US3686875A - Submerged storage unit - Google Patents

Submerged storage unit Download PDF

Info

Publication number
US3686875A
US3686875A US33763A US3686875DA US3686875A US 3686875 A US3686875 A US 3686875A US 33763 A US33763 A US 33763A US 3686875D A US3686875D A US 3686875DA US 3686875 A US3686875 A US 3686875A
Authority
US
United States
Prior art keywords
wire ropes
unit
dome
base
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US33763A
Inventor
George W Morgan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUBSEA EQUIPMENT ASS Ltd
SUBSEA EQUIPMENT ASSOCIATES Ltd
Original Assignee
SUBSEA EQUIPMENT ASS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUBSEA EQUIPMENT ASS Ltd filed Critical SUBSEA EQUIPMENT ASS Ltd
Application granted granted Critical
Publication of US3686875A publication Critical patent/US3686875A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H7/00Construction or assembling of bulk storage containers employing civil engineering techniques in situ or off the site
    • E04H7/02Containers for fluids or gases; Supports therefor
    • E04H7/18Containers for fluids or gases; Supports therefor mainly of concrete, e.g. reinforced concrete, or other stone-like material
    • E04H7/20Prestressed constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/78Large containers for use in or under water

Definitions

  • the unit has a concrete dome fixed to a base also made of concrete.
  • the dome has interlaced prestressed wire ropes, or cables, placing the dome in compression thereby allowing the dome to withstand the tension force resulting when. the unit is stored with a fluid lighter than water.
  • the cables are arranged preferably in a predetermined pattern to allow efficient use of material.
  • Prior art underwater storage units or compartments are made sufficiently rigid so that, when the unit is empty, hydrostatic pressure does collapse the unit.
  • other prior art units when used to store oil, are opened to the sea near the bottom so that, when the oil is withdrawn, sea water enters the unit. Therefore, the unit need not be as rigid as when the unit has to withstand hydrostatic pressure. Since oil is lighter than sea water, there is an uplift force acting on the unit which places the walls of the unit in tension. Therefore, up to now these submerged storage units have been made of steel, since steel is the most economical material that can be placed under tension.
  • concrete storage units are more economical, but concrete under slight tension cracks, even if it is reinforced. Reinforced concrete under tension forms hairline cracks which may not be significant under normal conditions but, in fluid storage units, the cracks are leaks.
  • an object of this invention is to provide an economical submerged storage unit made of concrete.
  • Another object is to provide a hollow hemispherically shaped storage unit made of concrete which can be floated to a site and afterwards sunk in place.
  • FIG. 1 is an elevation of the novel, submerged storage unit in partial section with portions broken away to show the novel construction
  • FIG. 2 is a plan view of the unit shown with portions broken away;
  • FIG. 3 is an enlarged section in elevation showing an upper portion of the unit
  • FIG. 4 is an enlarged section in elevation showing the butt joint between the base and the hemispherical dome of the unit;
  • FIG. 5 is an enlarged section of a portion of the unit taken on line 5-5 in FIG. 1 showing the crossover point of three prestress cables in the unit;
  • FIG. 6 is a plan schematic of the hemispherical dome portion of the unit showing the crisscross pattern for fabricated.
  • any shaped base that is consistent with structural rigidity for concrete structure may be used.
  • the size of the unit may be, for example, 75 feet for the outer radius of the dome 11 and 225 feet from opposite points on the base 10, and a flat hexagon plate 13 in the base could be 18 inches thick.
  • a flat hexagon plate 13 in the base could be 18 inches thick.
  • six vertical webs 14-19 each of which have an inward flange 21 as shown in FIG. 1 for web 14.
  • the webs may be 15 feet high and 18 inches thick and the flange may be 2 to 3 feet wide and 18 inches thick.
  • the plate 13 Extending from opposite corners of the plate 13 are six transverse webs 22-27 which may have a stiffening cap flange 28. Below the circumferential peripherical of the dome 12, is formed a vertically disposed circular web 29 which is capped by another flange 31, as shown in FIG. 1.
  • the plate 13, the six peripherical webs 14-19, the six transverse webs 22-27, the flanges 21 and 28 may be reinforced with steel rods, as required, to provide structural strength and rigidity.
  • the size of the base 10 is such that, when the unit is sealed and filled with air, the unit is floatable.
  • the six webs 14-19 provide the required free-board.
  • the base 10 is cast the prestressing cables in solid lines and the outline of the features of this invention produce advantages when used with a structural material that is weak in tension, the unit is preferably made of concrete because it is economical.
  • a steel cap 12 At the center of the dome 11 is disposed a steel cap 12.
  • the base 10 is preferably hexigon in shape (see FIG. 2) so that the concrete form may be readily before the dome 11. When the base 10 is fully hardened, the dome 11 is formed.
  • the dome 11 is formed by providing a hemispherical form (not shown) over the base and, in particular, on the circular flange 31.
  • the form may be of the type disclosed in US. Pat. No. 2,682,259.
  • the cap 12 With the form in place on the flange 31, the cap 12 is placed on the form.
  • a hemispherical sheet 41 is formed over the form preferably by applying a mixture of cement, sand, and water with pneumatic pressure through a suitable gun (generally referred to as gunite). The gunite is applied until a concrete hemispherical sheet 41 is formed to a suitable thickness of, for example, 18 inches.
  • wire ropes, or cables, 42 of a suitable diameter are placed over the sheet in a predetermined pattern and then tensioned so that the sheet 41 is under compression.
  • the preferred pattern and the manner for tensioning the wire ropes 42 will be described hereinafter.
  • a finish layer 43 of concrete is gunited over the wire ropes. Since the unit should be opened to the sea, suitable openings 44 are formed in cylindrical web 29.
  • One of the openings 44 can be made: sufficiently large so that a person can enter the unit to dismantle and remove the hemispherical form used to form the gunited dome 11.
  • wire ropes 42 preferably only five wire ropes extend from the cap 12 to the flange 31 on web 29, each along a great circle.
  • These wire ropes 42 have formed at their upper end a standard thimble or eyelet 44 which engages a ring 45 welded to a cylindrical wall 46 of the cap 12.
  • the lower end of these wire ropes have each of their other end fixed to a standard socket 47 which has threads formed thereon.
  • the sockets 47 pass through a steel sleeve 48 that was cast in place within flange 31 as shown in FIG. 4. Threaded onto the socket 47 is a nut 49.
  • the other wire ropes besides the five extending from the cap downwards, have sockets similar to socket 47 fixed on both ends. As will be explained hereinafter, these wire ropes extend from flange 31 over the sheet 41 back to the flange 31. After the concrete hardens and ages, the wire ropes are tightened by taking up the nuts 49 on bolts 47.
  • the required tension load in each cable can be readily calculated by one skilled in the prestress concrete art after reading this disclosure. Since the cables have been heavily greased as is standard in the art of prestressed concrete, the cables do not adhere to concrete and can be readily tensioned.
  • the wire ropes 42 are draped over the concrete dome sheet 41 in a crisscross pattern so that, when the nuts and bolts are tightened, the concrete sheet 41 is placed under a prestressed compression load, i.e., when the unit is standing without performing any function, the compression pressure in the concrete is more than would be developed by dead weight alone. Since the unit is dome shape, a preferred pattern for the wire ropes has been developed so that the prestressing is uniform and a minimum amount of material is used. Referring to FIGS. 6, 7, and 8, the preferred pattern for the wire ropes is shown schematically. The various solid lines indicate the pattern that the various lengths of wire rope should have. The solid lines are located on the dome shape by first laying out the various 31 points V1 V20, V1 V6 and V1" V5" according to the following tables:
  • X,Y, and Z refer to standard rectangular coordinates; A is the angle in the X-Y plane and is given either clockwise (CW) or counterclockwise (CCW). B is the angle of rotation from the positive Z axis.
  • A is the angle in the X-Y plane and is given either clockwise (CW) or counterclockwise (CCW).
  • B is the angle of rotation from the positive Z axis.
  • Lines 52b and 52b, lines 52c and 520", lines 52d and 52d”, and lines 52e and 52e", like lines 52a and 52a", substantially form circles that, in turn, are disposed substantially parallel to the respective great circles that lines 52b, 52c, 52d, and 52e, respectively, substantially lie on.
  • the cap 12 is preferably made of steel wherein the cylindrical wall 46 has a flange 62 at one end so that the concrete adheres thereto. In addition, the other end of cap 12 swages down to a riser pipe 63 from which the crude oil is pumped to the surface. Inlet pipes 65 engage suitable fittings around the wall 46. Bars 66 on the cap 12 are useful in lowering the unit to the ocean floor.
  • the sea water is displaced out of the unit since the oil is lighter. Since the oil is lighter, there is an upward lift on the inside of the concrete sheet 41. However, this upward lift tends to decrease the compression pressure in the concrete, but, since the wire ropes were tightened sufficiently, the concrete is always in compression. Obviously, the tension in the wire ropes 42 increases, but not sufficiently to cause the rope to yield. If more than the number of wire ropes than the amount shown are needed, because the space therebetween may be too large, additional wire ropes may be added that are disposed and run substantially parallel to two adjacent parallel wire ropes. The number of wire ropes added would be limited only by the size of the system. The spacing, between wire ropes for a given size, would depend on a number of factors; the main factor would be the thickness of the concrete sheet 41.
  • a storage unit comprising:
  • a hemispheric dome disposed over the base
  • said first plurality of ropes is an odd number and said ropes are evenly disposed around said dome
  • a second plurality of wire ropes equal in number to said first plurality is disposed on respective second great circles on said dome,
  • said second great circles are equally spaced from said cap and each one of said second great circles are disposed normal to a respective one of said first great circles
  • means are provided for anchoring both ends of each of said second plurality of wire ropes to said base and for producing a tension force within said second wire ropes.
  • said third plurality of wire ropes is divided into a plurality of groups that are equal in number to the ropes in said first plurality is five.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

The unit has a concrete dome fixed to a base also made of concrete. The dome has interlaced prestressed wire ropes, or cables, placing the dome in compression thereby allowing the dome to withstand the tension force resulting when the unit is stored with a fluid lighter than water. The cables are arranged preferably in a predetermined pattern to allow efficient use of material.

Description

United States Patent Morgan [54] SUBMERGED STORAGE UNIT [72] Inventor: George W. Morgan, Anaheim, Calif.
[73] Assignee: Subsea Equipment Associates Limited, Hamilton, Bermuda 22 Filed: May1,1970 211 Appl.No.: 33,763
52 US. 01. ..6l/46, 52/80, 52/227 51 Int. Cl. ..E02d 29/00 58 FieldofSearch ..61/46, 46.5, 69; 52/2, 80, 52/227 [56] References Cited UNITED sTATEs PATENTS p 6 3,164,111 1/1965 Lanni ..52/80x 10/1969 Brown ..6l/46.5X
[ Aug. 29, 1972 FOREIGN PATENTS OR APPLICATIONS 1,458,056 10/1966 France ..52/227 Primary Examiner-J. Karl Bell Attorney-Allan Rothenberg, Richard F. Carr and Richard T. Gausewitz ABSTRACT The unit has a concrete dome fixed to a base also made of concrete. The dome has interlaced prestressed wire ropes, or cables, placing the dome in compression thereby allowing the dome to withstand the tension force resulting when. the unit is stored with a fluid lighter than water. The cables are arranged preferably in a predetermined pattern to allow efficient use of material. 1
7 Claims, 9 Drawing Figures PATENTEflwnzs I972 SHEET 1 [1F 5 II F INVENTOR, GEORGE w. MORGAN ATTORNEY PAIENIEmum 1912 3.686; 875
SHEET 2 BF 5 LTVEI TOR. GEORGE W. MORGAN ATTORNEY PAIENIEDwczs 1912 REFERENCE MERIDIAN SHEET 5 [IF 5 E P REFERENCE POLE IF VEN'TOR, GEORGE W. MORGAN ATTORNEY SUBMERGED STORAGE UNIT This invention relates to a storage unit and, more particularly, to a unit submerged and placed on the ocean floor for use to store petroleum and petroleum products or other fluids lighter than sea water.
Prior art underwater storage units or compartments are made sufficiently rigid so that, when the unit is empty, hydrostatic pressure does collapse the unit. However, other prior art units, when used to store oil, are opened to the sea near the bottom so that, when the oil is withdrawn, sea water enters the unit. Therefore, the unit need not be as rigid as when the unit has to withstand hydrostatic pressure. Since oil is lighter than sea water, there is an uplift force acting on the unit which places the walls of the unit in tension. Therefore, up to now these submerged storage units have been made of steel, since steel is the most economical material that can be placed under tension. Obviously, concrete storage units are more economical, but concrete under slight tension cracks, even if it is reinforced. Reinforced concrete under tension forms hairline cracks which may not be significant under normal conditions but, in fluid storage units, the cracks are leaks.
Therefore, an object of this invention is to provide an economical submerged storage unit made of concrete.
Another object is to provide a hollow hemispherically shaped storage unit made of concrete which can be floated to a site and afterwards sunk in place.
These and other objects and features of advantages shall become more apparent in the following description of the invention when taken in conjunction with the drawings, in which:
FIG. 1 is an elevation of the novel, submerged storage unit in partial section with portions broken away to show the novel construction;
FIG. 2 is a plan view of the unit shown with portions broken away;
FIG. 3 is an enlarged section in elevation showing an upper portion of the unit;
FIG. 4 is an enlarged section in elevation showing the butt joint between the base and the hemispherical dome of the unit;
FIG. 5 is an enlarged section of a portion of the unit taken on line 5-5 in FIG. 1 showing the crossover point of three prestress cables in the unit;
FIG. 6 is a plan schematic of the hemispherical dome portion of the unit showing the crisscross pattern for fabricated. However, any shaped base that is consistent with structural rigidity for concrete structure may be used. The size of the unit may be, for example, 75 feet for the outer radius of the dome 11 and 225 feet from opposite points on the base 10, and a flat hexagon plate 13 in the base could be 18 inches thick. Along the periphery of the plate 13 are formed six vertical webs 14-19 each of which have an inward flange 21 as shown in FIG. 1 for web 14. The webs may be 15 feet high and 18 inches thick and the flange may be 2 to 3 feet wide and 18 inches thick. Extending from opposite corners of the plate 13 are six transverse webs 22-27 which may have a stiffening cap flange 28. Below the circumferential peripherical of the dome 12, is formed a vertically disposed circular web 29 which is capped by another flange 31, as shown in FIG. 1. The plate 13, the six peripherical webs 14-19, the six transverse webs 22-27, the flanges 21 and 28 may be reinforced with steel rods, as required, to provide structural strength and rigidity. Preferably the size of the base 10 is such that, when the unit is sealed and filled with air, the unit is floatable. The six webs 14-19 provide the required free-board. In constructing the unit, the base 10 is cast the prestressing cables in solid lines and the outline of the features of this invention produce advantages when used with a structural material that is weak in tension, the unit is preferably made of concrete because it is economical. At the center of the dome 11 is disposed a steel cap 12. The base 10 is preferably hexigon in shape (see FIG. 2) so that the concrete form may be readily before the dome 11. When the base 10 is fully hardened, the dome 11 is formed.
The dome 11 is formed by providing a hemispherical form (not shown) over the base and, in particular, on the circular flange 31. The form may be of the type disclosed in US. Pat. No. 2,682,259. With the form in place on the flange 31, the cap 12 is placed on the form. Then a hemispherical sheet 41 is formed over the form preferably by applying a mixture of cement, sand, and water with pneumatic pressure through a suitable gun (generally referred to as gunite). The gunite is applied until a concrete hemispherical sheet 41 is formed to a suitable thickness of, for example, 18 inches. After the sheet 41 is formed, wire ropes, or cables, 42 of a suitable diameter are placed over the sheet in a predetermined pattern and then tensioned so that the sheet 41 is under compression. The preferred pattern and the manner for tensioning the wire ropes 42 will be described hereinafter. After the wire ropes are in place, a finish layer 43 of concrete is gunited over the wire ropes. Since the unit should be opened to the sea, suitable openings 44 are formed in cylindrical web 29. One of the openings 44 can be made: sufficiently large so that a person can enter the unit to dismantle and remove the hemispherical form used to form the gunited dome 11.
Referring to FIGS. 3 and 4, there is shown the preferred structure for tying down the ends of wire ropes 42. As will be explained hereinafter, preferably only five wire ropes extend from the cap 12 to the flange 31 on web 29, each along a great circle. These wire ropes 42 have formed at their upper end a standard thimble or eyelet 44 which engages a ring 45 welded to a cylindrical wall 46 of the cap 12. The lower end of these wire ropes have each of their other end fixed to a standard socket 47 which has threads formed thereon. The sockets 47 pass through a steel sleeve 48 that was cast in place within flange 31 as shown in FIG. 4. Threaded onto the socket 47 is a nut 49. The other wire ropes, besides the five extending from the cap downwards, have sockets similar to socket 47 fixed on both ends. As will be explained hereinafter, these wire ropes extend from flange 31 over the sheet 41 back to the flange 31. After the concrete hardens and ages, the wire ropes are tightened by taking up the nuts 49 on bolts 47. The required tension load in each cable can be readily calculated by one skilled in the prestress concrete art after reading this disclosure. Since the cables have been heavily greased as is standard in the art of prestressed concrete, the cables do not adhere to concrete and can be readily tensioned.
The wire ropes 42 are draped over the concrete dome sheet 41 in a crisscross pattern so that, when the nuts and bolts are tightened, the concrete sheet 41 is placed under a prestressed compression load, i.e., when the unit is standing without performing any function, the compression pressure in the concrete is more than would be developed by dead weight alone. Since the unit is dome shape, a preferred pattern for the wire ropes has been developed so that the prestressing is uniform and a minimum amount of material is used. Referring to FIGS. 6, 7, and 8, the preferred pattern for the wire ropes is shown schematically. The various solid lines indicate the pattern that the various lengths of wire rope should have. The solid lines are located on the dome shape by first laying out the various 31 points V1 V20, V1 V6 and V1" V5" according to the following tables:
SPHERICAL COORDINATES A Point Plan View Rotation Rotation from Positive 2 V1 00'00" 2004'36" V2 7200'00" CCW 2004'36" V3 14400'00" CCW 2004'36" V4 14400'00" CW 2004'36" V5 7200'00" CW 2004'36" V6 000'00" 4321'29" V7 7200'00" CCW 4321'29" V8 14400'00" CCW 4321'29" V9 14400'00" CW 4321'29" V10 7200'00" CW 4321'29" V11 2223'10" CCW 5900'28" V12 4936'49" CCW 5900'28" V13 94 23'10" CCW 5900'28" V14 12136'49" CCW 5900'28" V15 16623'10" CCW 5900'28" V16 16623'10" CW 5900'28" V17 12136'49" CW 5900'28" V18 9423'10" CW 5900'28" V19 4936'49" CW 5900'28" V20 2223'10" CW 5900'28" V1 000'00" 000'00" V2 0OO'00" 6326'05" V3 7200'00" CCW 6326'05" V4 14400'00" CCW 6326'05" V5 14400'00" CW 6326'05" V6 7200'00" CW 6326'05" V1 3600'00" CCW 3722'38" V2 10800'00" CCW 3722'38" V3" 10800'00" 3722'38" V4" 10800'00" CW 3722'38" V5 3600'00" CW 3722'38" RECTANGULAR COORDINATES Point X Y Z V1 0.343 0.000 0.939 V2 0.106 0.326 0.939 V3 ().277 0.201 0.939 V4 0.277 0.201 0.939 V5 0. 106 0.326 i 0.939 V6 0.686 0.000 0.727 V7 0.212 0.652 0.727 V8 0.555 0.403 0.727 V9 0.555 0.403 0.727 V10 0.212 -0.652 0.727 V11 0.792 0.326 0.514
V12 0.555 0.652 0.514 V13 0.065 0.854 0.5 l4 V14 0.449 0.730 0.514 V15 O.833 0.201 0.514 V16 0.833 0.201 0.514 V17 0.449 O.730 0.514 V18 -0.065 0.854 0.514 V19 0.555 0.652 0.514 V20 0.792 0.326 0.514 V1 0.000 0.000 L000 V2 0.894 0.000 0.447 V3 0.276 0.850 0.447 V4 0.723 0.525 0.447 V5 -0.723 0.525 0.447 V6 0.276 0.850 0.447 V1 0.491 0.356 0.794 V2" 0.l87 0.577 0.794 V3" 0.607 0.000 0.794 V4 O.l87 -0.577 0.794 V5" 0.491 -O.356 0.794
Referring to FIG. 9, the various abbreviations and notations in the tables are explained. X,Y, and Z refer to standard rectangular coordinates; A is the angle in the X-Y plane and is given either clockwise (CW) or counterclockwise (CCW). B is the angle of rotation from the positive Z axis. Thus, five lines 51a-51e, connecting the points as shown and mentioned above, lie on great circles extending from point Vl'. Five other lines 52a-52e, connecting the points as shown, lie substantially on great circles. Lines 52a and 52a substantially form circles that are disposed substantially parallel to the great circle that line 52a substantially lies on. Lines 52b and 52b, lines 52c and 520", lines 52d and 52d", and lines 52e and 52e", like lines 52a and 52a", substantially form circles that, in turn, are disposed substantially parallel to the respective great circles that lines 52b, 52c, 52d, and 52e, respectively, substantially lie on.
After determining where the wire ropes 42 are going to lie, holding U'clamps 61 (FIGS. 2 and 5) are inserted in the concrete before it sets at the location of each point Vl-V20, V2-V6, and V1"-V5". A U- clamp is not needed at point V1 since the wire ropes that coincide with and lie on the five lines 5la-5le are anchored to the cap 12 as shown in FIG. 3. The cap 12 is preferably made of steel wherein the cylindrical wall 46 has a flange 62 at one end so that the concrete adheres thereto. In addition, the other end of cap 12 swages down to a riser pipe 63 from which the crude oil is pumped to the surface. Inlet pipes 65 engage suitable fittings around the wall 46. Bars 66 on the cap 12 are useful in lowering the unit to the ocean floor.
When the unit is on the ocean floor, sea water enters the unit through ports 42. As crude oil or refined oil products are pumped into the unit through pipes 65,
. the sea water is displaced out of the unit since the oil is lighter. Since the oil is lighter, there is an upward lift on the inside of the concrete sheet 41. However, this upward lift tends to decrease the compression pressure in the concrete, but, since the wire ropes were tightened sufficiently, the concrete is always in compression. Obviously, the tension in the wire ropes 42 increases, but not sufficiently to cause the rope to yield. If more than the number of wire ropes than the amount shown are needed, because the space therebetween may be too large, additional wire ropes may be added that are disposed and run substantially parallel to two adjacent parallel wire ropes. The number of wire ropes added would be limited only by the size of the system. The spacing, between wire ropes for a given size, would depend on a number of factors; the main factor would be the thickness of the concrete sheet 41.
What is claimed is:
l. A storage unit comprising:
a base,
a hemispheric dome disposed over the base,
a cap disposed on the top of said dome,
a first plurality of wire ropes each engaging said cap by one end and extending along respective first great circles to said base, and
means for anchoring the other ends of the first plurality of wire ropes to said base and for producing a tension force within said wire ropes.
2. The unit of claim 1 wherein:
said first plurality of ropes is an odd number and said ropes are evenly disposed around said dome,
a second plurality of wire ropes equal in number to said first plurality is disposed on respective second great circles on said dome,
said second great circles are equally spaced from said cap and each one of said second great circles are disposed normal to a respective one of said first great circles,
means are provided for anchoring both ends of each of said second plurality of wire ropes to said base and for producing a tension force within said second wire ropes.
3. The unit of claim 2 wherein:
a third plurality of wire ropes are disposed on said dome,
said third plurality of wire ropes is divided into a plurality of groups that are equal in number to the ropes in said first plurality is five.
5. The unit claim 3 wherein said second great circles are rotated from the vertical approximately 20.
6. The unit of claim 4 wherein said second great circles are rotated from the vertical approximately 20.
7. The unit of claim 6 wherein the number of wire ropes in each of said groups is two.

Claims (7)

1. A storage unit comprisIng: a base, a hemispheric dome disposed over the base, a cap disposed on the top of said dome, a first plurality of wire ropes each engaging said cap by one end and extending along respective first great circles to said base, and means for anchoring the other ends of the first plurality of wire ropes to said base and for producing a tension force within said wire ropes.
2. The unit of claim 1 wherein: said first plurality of ropes is an odd number and said ropes are evenly disposed around said dome, a second plurality of wire ropes equal in number to said first plurality is disposed on respective second great circles on said dome, said second great circles are equally spaced from said cap and each one of said second great circles are disposed normal to a respective one of said first great circles, means are provided for anchoring both ends of each of said second plurality of wire ropes to said base and for producing a tension force within said second wire ropes.
3. The unit of claim 2 wherein: a third plurality of wire ropes are disposed on said dome, said third plurality of wire ropes is divided into a plurality of groups that are equal in number to the wire ropes in said first plurality of wire ropes and which each of said groups contain more than one wire rope, the wire ropes of said groups are disposed on circles that are substantially parallel to respective ones of said second great circles, and means are provided for anchoring both ends of each wire rope in said third plurality to said base and for producing a tension force within the wire ropes in said third plurality.
4. The unit of claim 3 wherein the number of wire ropes in said first plurality is five.
5. The unit claim 3 wherein said second great circles are rotated from the vertical approximately 20*.
6. The unit of claim 4 wherein said second great circles are rotated from the vertical approximately 20*.
7. The unit of claim 6 wherein the number of wire ropes in each of said groups is two.
US33763A 1970-05-01 1970-05-01 Submerged storage unit Expired - Lifetime US3686875A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3376370A 1970-05-01 1970-05-01

Publications (1)

Publication Number Publication Date
US3686875A true US3686875A (en) 1972-08-29

Family

ID=21872299

Family Applications (1)

Application Number Title Priority Date Filing Date
US33763A Expired - Lifetime US3686875A (en) 1970-05-01 1970-05-01 Submerged storage unit

Country Status (1)

Country Link
US (1) US3686875A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3744191A (en) * 1971-12-14 1973-07-10 Birdair Structures Large air supported structures
US3803855A (en) * 1972-09-29 1974-04-16 A Malkiel Submerged oil storage tank
US3824942A (en) * 1972-01-17 1974-07-23 Chicago Bridge & Iron Co Offshore underwater storage tank
US3893270A (en) * 1972-07-12 1975-07-08 Morris Schupack Pressure vessel
US3967393A (en) * 1973-07-04 1976-07-06 The Secretary Of State For Trade And Industry In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Underwater solids collecting apparatus
US4645379A (en) * 1981-01-29 1987-02-24 Conoco Inc. Pyramidal offshore structure
US5305576A (en) * 1992-05-07 1994-04-26 Giles Brian C Method of constructing curvilinear structures
US6771731B2 (en) * 2000-04-11 2004-08-03 Oyster International N.V. Device for storage of hazardous material
US20040172888A1 (en) * 2003-03-07 2004-09-09 Shearing John Robert Spherical enclosure suitable as a building structure, pressure vessel, vacuum vessel, or for storing liquids
US20040226236A1 (en) * 2000-11-21 2004-11-18 Pidgeon John Terry Foundation structure
US20060135288A1 (en) * 2004-12-22 2006-06-22 Mills Randell L Great-circle geodesic dome
US7978806B1 (en) 2001-04-23 2011-07-12 Hayman Iii W Z Zack Seafloor power station
US20120045285A1 (en) * 2010-08-23 2012-02-23 Oil Well Closure And Protection As Offshore structure
US10894660B2 (en) 2010-02-15 2021-01-19 Yehuda Kahane Ltd Underwater energy storage system and power station powered therewith

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164111A (en) * 1962-07-13 1965-01-05 Daniel G Lanni Bomb shelter
FR1458056A (en) * 1962-10-26 1966-03-04 Babcock & Wilcox Ltd Improvements to concrete pressure vessels
US3472033A (en) * 1966-10-26 1969-10-14 H J Gruy & Associates Inc Fluid storage apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164111A (en) * 1962-07-13 1965-01-05 Daniel G Lanni Bomb shelter
FR1458056A (en) * 1962-10-26 1966-03-04 Babcock & Wilcox Ltd Improvements to concrete pressure vessels
US3472033A (en) * 1966-10-26 1969-10-14 H J Gruy & Associates Inc Fluid storage apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3744191A (en) * 1971-12-14 1973-07-10 Birdair Structures Large air supported structures
US3824942A (en) * 1972-01-17 1974-07-23 Chicago Bridge & Iron Co Offshore underwater storage tank
US3893270A (en) * 1972-07-12 1975-07-08 Morris Schupack Pressure vessel
US3803855A (en) * 1972-09-29 1974-04-16 A Malkiel Submerged oil storage tank
US3967393A (en) * 1973-07-04 1976-07-06 The Secretary Of State For Trade And Industry In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Underwater solids collecting apparatus
US4645379A (en) * 1981-01-29 1987-02-24 Conoco Inc. Pyramidal offshore structure
US5305576A (en) * 1992-05-07 1994-04-26 Giles Brian C Method of constructing curvilinear structures
US6771731B2 (en) * 2000-04-11 2004-08-03 Oyster International N.V. Device for storage of hazardous material
US20040226236A1 (en) * 2000-11-21 2004-11-18 Pidgeon John Terry Foundation structure
US7978806B1 (en) 2001-04-23 2011-07-12 Hayman Iii W Z Zack Seafloor power station
US20040172888A1 (en) * 2003-03-07 2004-09-09 Shearing John Robert Spherical enclosure suitable as a building structure, pressure vessel, vacuum vessel, or for storing liquids
US20060135288A1 (en) * 2004-12-22 2006-06-22 Mills Randell L Great-circle geodesic dome
US10894660B2 (en) 2010-02-15 2021-01-19 Yehuda Kahane Ltd Underwater energy storage system and power station powered therewith
US20120045285A1 (en) * 2010-08-23 2012-02-23 Oil Well Closure And Protection As Offshore structure

Similar Documents

Publication Publication Date Title
US3686875A (en) Submerged storage unit
CN101832049B (en) Concrete-structured conjoined cylindrical shell construction device and method therefor
US3191388A (en) Slender column support for offshore platforms
US3472033A (en) Fluid storage apparatus
US3262411A (en) Barge based process plant
US4004429A (en) Deep underwater sphere
US4879859A (en) Method and apparatus for constructing circumferentially wrapped prestressed structures utilizing a membrane
JPH06115489A (en) Floating structure
US3893304A (en) Method and a device for the underwater construction of concrete structures
US5177919A (en) Apparatus for constructing circumerentially wrapped prestressed structures utilizing a membrane and having seismic coupling
US4606674A (en) Structural wheel element
AU698598B2 (en) A floating device
US3668876A (en) Offshore tower apparatus and method
US5105590A (en) Apparatus for constructing circumferentially wrapped prestressed structures utilizing a membrane including seismic coupling
US3721058A (en) Reinforced wall structure
US4438719A (en) Container for transporting compressed gas, such as natural gas, and method of constructing the container
US3803855A (en) Submerged oil storage tank
US5134830A (en) Method and apparatus for constructing circumferentially wrapped prestressed structures utilizing a membrane
US3621662A (en) Underwater storage structure and method of installation
US2414310A (en) Method of building concrete oil storage tanks
US3815371A (en) Offshore tower apparatus and method
US3483707A (en) Method for reinforcing steel pipe piling in situ and the resultant piling
US3602000A (en) Reinforced steel pipe piling structure
CN210621737U (en) Combined type annular tube jacket foundation structure
US3612329A (en) Tank