Connect public, paid and private patent data with Google Patents Public Datasets

Magnesium-base alloy for use in bone surgery

Download PDF

Info

Publication number
US3687135A
US3687135A US3687135DA US3687135A US 3687135 A US3687135 A US 3687135A US 3687135D A US3687135D A US 3687135DA US 3687135 A US3687135 A US 3687135A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
alloy
magnesium
bone
following
wt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Genrikh Borisovich Stroganov
Evgeny Mikhailovich Savitsky
Nina Mikhailovna Tikhova
Vera Fedorovna Terekhova
Mstislav Vasilievich Volkov
Konstantin Mitrofanovic Sivash
Vladislav Sergeevich Borodkin
Original Assignee
Genrikh Borisovich Stroganov
Evgeny Mikhailovich Savitsky
Nina Mikhailovna Tikhova
Vera Fedorovna Terekhova
Mstislav Vasilievich Volkov
Konstantin Mitrofanovich Sivas
Vladislav Sergeevich Borodkin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C25/00Alloys based on beryllium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00041Magnesium or Mg-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Abstract

A magnesium-base alloy for use in bone surgery which contains the following components, wt.%: Rare earth element 0.4-4.0 Cadmium 0.05-1.2 An element from the group consisting of calcium and aluminum 0.05-1.0 Manganese 0.05.05 Silver 0-0.8 Zirconium 0-0.8 Silicon 0-0.3 Magnesium remainder

Description

waited States Patent Stroganov et a1.

[54] MAGNESIUM-BASE ALLOY FOR USE IN BONE SURGERY [72] Inventors: Genrikh Borisovich Stroganov, 2

Voikovsky proezd, 1, kv. 29; Evgeny Mikhailovich Savitsky, ulitsa Dmitria Ulyanova, 3, kv. 13; Nina Mikhailovna Tikhova, Frunzenskaya naberezhnaya, 38/1, kv. 394; Vera Fedorovna Terekhova, Belyaevo- Bogorodskoe, kvartal 48, korpus 23, kv. 235; Mstislav Vasilievich Volkov, 1 Stroitelnaya ulitsa, 6, korpus 5, kv. 10; Konstantin Mitrofanovich Sivash, B. Pirogovskaya ulitsa,

37/43 A, kv. 49; Vladislav Sergeevich Borodkin, Shelepikha, 5 ulitsa, 6/8, kv. 91, all of, Moscow, USSR.

[22] Filed: Sept. 15, 1969 [21] Appl. No.: 858,149

[52] US. Cl. ..128/92 B, 75/168 R, 75/168 M, 75/168 .1, 128/92 BA, 128/92 BB, 128/92 BC, 128/92 C [51] Int. Cl. ..C22c 23/00, A61f 5/01 [58] Field of Search..75/l68; 128/92 R, 92 B, 92 BB, 128/92 BA, 92 BC, 92 C, 92 CA, 92 D; 3/1

[ 51 Aug. 29, 1972 2,221,319 11/1940 Altwicker et a] ..75/168 B 2,549,955 4/1951 Jessup et a]. ..75/168 J OTHER PUBLICATIONS Annals of Surgery, Vol. 105, No. 6, June 1937, pp. 919, 920 & 938.

Primary ExaminerCharles N. Lovell Att0rneyWaters, Roditi, Schwartz & Nissen [57] ABSTRACT A magnesium-base alloy for use in bone surgery which contains the following components, wt.%:

Rare earth element 0.4-4.0 Cadmium 005-1 .2 An element from the group consisting of calcium and aluminum 0.05-1 .0 Manganese 0.05-.05 Silver 0-0.8 Zirconium 0-0.8 Silicon 0-0.3 Magnesium remainder 5 Claims, N0 Drawings MAGNES-BASE ALLOY FOR USE IN BONE SURGERY The present invention relates to magnesium-base alloys employed as a joining and fixation material in bone surgery.

One of the main problems in the operative treatment of bone fractures is finding a material for fixation means which is sufficiently strong, is absorbed after the completion of union and stimulates callus formation. The search for such a material has been made predominantly among organic substances although there are isolated reports of the study and use of inorganic materials, particularly metals.

Magnesium was first employed for osteosynthesis by Lambotte in 1907. In fracture of the bones of the lower leg a magnesium plate secured with gold-plate steel nails was used, but in 8 days the plate disintegrated with the formation of a large amount of gas under the skin. In spite of Lambottes failure, study of the effect of magnesium on the surrounding tissue and the body as a whole continued.

An attempt to use pure magnesium for osteosynthesis was unsuccessful because magnesium pins disintegrated so quickly that they were unsuitable for the fixation of bone fragments; nevertheless, clinical, X-ray and histological investigations demonstrated that pure magnesium introduced into the body in the form of a pin has no harmful effect.

Attempts were made to dust bone transplants with magnesium and calcium in vacuum and then graft them in the patients body. It was found that magnesium and calcium promoted rapid restoration of the entirety of the bone, this taking place 3 months sooner than when an untreated autotransplant was employed. Said method, however, is laborious and requires drainage for drawing off the gas formed.

Magnesium alloys with other metals have also been tried. Verbrugge used an alloy consisting of 92 percent magnesium and 8 percent aluminum; E. Bride reported the use of an alloy consisting of 95 percent magnesium, 4.7 percent aluminum and 0.3 percent manganese; M.S. Znamensky used an alloy consisting of 97.3 percent magnesium, 2.5 percent aluminum and 0.2 percent beryllium; B.I. Klepatsky tried an alloy consisting of 82.8 percent magnesium, 85 percent aluminum, 8.5 percent zinc and 0.2 percent manganese.

A review of the literature indicates that magnesium alloys employed for making fixation means dissolve completely in the bone and have no detrimental effect either locally or generally. However, the absorption of previously known magnesium alloys proceeds three or four times more rapidly than required from the standpoint of restoration of the entirety of the bone. Moreover, when said known alloys are used, drainage is necessary to remove the gas formed.

It is an object of the present invention to provide a magnesium-base alloy which has a rate of absorption slower than the process of bone consolidation, which does not involve vigorous evolution of gas and which has high mechanical strength.

It is another object of the invention to provide a magnesium-base alloy which meets the following requirements:

1. Ultimate strength a 28 kg/mm and yield point 2 18 kg/mm, i.e., the alloys mechanical strength shall exceed that of bone tissue;

2. The rate of absorption of the alloy compared to the rate of consolidation of the bone shall be such that at the moment of complete restoration of the bones entirety the alloy shall retain sufficient strength, i.e., the process of absorption shall be completed 1.5-2 months after knitting of the bone;

3. The rate of evolution of hydrogen during absorption of the alloy in the body shall be less or equal to the rate of absorption of hydrogen by the body.

4. The alloy shall contain elements which stimulate the growth of bone tissue, such as calcium and cadmium;

5. The alloy shall not contain elements which are harmful for the living organism, such as lead, beryllium, copper, thorium, zinc, nickel, etc.

The foregoing objects have been accomplished by the provision of a magnesium-base alloy which, accord ing to the invention, contains the following elements,

Rare earth metal 0.40-4.0 Cadmium 005-1 .2 Calcium or aluminum 0.05-1 .0 Manganese 0.05-1.0 Silver 00.8 Zirconium 0-O.8 Silicon 00.3 Magnesium remainder Neodymium and yttrium are predominantly employed as the rare earth metal although other rare earth metals can be used.

The above alloy is produced by the conventional method by preparing a charge consisting of pure metals and master alloys and melting the same.

One of the advantages of the invention is that it provides an alloy having high chemico-physiological, mechanical and engineering properties. The ultimate strength of said alloy e 28 kg/mm and the yield point a 18 kglmm Employment of said alloy for joining bone fragments obviates the necessity of a second operation on the patient for the removal of foreign fastening means (pins, nails, etc.) since said alloy is completely absorbed without the accumulation of gas. Moreover, the stimulation of callus formation promotes the pateients rapid recovery.

The following examples of variations in the composition of the alloy according to the invention are given by way of illustration.

EXAMPLE 1 Illustrates an alloy of the following composition, wt.%:

Neodymium 2.92 Cadmium 0.27 Calcium 0.24 Manganese 0.1 1 Magnesium remainder The above alloy has the following properties:

Ultimate strength 32.6 kg/mm Yield point 24.5 kg/mm Elongation 6.3%

Said alloy was tested in a physiological solution containing 0.9 wt.% NaCl, 0.02 wt.% KCl, 0.02 wt.% CaCl 0.002 wt.% Na CO and the remainder, distilled water. Evolution of hydrogen in 48 hours totalled 3.4 cm /cm The result of the test indirectly gives a conception of the process of absorption of the metal in the body.

EXAMPLE 2 Illustrates an alloy of the following composition, wt.%:

Neodymium 2.46 Cadmium 0. l 2 Aluminum 0.09 Manganese 0. l 4 Silicon 0.01 Magnesium remainder The above alloy has the following properties:

Ultimate strength 31.6 lrg/mm Yield point 25.3 ltg/mm" Elongation 3.7% Hydrogen evolution in physiological solution of Example I, 48 hrs. 2.1 em /cm EXAMPLE 3 Illustrates an alloy of the following composition, wt.%

Yttrium 1.6 Cadmium 0.25 Calcium 0.06

Silver 0.3 Manganese 0.08 Magnesium remainder The above alloy has the following properties:

Ultimate strength 28.4 kg/nim Yield point 23.6 kg/mm Elongation 5.5% Hydrogen evolution in physiological solution of Example 1, 48 hrs. [.6 cmVcrn EXAMPLE 4 Illustrates an alloy of the following composition, wt.%:

Neodymium Cadmium Calcium 0.08 Manganese 0.13 Zirconium 0.49 Magnesium remainder The above alloy has the following properties:

Ultimate strength 32.2 kglmm Yield point 21.8 kg/mrn Elongation 8.9% Hydrogen evolution in physiological solution of Example I, 48 hrs. 2.0 cm lcm MgCl, 34-40 KC] 25-36 NaCl CaCl s 8.0

CaF, -20

MgO 7-10 After melting and thoroughly mixing, the alloy was refined with the above flux and let stand for 15-20 minutes, after which it was poured at a temperature of 760-780C through a magnesite filter into moulds.

After preheating and hot pressing at 520-540C the blanks were cooled in the air after which they were artificially aged at 16021 0C for 16 hours.

The alloys thus produced were ready for use. Employment of the alloys specified in Examples 1, 2, 3 and 4 for joining bones in bone surgery demonstrated that all of said alloys possessed high mechanical and chemico-physiological properties. Clinical tests showed that said alloys were completely absorbed: pins 3 mm in diameter in 5 months and pins 8 mm in diameter in l 1 months. Bones knitted in 4 months.

F luoroscopic examination revealed no gas bubbles in the soft tissues during the entire period of absorption of said alloys.

Operative treatment of fractures by means of the I present alloy reduces the time required for union of the bone by 33-50 percent. In this respect the best showing was made by the alloy described in Example 2.

As is apparent from the figures cited, evolution of gas by the alloys described in Examples 1, 2, 3 and 4 is within the bodys absorptive capacity, since said capacity is 4.0-4.5 cm of gas from each sq.cm. of surface of the metal being absorbed per 48 hrs.

We claim:

1. A bone fastening device, for the fixation of bone fragments, constructed of an alloy, consisting essen tially of, by wt.%:

Rare earth element 0.4-4.0 Cadmium 0.05-2.22 An element selected from the group consisting of calcium and aluminum (-1 .0 Manganese ODS-0.5 Silver 00.8 Zirconium 0-0.8 Silicon O-0.3 Magnesium remainder 2. A device as in claim I which has the following composition by wt.%:

Neodymium 2.92 Cadmium 0.27 Calcium 0.24 Manganese 0.! 1 Magnesium remainder 3. A device as in claim 1 which has the following composition, by wt.%:

Neodymium 2.46 Cadmium 0. l 2 Aluminum 0.09 Manganese 0.14 Silicon 0.01 Magnesium remainder 4. A device as in claim 1 which has the following compositions, wt.%:

Yttrium L6 Cadmium 0.25 Calcium 0.06 Silver 0.3 Manganese 0.08 Magnesium remainder composition, wt.%:

Neodymium Cadmium Calcium Manganese Zirconium Magnesium remainder

Claims (4)

  1. 2. A device as in claim 1 which has the following composition by wt.%: Neodymium 2.92Cadmium 0.27Calcium 0.24Manganese 0.11Magnesium remainder
  2. 3. A device as in claim 1 which has the following composition, by wt.%: Neodymium 2.46Cadmium 0.12Aluminum 0.09Manganese 0.14Silicon 0.01Magnesium remainder
  3. 4. A device as in claim 1 which has the following compositions, wt.%: Yttrium 1.6Cadmium 0.25Calcium 0.06Silver 0.3Manganese 0.08Magnesium remainder
  4. 5. A device as in claim 1 which has the following composition, wt.%: Neodymium 1.8Cadmium 0.09Calcium 0.08Manganese 0.13Zirconium 0.49Magnesium remainder
US3687135A 1969-08-20 1969-09-15 Magnesium-base alloy for use in bone surgery Expired - Lifetime US3687135A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB4157769A GB1237035A (en) 1969-08-20 1969-08-20 Magnesium-base alloy for use in bone surgery
US85814969 true 1969-09-15 1969-09-15
CH1405969 1969-09-17
FR6934613A FR2068401A1 (en) 1969-08-20 1969-10-09
DE19691953241 DE1953241B2 (en) 1969-08-20 1969-10-22 Use of a magnesium alloy for bone surgery

Publications (1)

Publication Number Publication Date
US3687135A true US3687135A (en) 1972-08-29

Family

ID=27509491

Family Applications (1)

Application Number Title Priority Date Filing Date
US3687135A Expired - Lifetime US3687135A (en) 1969-08-20 1969-09-15 Magnesium-base alloy for use in bone surgery

Country Status (4)

Country Link
US (1) US3687135A (en)
DE (1) DE1953241B2 (en)
FR (1) FR2068401A1 (en)
GB (1) GB1237035A (en)

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269721A (en) * 1979-12-21 1981-05-26 Stauffer Chemical Company Dust abatement with calcium sulfate
WO1999003515A2 (en) * 1997-07-18 1999-01-28 Meyer, Jörg Metallic implant which is degradable in vivo
EP0966979A2 (en) * 1998-06-25 1999-12-29 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Implantable bioresorbable support for the vascular walls, in particular coronary stent
DE10128100A1 (en) * 2001-06-11 2002-12-19 Hannover Med Hochschule Medical implant used for humans and animals is made from magnesium alloy containing additions of rare earth metals and lithium
DE10163106A1 (en) * 2001-12-24 2003-07-10 Univ Hannover Medical implants, prostheses, prosthesis parts, medical instruments, equipment and aids from a halide-modified magnesium substance
EP1419793A1 (en) * 2002-11-13 2004-05-19 Biotronik GmbH & Co. KG Endoprosthesis with a supporting structure of magnesium alloy
US6767506B2 (en) * 2002-01-10 2004-07-27 Dead Sea Magnesium Ltd. High temperature resistant magnesium alloys
US20040254608A1 (en) * 2003-06-16 2004-12-16 Huitema Thomas W. Surgical implant with preferential corrosion zone
US20050002821A1 (en) * 2002-06-21 2005-01-06 Bettles Colleen Joyce Creep resistant magnesium alloy
DE10361941A1 (en) * 2003-12-24 2005-07-28 Restate Patent Ag Coating for the outer surface of a medical implant, especially a stent or electrode, comprises magnesium, a magnesium alloy or a magnesium salt
US20050266041A1 (en) * 2004-05-25 2005-12-01 Restate Patent Ag Implant for vessel ligature
EP1618901A1 (en) * 2004-07-23 2006-01-25 Biotronik VI Patent AG Biokompatible and biodegradable suture and staple material for surgical use
WO2006008104A1 (en) * 2004-07-21 2006-01-26 Ossacur Ag Implantable body for spinal fusion
DE102004043232A1 (en) * 2004-09-07 2006-03-09 Biotronik Vi Patent Ag Endoprosthesis made of magnesium alloy
DE102004043231A1 (en) * 2004-09-07 2006-03-09 Biotronik Vi Patent Ag Endoprosthesis made of magnesium alloy
US7077860B2 (en) 1997-04-24 2006-07-18 Advanced Cardiovascular Systems, Inc. Method of reducing or eliminating thrombus formation
DE102005003188A1 (en) * 2005-01-20 2006-07-27 Restate Patent Ag A medical implant made of an amorphous or nanocrystalline alloy
US20060271170A1 (en) * 2005-05-31 2006-11-30 Gale David C Stent with flexible sections in high strain regions
US20060292690A1 (en) * 2005-06-22 2006-12-28 Cesco Bioengineering Co., Ltd. Method of making cell growth surface
US20070025848A1 (en) * 2005-07-29 2007-02-01 Shawcross James P Reduced noise diffuser for a motor-fan assembly
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US7229471B2 (en) 2004-09-10 2007-06-12 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US7258891B2 (en) 2001-06-28 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US7285304B1 (en) 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7291166B2 (en) 2005-05-18 2007-11-06 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US7297758B2 (en) 2005-08-02 2007-11-20 Advanced Cardiovascular Systems, Inc. Method for extending shelf-life of constructs of semi-crystallizable polymers
US7297159B2 (en) 2000-10-26 2007-11-20 Advanced Cardiovascular Systems, Inc. Selective coating of medical devices
US20070280851A1 (en) * 2006-06-01 2007-12-06 Abigail Freeman Radiation sterilization of medical devices
US20080071349A1 (en) * 2006-09-18 2008-03-20 Boston Scientific Scimed, Inc. Medical Devices
US20080086201A1 (en) * 2006-09-15 2008-04-10 Boston Scientific Scimed, Inc. Magnetized bioerodible endoprosthesis
US7381048B2 (en) 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
EP1959025A1 (en) * 2005-11-16 2008-08-20 National Institute for Materials Science Magnesium-based biodegradable metal material
US20080200950A1 (en) * 2004-10-01 2008-08-21 Stephen Wohlert Surgical Hook
US7476245B2 (en) 2005-08-16 2009-01-13 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US20090143856A1 (en) * 2007-11-29 2009-06-04 Boston Scientific Corporation Medical articles that stimulate endothelial cell migration
US7553377B1 (en) 2004-04-27 2009-06-30 Advanced Cardiovascular Systems, Inc. Apparatus and method for electrostatic coating of an abluminal stent surface
US7563324B1 (en) 2003-12-29 2009-07-21 Advanced Cardiovascular Systems Inc. System and method for coating an implantable medical device
US20090187258A1 (en) * 2008-01-17 2009-07-23 Wing Yuk Ip Implant for Tissue Engineering
US20090287301A1 (en) * 2008-05-16 2009-11-19 Boston Scientific, Scimed Inc. Coating for medical implants
US7622070B2 (en) 2005-06-20 2009-11-24 Advanced Cardiovascular Systems, Inc. Method of manufacturing an implantable polymeric medical device
US20090306725A1 (en) * 2006-11-17 2009-12-10 Sachiko Hiromoto Magnesium-based medical device and manufacturing method thereof
US7632307B2 (en) 2004-12-16 2009-12-15 Advanced Cardiovascular Systems, Inc. Abluminal, multilayer coating constructs for drug-delivery stents
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US20100075162A1 (en) * 2006-09-22 2010-03-25 Seok-Jo Yang Implants comprising biodegradable metals and method for manufacturing the same
WO2010034098A1 (en) 2008-09-24 2010-04-01 Integran Technologies, Inc. In-vivo biodegradable medical implant
US7699890B2 (en) 1997-04-15 2010-04-20 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis and a method of making the same
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
DE102010019365A1 (en) 2009-12-18 2011-06-22 Acoredis GmbH, 07743 Bioabsorbable occlusion device, which is introduced by a catheter in a folded condition in a patient's body, where the device in an area of its surrounding envelope comes to a constriction, useful to treat e.g. atrial septal defects
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US20110172724A1 (en) * 2005-12-14 2011-07-14 Gkss-Forschungszentrum Geesthacht Gmbh Biocompatible magnesium material
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US20110313527A1 (en) * 2008-08-11 2011-12-22 Aap Biomaterials Gmbh Implant made of a magnesium alloy and method for the production thereof
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US20120143318A1 (en) * 2009-06-19 2012-06-07 Manfred Gulcher Implant made of a metallic material which can be resorbed by the body
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US20130041455A1 (en) * 2010-03-25 2013-02-14 Bodo Gerold Implant made of a biodegradable magnesium alloy
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8398680B2 (en) 2010-04-07 2013-03-19 Lsi Solutions, Inc. Bioabsorbable magnesium knots for securing surgical suture
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8435281B2 (en) 2009-04-10 2013-05-07 Boston Scientific Scimed, Inc. Bioerodible, implantable medical devices incorporating supersaturated magnesium alloys
US8470014B2 (en) 2004-08-25 2013-06-25 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8663401B2 (en) 2006-02-09 2014-03-04 Schlumberger Technology Corporation Degradable compositions, apparatus comprising same, and methods of use
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8752268B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
CN103993187A (en) * 2014-05-21 2014-08-20 太原理工大学 Preparation method of medical degradable magnesium-bismuth alloy plate
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US9072810B2 (en) 2008-01-17 2015-07-07 The University Of Hong Kong Implant for tissue engineering
CN104911427A (en) * 2015-06-19 2015-09-16 北京大学 Mg-Ca-Sr-Zn magnesium alloy as well as preparation method and application thereof
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US9198785B2 (en) 2010-01-30 2015-12-01 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US9295570B2 (en) 2001-09-19 2016-03-29 Abbott Laboratories Vascular Enterprises Limited Cold-molding process for loading a stent onto a stent delivery system
US9468704B2 (en) 2004-09-07 2016-10-18 Biotronik Vi Patent Ag Implant made of a biodegradable magnesium alloy
US9532888B2 (en) 2006-01-04 2017-01-03 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
CN106636821A (en) * 2016-11-18 2017-05-10 中国兵器科学研究院宁波分院 Intelligent degradation magnesium alloy material and preparing method and application of intelligent degradation magnesium alloy material
US9789544B2 (en) 2006-02-09 2017-10-17 Schlumberger Technology Corporation Methods of manufacturing oilfield degradable alloys and related products
US9827119B2 (en) 2010-01-30 2017-11-28 Abbott Cardiovascular Systems Inc. Polymer scaffolds having a low crossing profile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015457A1 (en) 2006-03-31 2007-10-04 Biotronik Vi Patent Ag Magnesium alloy, and associated fabrication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2094578A (en) * 1932-09-13 1937-10-05 Blumenthal Bernhard Material for surgical ligatures and sutures
US2221319A (en) * 1937-11-22 1940-11-12 Magnesium Dev Corp Magnesium base alloy
US2270194A (en) * 1940-12-23 1942-01-13 Dow Chemical Co Magnesium base alloy
US2286866A (en) * 1940-12-23 1942-06-16 Dow Chemical Co Magnesium base alloy
US2549955A (en) * 1948-01-06 1951-04-24 Magnesium Elektron Ltd Magnesium base alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2094578A (en) * 1932-09-13 1937-10-05 Blumenthal Bernhard Material for surgical ligatures and sutures
US2221319A (en) * 1937-11-22 1940-11-12 Magnesium Dev Corp Magnesium base alloy
US2270194A (en) * 1940-12-23 1942-01-13 Dow Chemical Co Magnesium base alloy
US2286866A (en) * 1940-12-23 1942-06-16 Dow Chemical Co Magnesium base alloy
US2549955A (en) * 1948-01-06 1951-04-24 Magnesium Elektron Ltd Magnesium base alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Annals of Surgery, Vol. 105, No. 6, June 1937, pp. 919, 920 & 938. *

Cited By (199)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269721A (en) * 1979-12-21 1981-05-26 Stauffer Chemical Company Dust abatement with calcium sulfate
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US8007529B2 (en) 1997-04-15 2011-08-30 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis
US7699890B2 (en) 1997-04-15 2010-04-20 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis and a method of making the same
US7077860B2 (en) 1997-04-24 2006-07-18 Advanced Cardiovascular Systems, Inc. Method of reducing or eliminating thrombus formation
WO1999003515A3 (en) * 1997-07-18 1999-08-05 Meyer Joerg Metallic implant which is degradable in vivo
JP2001511049A (en) * 1997-07-18 2001-08-07 メイヤー,ヨルク Decomposable metal implants in vivo
EP1552856A1 (en) 1997-07-18 2005-07-13 Meyer, Jörg Metallic implant which is degradable in vivo
JP2009297537A (en) * 1997-07-18 2009-12-24 Meyer Joerg Metallic implant degradable in vivo
EP1270023A3 (en) * 1997-07-18 2003-12-17 Meyer, Jörg Metallic implant which is degradable in vivo
WO1999003515A2 (en) * 1997-07-18 1999-01-28 Meyer, Jörg Metallic implant which is degradable in vivo
US7879367B2 (en) * 1997-07-18 2011-02-01 Alfons Fischer Metallic implant which is degradable in vivo
US20020004060A1 (en) * 1997-07-18 2002-01-10 Bernd Heublein Metallic implant which is degradable in vivo
JP2011031063A (en) * 1997-07-18 2011-02-17 Alfons Fischer Metallic implant degradable in vivo
EP0966979A2 (en) * 1998-06-25 1999-12-29 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Implantable bioresorbable support for the vascular walls, in particular coronary stent
EP0966979A3 (en) * 1998-06-25 2000-12-27 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Implantable bioresorbable support for the vascular walls, in particular coronary stent
US7297159B2 (en) 2000-10-26 2007-11-20 Advanced Cardiovascular Systems, Inc. Selective coating of medical devices
US20040241036A1 (en) * 2001-06-11 2004-12-02 Andrea Meyer-Lindenberg Medical implant for the human or animal body
DE10128100A1 (en) * 2001-06-11 2002-12-19 Hannover Med Hochschule Medical implant used for humans and animals is made from magnesium alloy containing additions of rare earth metals and lithium
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US7258891B2 (en) 2001-06-28 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US9295570B2 (en) 2001-09-19 2016-03-29 Abbott Laboratories Vascular Enterprises Limited Cold-molding process for loading a stent onto a stent delivery system
DE10163106A1 (en) * 2001-12-24 2003-07-10 Univ Hannover Medical implants, prostheses, prosthesis parts, medical instruments, equipment and aids from a halide-modified magnesium substance
US20050079088A1 (en) * 2001-12-24 2005-04-14 Carl-Joachim Wirth Medical implants, prostheses, prosthesis parts, medical instruments, devices and auxiliary contrivances made of a halogenide-modified magnesium substance
US6767506B2 (en) * 2002-01-10 2004-07-27 Dead Sea Magnesium Ltd. High temperature resistant magnesium alloys
US7048812B2 (en) * 2002-06-21 2006-05-23 Cast Centre Pty Ltd Creep resistant magnesium alloy
US20050002821A1 (en) * 2002-06-21 2005-01-06 Bettles Colleen Joyce Creep resistant magnesium alloy
US8425835B2 (en) 2002-11-13 2013-04-23 Biotronik Vi Patent Ag Endoprosthesis
US20100119576A1 (en) * 2002-11-13 2010-05-13 Biotronik Vi Patent Ag Use of one or more of the elements from the group yttrium, neodymium and zirconium, and pharmaceutical compositions which contain those elements
EP1419793A1 (en) * 2002-11-13 2004-05-19 Biotronik GmbH & Co. KG Endoprosthesis with a supporting structure of magnesium alloy
US20100034899A1 (en) * 2002-11-13 2010-02-11 Biotronik Vi Patent Ag Use of one or more of the elements from the group yttrium, neodymium and zirconium, and pharmaceutical compositions which contain those elements
US20060246107A1 (en) * 2002-11-13 2006-11-02 Claus Harder Use of one or more elements from the group containing yttrium, neodymium and zirconium and pharmaceutical compositions containing said elements
US20040098108A1 (en) * 2002-11-13 2004-05-20 Biotronik Gmbh & Co. Kg Endoprosthesis
DE10253634A1 (en) * 2002-11-13 2004-05-27 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin endoprosthesis
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7905902B2 (en) 2003-06-16 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical implant with preferential corrosion zone
US20040254608A1 (en) * 2003-06-16 2004-12-16 Huitema Thomas W. Surgical implant with preferential corrosion zone
US7967998B2 (en) 2003-06-25 2011-06-28 Advanced Cardiocasvular Systems, Inc. Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US7285304B1 (en) 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7329366B1 (en) 2003-06-25 2008-02-12 Advanced Cardiovascular Systems Inc. Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US8197879B2 (en) 2003-09-30 2012-06-12 Advanced Cardiovascular Systems, Inc. Method for selectively coating surfaces of a stent
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US7604700B2 (en) 2003-09-30 2009-10-20 Advanced Cardiovascular Systems, Inc. Stent mandrel fixture and method for selectively coating surfaces of a stent
DE10361941A1 (en) * 2003-12-24 2005-07-28 Restate Patent Ag Coating for the outer surface of a medical implant, especially a stent or electrode, comprises magnesium, a magnesium alloy or a magnesium salt
US7563324B1 (en) 2003-12-29 2009-07-21 Advanced Cardiovascular Systems Inc. System and method for coating an implantable medical device
US7553377B1 (en) 2004-04-27 2009-06-30 Advanced Cardiovascular Systems, Inc. Apparatus and method for electrostatic coating of an abluminal stent surface
US20050266041A1 (en) * 2004-05-25 2005-12-01 Restate Patent Ag Implant for vessel ligature
DE102004026104A1 (en) * 2004-05-25 2005-12-15 Restate Patent Ag Implant for vessel ligature
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
WO2006008104A1 (en) * 2004-07-21 2006-01-26 Ossacur Ag Implantable body for spinal fusion
US20080140199A1 (en) * 2004-07-21 2008-06-12 Arne Briest Impantable Body for Spinal Fusion
EP1618901A1 (en) * 2004-07-23 2006-01-25 Biotronik VI Patent AG Biokompatible and biodegradable suture and staple material for surgical use
US20060020289A1 (en) * 2004-07-23 2006-01-26 Biotronik Vi Patent Ag Biocompatible and bioabsorbable suture and clip material for surgical purposes
US8470014B2 (en) 2004-08-25 2013-06-25 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US9283099B2 (en) 2004-08-25 2016-03-15 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US9468704B2 (en) 2004-09-07 2016-10-18 Biotronik Vi Patent Ag Implant made of a biodegradable magnesium alloy
US20060052863A1 (en) * 2004-09-07 2006-03-09 Biotronik Vi Patent Ag Endoprosthesis comprising a magnesium alloy
US8840736B2 (en) 2004-09-07 2014-09-23 Biotronik Vi Patent Ag Endoprosthesis comprising a magnesium alloy
US20060052864A1 (en) * 2004-09-07 2006-03-09 Biotronik Vi Patent Ag Endoprosthesis comprising a magnesium alloy
DE102004043232A1 (en) * 2004-09-07 2006-03-09 Biotronik Vi Patent Ag Endoprosthesis made of magnesium alloy
DE102004043231A1 (en) * 2004-09-07 2006-03-09 Biotronik Vi Patent Ag Endoprosthesis made of magnesium alloy
US7662326B2 (en) 2004-09-10 2010-02-16 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US7229471B2 (en) 2004-09-10 2007-06-12 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US20080200950A1 (en) * 2004-10-01 2008-08-21 Stephen Wohlert Surgical Hook
US7632307B2 (en) 2004-12-16 2009-12-15 Advanced Cardiovascular Systems, Inc. Abluminal, multilayer coating constructs for drug-delivery stents
US9700652B2 (en) 2005-01-20 2017-07-11 Biotronik Vi Patent Ag Absorbable medical implant made of fiber-reinforced magnesium or fiber-reinforced magnesium alloys
DE102005003188A1 (en) * 2005-01-20 2006-07-27 Restate Patent Ag A medical implant made of an amorphous or nanocrystalline alloy
US7708548B2 (en) 2005-04-12 2010-05-04 Advanced Cardiovascular Systems, Inc. Molds for fabricating stents with profiles for gripping a balloon catheter
US7381048B2 (en) 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
US7291166B2 (en) 2005-05-18 2007-11-06 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US20060271170A1 (en) * 2005-05-31 2006-11-30 Gale David C Stent with flexible sections in high strain regions
US7622070B2 (en) 2005-06-20 2009-11-24 Advanced Cardiovascular Systems, Inc. Method of manufacturing an implantable polymeric medical device
US20060292690A1 (en) * 2005-06-22 2006-12-28 Cesco Bioengineering Co., Ltd. Method of making cell growth surface
US20070025848A1 (en) * 2005-07-29 2007-02-01 Shawcross James P Reduced noise diffuser for a motor-fan assembly
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US7297758B2 (en) 2005-08-02 2007-11-20 Advanced Cardiovascular Systems, Inc. Method for extending shelf-life of constructs of semi-crystallizable polymers
US7476245B2 (en) 2005-08-16 2009-01-13 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
EP1959025A4 (en) * 2005-11-16 2010-06-30 Nat Inst For Materials Science Magnesium-based biodegradable metal material
EP1959025A1 (en) * 2005-11-16 2008-08-20 National Institute for Materials Science Magnesium-based biodegradable metal material
US20110172724A1 (en) * 2005-12-14 2011-07-14 Gkss-Forschungszentrum Geesthacht Gmbh Biocompatible magnesium material
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US9532888B2 (en) 2006-01-04 2017-01-03 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8663401B2 (en) 2006-02-09 2014-03-04 Schlumberger Technology Corporation Degradable compositions, apparatus comprising same, and methods of use
US9789544B2 (en) 2006-02-09 2017-10-17 Schlumberger Technology Corporation Methods of manufacturing oilfield degradable alloys and related products
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8596215B2 (en) 2006-05-04 2013-12-03 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8637110B2 (en) 2006-05-04 2014-01-28 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8741379B2 (en) 2006-05-04 2014-06-03 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8465789B2 (en) 2006-05-04 2013-06-18 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US8752268B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US9694116B2 (en) 2006-05-26 2017-07-04 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US9038260B2 (en) 2006-05-26 2015-05-26 Abbott Cardiovascular Systems Inc. Stent with radiopaque markers
US9358325B2 (en) 2006-05-26 2016-06-07 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US8752267B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US20070280851A1 (en) * 2006-06-01 2007-12-06 Abigail Freeman Radiation sterilization of medical devices
US8808342B2 (en) 2006-06-14 2014-08-19 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8925177B2 (en) 2006-06-19 2015-01-06 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US9579225B2 (en) 2006-06-19 2017-02-28 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US9259341B2 (en) 2006-06-19 2016-02-16 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US8592036B2 (en) 2006-06-23 2013-11-26 Abbott Cardiovascular Systems Inc. Nanoshells on polymers
US8293367B2 (en) 2006-06-23 2012-10-23 Advanced Cardiovascular Systems, Inc. Nanoshells on polymers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US9833342B2 (en) 2006-08-21 2017-12-05 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US20080086201A1 (en) * 2006-09-15 2008-04-10 Boston Scientific Scimed, Inc. Magnetized bioerodible endoprosthesis
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US20080071349A1 (en) * 2006-09-18 2008-03-20 Boston Scientific Scimed, Inc. Medical Devices
US20100075162A1 (en) * 2006-09-22 2010-03-25 Seok-Jo Yang Implants comprising biodegradable metals and method for manufacturing the same
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US20090306725A1 (en) * 2006-11-17 2009-12-10 Sachiko Hiromoto Magnesium-based medical device and manufacturing method thereof
US20130129908A1 (en) * 2006-11-17 2013-05-23 National Institute For Materials Science Magnesium-based medical device and manufacturing method thereof
US9155816B2 (en) * 2006-11-17 2015-10-13 National Institute For Materials Science Magnesium-based medical device and manufacturing method thereof
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8715339B2 (en) 2006-12-28 2014-05-06 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US20090143856A1 (en) * 2007-11-29 2009-06-04 Boston Scientific Corporation Medical articles that stimulate endothelial cell migration
US8118857B2 (en) 2007-11-29 2012-02-21 Boston Scientific Corporation Medical articles that stimulate endothelial cell migration
US9072810B2 (en) 2008-01-17 2015-07-07 The University Of Hong Kong Implant for tissue engineering
US20090187258A1 (en) * 2008-01-17 2009-07-23 Wing Yuk Ip Implant for Tissue Engineering
US8172908B2 (en) 2008-01-17 2012-05-08 The University Of Hong Kong Implant for tissue engineering
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US20090287301A1 (en) * 2008-05-16 2009-11-19 Boston Scientific, Scimed Inc. Coating for medical implants
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US20110313527A1 (en) * 2008-08-11 2011-12-22 Aap Biomaterials Gmbh Implant made of a magnesium alloy and method for the production thereof
WO2010034098A1 (en) 2008-09-24 2010-04-01 Integran Technologies, Inc. In-vivo biodegradable medical implant
US9119906B2 (en) 2008-09-24 2015-09-01 Integran Technologies, Inc. In-vivo biodegradable medical implant
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8435281B2 (en) 2009-04-10 2013-05-07 Boston Scientific Scimed, Inc. Bioerodible, implantable medical devices incorporating supersaturated magnesium alloys
US20120143318A1 (en) * 2009-06-19 2012-06-07 Manfred Gulcher Implant made of a metallic material which can be resorbed by the body
US8888842B2 (en) * 2009-06-19 2014-11-18 Qualimed Innovative Medizin-Produkte Gmbh Implant made of a metallic material which can be resorbed by the body
DE102010019365A1 (en) 2009-12-18 2011-06-22 Acoredis GmbH, 07743 Bioabsorbable occlusion device, which is introduced by a catheter in a folded condition in a patient's body, where the device in an area of its surrounding envelope comes to a constriction, useful to treat e.g. atrial septal defects
US9198785B2 (en) 2010-01-30 2015-12-01 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US9827119B2 (en) 2010-01-30 2017-11-28 Abbott Cardiovascular Systems Inc. Polymer scaffolds having a low crossing profile
US9770351B2 (en) 2010-01-30 2017-09-26 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US9763818B2 (en) 2010-01-30 2017-09-19 Abbott Cardiovascular Systems Inc. Method of crimping stent on catheter delivery assembly
US9867728B2 (en) 2010-01-30 2018-01-16 Abbott Cardiovascular Systems Inc. Method of making a stent
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US20130041455A1 (en) * 2010-03-25 2013-02-14 Bodo Gerold Implant made of a biodegradable magnesium alloy
US8398680B2 (en) 2010-04-07 2013-03-19 Lsi Solutions, Inc. Bioabsorbable magnesium knots for securing surgical suture
CN103993187A (en) * 2014-05-21 2014-08-20 太原理工大学 Preparation method of medical degradable magnesium-bismuth alloy plate
CN104911427A (en) * 2015-06-19 2015-09-16 北京大学 Mg-Ca-Sr-Zn magnesium alloy as well as preparation method and application thereof
CN104911427B (en) * 2015-06-19 2017-06-30 北京大学 One kind of Mg-Ca-Sr-Zn magnesium-based alloy and its preparation method and application
CN106636821A (en) * 2016-11-18 2017-05-10 中国兵器科学研究院宁波分院 Intelligent degradation magnesium alloy material and preparing method and application of intelligent degradation magnesium alloy material

Also Published As

Publication number Publication date Type
FR2068401A1 (en) 1971-08-27 application
GB1237035A (en) 1971-06-30 application
DE1953241B2 (en) 1971-10-28 application
DE1953241A1 (en) 1971-05-13 application

Similar Documents

Publication Publication Date Title
Müller et al. Technique of internal fixation of fractures
Raphael et al. Cervical carotid aneurysms: Treatment by excision and restoration of arterial continuity
Brar et al. Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials
Klawitter et al. Application of porous ceramics for the attachment of load bearing internal orthopedic applications
Goldstein et al. Trigeminal neuropathy and neuritis: a study of etiology with emphasis on dental causes
Goodship et al. The influence of induced micromovement upon the healing of experimental tibial fractures
Lin et al. A comparison of the fatigue behavior of cast Ti–7.5 Mo with cp titanium, Ti–6Al–4V and Ti–13Nb–13Zr alloys
Bhaskar et al. Tissue reaction to intrabony ceramic implants
US4120730A (en) Biocompatible ceramic glass
US3981736A (en) Biocompatible glass ceramic material
US6409852B1 (en) Biocompatible low modulus titanium alloy for medical implant
Watson et al. Collagen‐crystal relationships in bone. II. Electron microscope study of basic calcium phosphate crystals
Yamamuro et al. Replacement of the lumbar vertebrae of sheep with ceramic prostheses
Bhaskar et al. Biodegradable ceramic implants in bone: electron and light microscopic analysis
Saito et al. Simple bone cyst: a clinical and histopathologic study of fifteen cases
Hutzschenreuter et al. Some effects of rigidity of internal fixation on the healing pattern of osteotomies
Beckham et al. Bone formation at a ceramic implant interface
Cushing I. Subtemporal decompressive operations for the intracranial complications associated with bursting fractures of the skull
Anucul et al. In vitro strength analysis of sagittal split osteotomy fixation: noncompression monocortical plates versus bicortical position screws
Wardrop et al. Maxillary stability following downgraft and/or advancement procedures with stabilization using rigid fixation and porous block hydroxyapatite implants
Burger et al. Observations of the influence of chondroitin sulphate on the rate of bone repair
Akahori et al. Fracture characteristics of fatigued Ti–6Al–4V ELI as an implant material
Kobayashi et al. Dural arteriovenous malformations in the anterior cranial fossa
Chow et al. A natural bone cement—A laboratory novelty led to the development of revolutionary new biomaterials
Frame Porous calcium sulphate dihydrate as a biodegradable implant in bone