1976-08-03 General Electric Company Fuel injection apparatus
US3853273A (en) * 1973-10-01 1974-12-10 Gen Electric Axial swirler central injection carburetor
US3872664A (en) * 1973-10-15 1975-03-25 United Aircraft Corp Swirl combustor with vortex burning and mixing
US3930369A (en) * 1974-02-04 1976-01-06 General Motors Corporation Lean prechamber outflow combustor with two sets of primary air entrances
US3927520A (en) * 1974-02-04 1975-12-23 Gen Motors Corp Combustion apparatus with combustion and dilution air modulating means
US3899881A (en) * 1974-02-04 1975-08-19 Gen Motors Corp Combustion apparatus with secondary air to vaporization chamber and concurrent variance of secondary air and dilution air in a reverse sense
US4023351A (en) * 1974-04-30 1977-05-17 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Injecting and igniting device
US3901446A (en) * 1974-05-09 1975-08-26 Us Air Force Induced vortex swirler
JPS5121011A (en) * 1974-08-16 1976-02-19 Mitsubishi Heavy Ind Ltd NENSHO SOCHI
US4050238A (en) * 1975-03-14 1977-09-27 Daimler-Benz Aktiengesellschaft Film evaporating combustion chamber
US4170108A (en) * 1975-04-25 1979-10-09 Rolls-Royce Limited Fuel injectors for gas turbine engines
US4198815A (en) * 1975-12-24 1980-04-22 General Electric Company Central injection fuel carburetor
JPS5390510A (en) * 1977-01-20 1978-08-09 Koukuu Uchiyuu Gijiyutsu Kenki Fuel atomizer for gas turbine
JPS589328B2 (en) * 1977-01-20 1983-02-21 航空宇宙技術研究所長 Fuel atomization device for gas turbine
US4373342A (en) * 1977-02-04 1983-02-15 Rolls-Royce Limited Combustion equipment
FR2393940A1 (en) * 1977-06-10 1979-01-05 Rolls Royce COMBUSTION CHAMBER BURNER FOR GAS TURBINE ENGINE
US4222243A (en) * 1977-06-10 1980-09-16 Rolls-Royce Limited Fuel burners for gas turbine engines
DE2825431A1 (en) * 1977-06-10 1978-12-14 Rolls Royce BURNERS FOR GAS TURBINE ENGINES
DE2845619A1 (en) * 1977-10-21 1979-04-26 Rolls Royce COMBUSTION DEVICE FOR A GAS TURBINE ENGINE
US4237694A (en) * 1978-03-28 1980-12-09 Rolls-Royce Limited Combustion equipment for gas turbine engines
US4216652A (en) * 1978-06-08 1980-08-12 General Motors Corporation Integrated, replaceable combustor swirler and fuel injector
US4373325A (en) * 1980-03-07 1983-02-15 International Harvester Company Combustors
US4470262A (en) * 1980-03-07 1984-09-11 Solar Turbines, Incorporated Combustors
US4534166A (en) * 1980-10-01 1985-08-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flow modifying device
US4441323A (en) * 1981-04-16 1984-04-10 Rolls-Royce Limited Combustion equipment for a gas turbine engine including a fuel burner capable of accurate positioning and installation as a unit in a flame tube
US4598553A (en) * 1981-05-12 1986-07-08 Hitachi, Ltd. Combustor for gas turbine
US4463568A (en) * 1981-07-28 1984-08-07 Rolls-Royce Limited Fuel injector for gas turbine engines
US4584834A (en) * 1982-07-06 1986-04-29 General Electric Company Gas turbine engine carburetor
FR2529954A1 (en) * 1982-07-06 1984-01-13 Gen Electric CARBURATION ASSEMBLY AND METHOD FOR CONTROLLING THE ASSEMBLY
DE3323490A1 (en) * 1982-07-06 1984-01-12 General Electric Co., Schenectady, N.Y. MIXING DEVICE AND METHOD FOR CONTROLLING THE EXHAUST SPRAY ANGLE THEREOF
US4532762A (en) * 1982-07-22 1985-08-06 The Garrett Corporation Gas turbine engine variable geometry combustor apparatus
JPS59158916A (en) * 1983-02-28 1984-09-08 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Combustion apparatus for gas turbing engine
US4693074A (en) * 1983-11-26 1987-09-15 Rolls-Royce Plc Combustion apparatus for a gas turbine engine
EP0153842A1 (en) * 1984-02-29 1985-09-04 LUCAS INDUSTRIES public limited company Combustion equipment
US4689961A (en) * 1984-02-29 1987-09-01 Lucas Industries Public Limited Company Combustion equipment
US4982570A (en) * 1986-11-25 1991-01-08 General Electric Company Premixed pilot nozzle for dry low Nox combustor
US5193346A (en) * 1986-11-25 1993-03-16 General Electric Company Premixed secondary fuel nozzle with integral swirler
US4842197A (en) * 1986-12-10 1989-06-27 Mtu Motoren-Und Turbinen-Union Gmbh Fuel injection apparatus and associated method
US4893475A (en) * 1986-12-10 1990-01-16 Rolls-Royce Plc Combustion apparatus for a gas turbine
DE3642122C1 (en) * 1986-12-10 1988-06-09 Mtu Muenchen Gmbh Fuel injector
US4974416A (en) * 1987-04-27 1990-12-04 General Electric Company Low coke fuel injector for a gas turbine engine
DE3729861A1 (en) * 1987-09-05 1989-03-16 Deutsche Forsch Luft Raumfahrt SOOT FILTER DEVICE FOR A DIESEL ENGINE
US4996837A (en) * 1987-12-28 1991-03-05 Sundstrand Corporation Gas turbine with forced vortex fuel injection
WO1989006307A1 (en) * 1987-12-28 1989-07-13 Sundstrand Corporation Gas turbine with forced vortex fuel injection
FR2626043A1 (en) * 1988-01-14 1989-07-21 Gen Electric TURBULENCE-FUEL INJECTOR FORMATION DEVICE FOR A COMBUSTION ASSEMBLY IN A GAS TURBINE
US5037585A (en) * 1988-06-03 1991-08-06 Industrielle Du Ponant Sa Air conditioning humidifier
US5016443A (en) * 1988-09-07 1991-05-21 Hitachi, Ltd. Fuel-air premixing device for a gas turbine
WO1990007088A1 (en) * 1988-12-12 1990-06-28 Sundstrand Corporation Spray nozzle
US4970865A (en) * 1988-12-12 1990-11-20 Sundstrand Corporation Spray nozzle
EP0500256A1 (en) * 1991-02-22 1992-08-26 General Electric Company Air fuel mixer for gas turbine combustor
US5165241A (en) * 1991-02-22 1992-11-24 General Electric Company Air fuel mixer for gas turbine combustor
EP0561591A2 (en) * 1992-03-16 1993-09-22 General Electric Company Swirler for combustor
EP0561591A3 (en) * 1992-03-16 1993-11-18 Gen Electric Swirler for combustor
US5267851A (en) * 1992-03-16 1993-12-07 General Electric Company Swirl gutters for isolating flow fields for combustion enhancement at non-baseload operating conditions
US5251447A (en) * 1992-10-01 1993-10-12 General Electric Company Air fuel mixer for gas turbine combustor
US5431019A (en) * 1993-04-22 1995-07-11 Alliedsignal Inc. Combustor for gas turbine engine
US5444982A (en) * 1994-01-12 1995-08-29 General Electric Company Cyclonic prechamber with a centerbody
US5540056A (en) * 1994-01-12 1996-07-30 General Electric Company Cyclonic prechamber with a centerbody for a gas turbine engine combustor
US5636510A (en) * 1994-05-25 1997-06-10 Westinghouse Electric Corporation Gas turbine topping combustor
DE4424599A1 (en) * 1994-07-13 1996-01-18 Abb Research Ltd Method and device for operating a combined burner for liquid and gaseous fuels
US5822992A (en) * 1995-10-19 1998-10-20 General Electric Company Low emissions combustor premixer
EP0769657A3 (en) * 1995-10-19 1999-04-07 General Electric Company Low emissions combustor premixer
US6070410A (en) * 1995-10-19 2000-06-06 General Electric Company Low emissions combustor premixer
EP0769657A2 (en) * 1995-10-19 1997-04-23 General Electric Company Low emissions combustor premixer
FR2753779A1 (en) * 1996-09-26 1998-03-27 Snecma AERODYNAMIC INJECTION SYSTEM FOR A FUEL AIR MIXTURE
EP0833107A1 (en) * 1996-09-26 1998-04-01 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Aerodynamic fuel-air mixture injection device
WO1998013650A1 (en) * 1996-09-26 1998-04-02 Societe Nationale D'etude Et De Construction De Moteurs D'aviation 'snecma' Aerodynamic system for injecting an air-fuel mixture
US6035645A (en) * 1996-09-26 2000-03-14 Societe National D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Aerodynamic fuel injection system for a gas turbine engine
US6474569B1 (en) * 1997-12-18 2002-11-05 Quinetiq Limited Fuel injector
US6311473B1 (en) * 1999-03-25 2001-11-06 Parker-Hannifin Corporation Stable pre-mixer for lean burn composition
US6547163B1 (en) 1999-10-01 2003-04-15 Parker-Hannifin Corporation Hybrid atomizing fuel nozzle
EP1253380A3 (en) * 2001-04-27 2003-10-22 General Electric Company Methods and apparatus for cooling gas turbine engine combustors
EP1253380A2 (en) * 2001-04-27 2002-10-30 General Electric Company Methods and apparatus for cooling gas turbine engine combustors
FR2825778A1 (en) * 2001-06-06 2002-12-13 Snecma Moteurs Coupling between fuel injector nozzle and turbine combustion chamber base has metal mixer/deflector assembly sliding in composition base aperture
US20030010034A1 (en) * 2001-07-16 2003-01-16 Snecma Moteurs Aeromechanical injection system with a primary anti-return swirler
US6959551B2 (en) * 2001-07-16 2005-11-01 Snecma Moteurs Aeromechanical injection system with a primary anti-return swirler
US20030150932A1 (en) * 2002-02-11 2003-08-14 Gunter Eberspach Atomizing nozzle for a burner
US6883730B2 (en) * 2002-02-11 2005-04-26 J. Eberspächer GmbH & Co. KG Atomizing nozzle for a burner
US20030155435A1 (en) * 2002-02-21 2003-08-21 Gunter Eberspach Atomizing nozzle for a burner, especially for a heater that can be used on a vehicle
EP1340940A1 (en) * 2002-02-21 2003-09-03 J. Eberspächer GmbH & Co. KG Atomizing nozzle for a burner, especially for a heating apparatus used in an automobile
US6764302B2 (en) 2002-02-21 2004-07-20 J. Eberspacher Gmbh & Co. Kg Atomizing nozzle for a burner, especially for a heater that can be used on a vehicle
DE10207311B4 (en) * 2002-02-21 2005-06-09 J. Eberspächer GmbH & Co. KG Atomiser nozzle for a burner, in particular for a heater which can be used on a vehicle
US20040003596A1 (en) * 2002-04-26 2004-01-08 Jushan Chin Fuel premixing module for gas turbine engine combustor
US6968692B2 (en) * 2002-04-26 2005-11-29 Rolls-Royce Corporation Fuel premixing module for gas turbine engine combustor
US20040040311A1 (en) * 2002-04-30 2004-03-04 Thomas Doerr Gas turbine combustion chamber with defined fuel input for the improvement of the homogeneity of the fuel-air mixture
US7086234B2 (en) * 2002-04-30 2006-08-08 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustion chamber with defined fuel input for the improvement of the homogeneity of the fuel-air mixture
US20040118121A1 (en) * 2002-12-18 2004-06-24 Kenneth Parkman Low cost combustor floating collar with improved sealing and damping
US6880341B2 (en) * 2002-12-18 2005-04-19 Pratt & Whitney Canada Corp. Low cost combustor floating collar with improved sealing and damping
JP2005061822A (en) * 2003-08-11 2005-03-10 General Electric Co <Ge> Combustor dome assembly for gas turbine engine having contoured swirler
CN100520185C (en) * 2003-08-11 2009-07-29 通用电气公司 Combustor dome assembly of a gas turbine engine having a free floating swirler
JP4559796B2 (en) * 2003-08-11 2010-10-13 ゼネラル・エレクトリック・カンパニイ Combustor dome assembly of a gas turbine engine with a free floating swirler
US20050034460A1 (en) * 2003-08-11 2005-02-17 Mcmasters Marie Ann Combustor dome assembly of a gas turbine engine having a free floating swirler
US7062920B2 (en) * 2003-08-11 2006-06-20 General Electric Company Combustor dome assembly of a gas turbine engine having a free floating swirler
JP2005098681A (en) * 2003-08-11 2005-04-14 General Electric Co <Ge> Combustor dome assembly for gas turbine engine with freefloating swirler
EP1512912A2 (en) 2003-09-04 2005-03-09 Rolls-Royce Deutschland Ltd & Co KG Homogeneous mixture formation by swirled injection of the fuel
US7546734B2 (en) * 2003-09-04 2009-06-16 Rolls-Royce Deutschland Ltd & Co Kg Homogenous mixture formation by swirled fuel injection
EP1512912A3 (en) * 2003-09-04 2010-10-27 Rolls-Royce Deutschland Ltd & Co KG Homogeneous mixture formation by swirled injection of the fuel
US20050050895A1 (en) * 2003-09-04 2005-03-10 Thomas Dorr Homogenous mixture formation by swirled fuel injection
US8516821B2 (en) * 2003-11-15 2013-08-27 Eads Space Transportation Gmbh Injection element
US20070089397A1 (en) * 2003-11-15 2007-04-26 Maeding Chris U Injection element
US8919095B2 (en) 2003-11-15 2014-12-30 Astrium Gmbh Injection element
DE102004015904A1 (en) * 2004-03-31 2005-10-20 Alstom Technology Ltd Baden Method of liquid fuel atomization in a premix burner and premix burner
US7065972B2 (en) * 2004-05-21 2006-06-27 Honeywell International, Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
US20050257530A1 (en) * 2004-05-21 2005-11-24 Honeywell International Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
US20060059915A1 (en) * 2004-09-23 2006-03-23 Snecma Effervescence injector for an aero-mechanical system for injecting air/fuel mixture into a turbomachine combustion chamber
US7568345B2 (en) * 2004-09-23 2009-08-04 Snecma Effervescence injector for an aero-mechanical system for injecting air/fuel mixture into a turbomachine combustion chamber
US20110272486A1 (en) * 2004-12-15 2011-11-10 Harry Metzger Method for spraying a medium and spraying nozzle
US8636232B2 (en) * 2004-12-15 2014-01-28 Marioff Corporation Oy Method for spraying a medium and spraying nozzle
US20060174625A1 (en) * 2005-02-04 2006-08-10 Siemens Westinghouse Power Corp. Can-annular turbine combustors comprising swirler assembly and base plate arrangements, and combinations
US7316117B2 (en) 2005-02-04 2008-01-08 Siemens Power Generation, Inc. Can-annular turbine combustors comprising swirler assembly and base plate arrangements, and combinations
JP2008534903A (en) * 2005-03-31 2008-08-28 アルストム テクノロジー リミテッド Premix burner used in gas turbine combustor
US7513098B2 (en) 2005-06-29 2009-04-07 Siemens Energy, Inc. Swirler assembly and combinations of same in gas turbine engine combustors
US20070224562A1 (en) * 2006-03-23 2007-09-27 Hiromitsu Nagayoshi Burner for combustion chamber and combustion method
US7913494B2 (en) * 2006-03-23 2011-03-29 Ishikawajima-Harima Heavy Industries Co., Ltd. Burner for combustion chamber and combustion method
CN101046298B (en) * 2006-03-30 2010-06-23 斯奈克玛 Apparatus to inject a mixture of air and fuel, combustion chamber and turbine engine equipped with such an apparatus
US20080178598A1 (en) * 2006-06-29 2008-07-31 Snecma Device for injecting a mixture of air and fuel, and combustion chamber and turbomachine both equipped with such a device
US7861529B2 (en) 2006-06-29 2011-01-04 Snecma Device for injecting a mixture of air and fuel, and combustion chamber and turbomachine both equipped with such a device
EP1873457A1 (en) * 2006-06-29 2008-01-02 Snecma Device for injecting a mix of air and fuel, combustion chamber and turbomachine equipped with such a device
FR2903173A1 (en) * 2006-06-29 2008-01-04 Snecma Sa DEVICE FOR INJECTING A MIXTURE OF AIR AND FUEL, COMBUSTION CHAMBER AND TURBOMACHINE HAVING SUCH A DEVICE
US8646275B2 (en) 2007-09-13 2014-02-11 Rolls-Royce Deutschland Ltd & Co Kg Gas-turbine lean combustor with fuel nozzle with controlled fuel inhomogeneity
US20090139240A1 (en) * 2007-09-13 2009-06-04 Leif Rackwitz Gas-turbine lean combustor with fuel nozzle with controlled fuel inhomogeneity
US8910483B2 (en) * 2007-10-18 2014-12-16 Rolls-Royce Deutschland Ltd & C Lean premix burner for a gas-turbine engine
US20090100837A1 (en) * 2007-10-18 2009-04-23 Ralf Sebastian Von Der Bank Lean premix burner for a gas-turbine engine
US20130074514A1 (en) * 2008-09-03 2013-03-28 United Technologies Corporation Systems and methods involving improved fuel atomization in air blast fuel nozzles of gas turbine engines
US8347630B2 (en) * 2008-09-03 2013-01-08 United Technologies Corp Air-blast fuel-injector with shield-cone upstream of fuel orifices
US20100050646A1 (en) * 2008-09-03 2010-03-04 United Technologies Corp. Systems and Methods Involving Improved Fuel Atomization in Air-Blast Fuel Nozzles of Gas Turbine Engines
EP3312509A1 (en) * 2009-05-27 2018-04-25 Siemens Aktiengesellschaft Burner
US20110000214A1 (en) * 2009-07-01 2011-01-06 David Andrew Helmick Methods and systems to thermally protect fuel nozzles in combustion systems
CN101943060A (en) * 2009-07-01 2011-01-12 通用电气公司 The method and system that is used for the fuel nozzle of heat protection combustion system
US8607569B2 (en) * 2009-07-01 2013-12-17 General Electric Company Methods and systems to thermally protect fuel nozzles in combustion systems
CN101943060B (en) * 2009-07-01 2014-12-24 通用电气公司 Method for assembling gas turbine engine, fuel nozzles and gas turbine system
US20110252803A1 (en) * 2010-04-14 2011-10-20 General Electric Company Apparatus and method for a fuel nozzle
US8919673B2 (en) * 2010-04-14 2014-12-30 General Electric Company Apparatus and method for a fuel nozzle
US20110289933A1 (en) * 2010-05-26 2011-12-01 Gregory Allen Boardman Hybrid Prefilming Airblast, Prevaporizing, Lean-Premixing Dual-Fuel Nozzle for a Gas Turbine Combustor
US8671691B2 (en) * 2010-05-26 2014-03-18 General Electric Company Hybrid prefilming airblast, prevaporizing, lean-premixing dual-fuel nozzle for gas turbine combustor
US9920932B2 (en) 2011-01-26 2018-03-20 United Technologies Corporation Mixer assembly for a gas turbine engine
EP2481982B1 (en) 2011-01-26 2015-07-08 United Technologies Corporation Mixer assembly for a gas turbine engine
EP2481982A1 (en) * 2011-01-26 2012-08-01 United Technologies Corporation Mixer assembly for a gas turbine engine
US20120186259A1 (en) * 2011-01-26 2012-07-26 United Technologies Corporation Fuel injector assembly
EP2481985A3 (en) * 2011-01-26 2016-01-20 United Technologies Corporation Fuel injector assembly
US10317081B2 (en) * 2011-01-26 2019-06-11 United Technologies Corporation Fuel injector assembly
US10718524B2 (en) 2011-01-26 2020-07-21 Raytheon Technologies Corporation Mixer assembly for a gas turbine engine
EP2481982B2 (en) 2011-01-26 2022-04-13 Raytheon Technologies Corporation Mixer assembly for a gas turbine engine
US8919132B2 (en) 2011-05-18 2014-12-30 Solar Turbines Inc. Method of operating a gas turbine engine
US8893500B2 (en) 2011-05-18 2014-11-25 Solar Turbines Inc. Lean direct fuel injector
JPWO2012165614A1 (en) * 2011-06-02 2015-02-23 川崎重工業株式会社 Gas turbine combustor
US9664391B2 (en) 2011-06-02 2017-05-30 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor
US9182124B2 (en) 2011-12-15 2015-11-10 Solar Turbines Incorporated Gas turbine and fuel injector for the same
US9664390B2 (en) * 2012-07-09 2017-05-30 Ansaldo Energia Switzerland AG Burner arrangement including an air supply with two flow passages
US20140060060A1 (en) * 2012-07-09 2014-03-06 Alstom Technology Ltd Burner arrangement
US8943834B2 (en) 2012-11-20 2015-02-03 Niigata Power Systems Co., Ltd. Pre-mixing injector with bladeless swirler
US9441543B2 (en) * 2012-11-20 2016-09-13 Niigata Power Systems Co., Ltd. Gas turbine combustor including a premixing chamber having an inner diameter enlarging portion
US20140137557A1 (en) * 2012-11-20 2014-05-22 Masamichi KOYAMA Gas turbine combustor
EP2735797A1 (en) * 2012-11-23 2014-05-28 Niigata Power Systems Co., Ltd. Gas turbine combustor
US20150354825A1 (en) * 2013-03-11 2015-12-10 Mitsubishi Hitachi Power Systems, Ltd. Fuel spray nozzle
US10197280B2 (en) * 2013-03-11 2019-02-05 Mitsubishi Hitachi Power Systems, Ltd. Fuel spray nozzle
US20160161122A1 (en) * 2014-03-28 2016-06-09 Delavan Inc. Airblast nozzle with upstream fuel distribution and near-exit swirl
US10295186B2 (en) * 2014-03-28 2019-05-21 Delavan Inc. Of Des Moines Ia Airblast nozzle with upstream fuel distribution and near-exit swirl
US20150285502A1 (en) * 2014-04-08 2015-10-08 General Electric Company Fuel nozzle shroud and method of manufacturing the shroud
US10508812B2 (en) * 2014-05-12 2019-12-17 General Electric Company Pre-film liquid fuel cartridge
CN109312925A (en) * 2016-06-03 2019-02-05 通用电气公司 Wavy covering vortex pre-mixed fuel invector component
US20170350598A1 (en) * 2016-06-03 2017-12-07 General Electric Company Contoured shroud swirling pre-mix fuel injector assembly
US10502425B2 (en) * 2016-06-03 2019-12-10 General Electric Company Contoured shroud swirling pre-mix fuel injector assembly
US10570780B2 (en) 2017-11-03 2020-02-25 Rohr, Inc. Exhaust assembly mounting configuration
FR3080437A1 (en) * 2018-04-24 2019-10-25 Safran Aircraft Engines INJECTION SYSTEM FOR AN ANNULAR TURBOMACHINE COMBUSTION CHAMBER
CN112005051A (en) * 2018-04-24 2020-11-27 赛峰飞机发动机公司 Injection system for an annular combustion chamber of a turbine engine
US11268699B2 (en) 2018-04-24 2022-03-08 Safran Aircraft Engines Injection system for a turbine engine annular combustion chamber
WO2019207230A1 (en) 2018-04-24 2019-10-31 Safran Aircraft Engines Injection system for a turbine engine annular combustion chamber
EP4094019A4 (en) * 2020-01-22 2023-07-05 Turbogen Ltd. Atomizer for gas turbine engine
US20210254832A1 (en) * 2020-02-14 2021-08-19 United Technologies Corporation Integrated fuel swirlers
US11846421B2 (en) * 2020-02-14 2023-12-19 Rtx Corporation Integrated fuel swirlers

Also Published As

Publication number Publication date
CA942512A (en) 1974-02-26

Similar Documents

Publication Publication Date Title
US3703259A (en) Air blast fuel atomizer
US3866413A (en) Air blast fuel atomizer
US5647538A (en) Gas turbine engine fuel injection apparatus
US8146837B2 (en) Radially outward flowing air-blast fuel injection for gas turbine engine
US4198815A (en) Central injection fuel carburetor
EP1323982B1 (en) Fuel nozzle for a gas turbine engine
US4584834A (en) Gas turbine engine carburetor
US5417070A (en) Fuel injection apparatus
CA1289756C (en) Bimodal swirler injector for a gas turbine combustor
US3811278A (en) Fuel injection apparatus
US3972182A (en) Fuel injection apparatus
CA1103943A (en) Fuel nozzle for gas turbines
US4974416A (en) Low coke fuel injector for a gas turbine engine
US3946552A (en) Fuel injection apparatus
US5862668A (en) Gas turbine engine combustion equipment
US3834159A (en) Combustion apparatus
EP3137814B1 (en) Combustor burner arrangement
JPS6161015B2 (en)
US6571559B1 (en) Anti-carboning fuel-air mixer for a gas turbine engine combustor
IL35999A (en) Combustion apparatus
US10883719B2 (en) Prefilming fuel/air mixer
US11859821B2 (en) Passive secondary air assist nozzles
US5267442A (en) Fuel nozzle with eccentric primary circuit orifice
US5573392A (en) Method and device for distributing fuel in a burner suitable for both liquid and gaseous fuels
US2617252A (en) Rotary turbocompressor jet engine after-burner