US3675911A - Arrangement for discharging predetermined amounts of molten metal from a vessel - Google Patents

Arrangement for discharging predetermined amounts of molten metal from a vessel Download PDF

Info

Publication number
US3675911A
US3675911A US874817A US3675911DA US3675911A US 3675911 A US3675911 A US 3675911A US 874817 A US874817 A US 874817A US 3675911D A US3675911D A US 3675911DA US 3675911 A US3675911 A US 3675911A
Authority
US
United States
Prior art keywords
molten metal
discharge
vessel
spindle
integrating mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US874817A
Inventor
Walter Kapun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wiener Schwachstromwerke GmbH
Original Assignee
Wiener Schwachstromwerke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wiener Schwachstromwerke GmbH filed Critical Wiener Schwachstromwerke GmbH
Application granted granted Critical
Publication of US3675911A publication Critical patent/US3675911A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/06Equipment for supplying molten metal in rations having means for controlling the amount of molten metal by controlling the pressure above the molten metal

Definitions

  • ABSTRACT For discharging predetermined quantities of molten metal a gas tight vessel having a discharge conduit is arranged to hold the molten metal.
  • the vessel is connected to a source of a pressurized gaseous medium so that the gaseous medium assists in the discharge of the molten metal.
  • Sensing means are used to generate an output signal, which is representative of the velocity of flow of the molten metal from the vessel, and the signal is passed to an integrating mechanism attains a predetermined value corresponding to the predetermined quantity of molten metal to be discharged, the discharge flow from the vessel is discontinued.
  • This invention is directed to the discharge of predetermined amounts of molten metal from a vessel, such as a melting furnace, and, more particularly, it is directed to an arrangement for use with closed vessels in which the discharge of molten metal is assisted by a pressurized gaseous means, such as compressed air.
  • Means, such as pumps and the like, for handling non-aggressive metals cannot be used for handling the molten metals because of the aggressive character of such metals, particularly aluminum and aluminum alloys and also because of their high melting temperatures since the melting temperatures of the materials used in such means are low.
  • An apparatus which is especially useful where a pressurized gaseous medium is used in assisting in the discharge of the molten metal.
  • the molten metal is contained in an enclosed gas tight furnace vessel in which the surface of the molten metal is subjected to a gas pressure and the metal is discharged through a gas tight pipe located near the bottom of the vessel.
  • the metered amount of molten metal will depend on the gas pressure and the duration of the withdrawal of the metal, provided that the level of the molten metal in the furnace vessel remains constant. However, each time the molten metal is discharged from the vessel its level drops and the discharge pressure and/or the duration of the discharge must be varied if equal amounts are to be drawn off from the vessel.
  • the electrodynamic pressure in the melting channel of the furnace may cause the refractory furnace lining to spall off and mix with the molten metal. Such a contamination may occur especially in installations in which the molten metal is discharged from the furnace by means of induction pumps.
  • relatively delicate or insubstantial components such as valves, nozzles and floats, are permanently in contact with the molten metal or the furnace atmosphere.
  • Still other apparatus are known in which the stroke of a plunger of the die casting machine is measured as the extent of the discharge material.
  • Such an arrangement has the disadvantage that the flow of the molten material into the charging chamber results in irregular undulatory movements on the surface of the molten material so that any measurements of the level surface are highly inaccurate.
  • Heros fountain for metering purposes wherein a change in the pressure of the atmosphere in the furnace chamber causes the molten metal to be discharge through a duct into a charging chamber or a pouring cylinder of the die casting machine.
  • This apparatus is not capable of exactly metering the required charge.
  • this object is attained by means of a device which determines the velocity of flow of the molten metal and supplies an output signal to an integrating device which discontinues the discharge flow when the accumulated signal has reached a predetermined amount corresponding to the amount of molten metal to be discharged.
  • the velocity of flow of the metal can be measured directly by electromagnetic action in which a voltage, induced by a magnetic field in the molten metal being discharged, is measured; or alternatively, in furnaces using a pressurized gaseous medium for assisting in the discharge of the molten metal, the velocity of flow can be indirectly measured by measuring the velocity of flow of the pressurized gas.
  • a switch is provided which actuates the measuring means when the discharge flow of metal begins.
  • the integrating mechanism consists suitably of a motor having a rotational speed that depends on one of current or voltage and a revolution counter which is connected to the motor and initiates the stoppage of the discharge flow of metal after a preset number of revolutions has been attained.
  • FIG. 1 is a somewhat schematic sectional view of a troughshaped two-chamber induction furnace disclosing a particularly suitable embodiment of the present invention in which means are provided for supplying a pressurized gaseous medium into the fumace for assisting in the discharge of the molten metal;
  • FIG. 2 is a diagram representing different curves in which the velocity of the metal being discharged is plotted against time
  • FIG. 3 is a somewhat schematic illustration of an electromagnetic sensing device for measuring the velocity of flow of molten metal through a discharge conduit from a vessel;
  • FIG. 4 is a view of an integrating mechanism for use in the arrangement disclosed in FIG. 1;
  • FIG. 5 is a view similar to FIG. 1, disclosing another embodiment of apparatus for measuring the discharge flow of molten metal from a vessel.
  • FIG. 1 a trough-shaped two-chamber induction furnace is shown and is formed of a furnace vessel 1, consisting of sheet steel with a refractory lining 2.
  • the furnace vessel 1 is divided into a charging chamber 3 and a discharge chamber 4 interconnected by heating ducts 5.
  • the power for the induction furnace is supplied by a furnace transformer 6 which heats the metal inductively within the heating ducts because the heating ducts and the adjacent parts of the furnace chamber form a secondary winding cooperating with the coil of the furnace transformer.
  • Branch conduits 10, 10 extend from a air conduit 10 and pass through the gas tight covers 8 and 9, respectively, and communicate with the discharge chamber 4 and the charging chamber 3.
  • a compressor 11 is positioned at one end of the conduit 10 and an inlet solenoid valve 12 is located between the compressor 11 and the branch conduit 10" while an outlet solenoid valve is located at the opposite end of the conduit 10 downstream from the branch conduit 10'.
  • the inlet valve 12 is opened and the outlet valve 13 is closed so that the gaseous medium pressurized by the compressor 11 is delivered into the charging chamber 3 and discharge chamber 4 for pressurizing the surface of the molten metal 7 and causing it to flow from the discharge chamber 4 through a discharge pipe 14 mounted in the upper end of the chamber.
  • the inlet valve 12 is closed and the outlet valve 13 is opened and the pressurization of the surface of the molten metal is relieved.
  • T is the time during which the furnace is pressurized (metering time)
  • v (t) is the discharge velocity as a function of time (FIG. 2).
  • FIG. 3 shows an arrangement for measuring the velocity of the molten metal flowing through the discharge conduit 14.
  • the discharge conduit has a discharge duct 19 which is defined by a pair of oppositely disposed segments 16 formed of insulating refractory material, such as asbestos cement, and a pair of oppositely disclosed electrodes 17 formed, for example, of graphite.
  • the discharge duct 19 is rectangular in cross-section and is formed on two opposite sides by the segments 16 and on the other two opposite sides by the electrodes 17.
  • a permanent magnet or electromagnet 18 surrounds the segments 16 and the electrodes 17 and produces a strong magnetic field about the discharge cross-section of the duct.
  • the voltage generated is applied through an amplifier 20 to an integrating mechanism 21.
  • the integrating mechanism may consist of an ampere-hour meter,which in response to a predetermined preset value, which is the analog of the amount to be metered, operates the control valves in the conduit 10 for discontinuing the discharge flow of the metal.
  • FIG. 4 a specific embodiment of the integrating mechanism is illustrated and comprises a motor 22, the rotational speed of which is determined by one of the current or voltage supplied to the motor. Coupled to the motor shaft is a screw-threaded spindle 23 and a slider 24 which is longitudinally movable along the spindle and bears in turn on a slideway 25.
  • the spindle 23 has performed a number of revolutions, the slider is displaced longitudinally and operates one of a pair of longitudinally spaced limit switches 26 depending on the direction in which the revolutions of the motor moves the slider 24.
  • the limit switch contacted then operates the solenoid valves 12 and 13 for regulating the discharge of the molten metal from the furnace vessel.
  • one of the limit switches is displaceable relative to the other. If the direction of rotation of the motor is reversed after each discharge cycle, the distance between the limit switches corresponds to the predetermined amount of metal to be discharged. Accordingly, a scale 27 associated with the displaceable limit switch can be calibrated directly to represent the amount of molten metal to be discharged and the selected amount can be set so that the limit switch defines the extent of the longitudinal movement of the slider for measuring the selected amount of molten metal to be discharged.
  • FIG. 5 the arrangement of the furnace vessel 1, with its discharge conduit 14 and the conduit system 10 for supplying pressurized gaseous medium into the furnace vessel, is the same as illustrated in FIG. 1 with the difference residing in the indirect measurement provided for the discharge velocity of the molten metal from the furnace vessel.
  • a velocity-sensing device 29 is positioned between the compressor 11 and the inlet valve 12.
  • the value of the velocity obtained in the device 29 is converted in a transducer 30 into an electrical value which passes into the amplifier 20 and is delivered therefrom into the integrating mechanism 21.
  • the volume of metal discharged from the furnace vessel depends on the pressure which is generated by the compressor and the volume of air or gaseous medium which is supplied into the vessel.
  • the amount required to build up the pressure in the furnace until the metal begins to flow from the outlet opening of the discharge conduit 14 is not included in the output signal to the integrating mechanism.
  • a switch 31 is positioned at the outlet from the discharge conduit to initiate the measurement of the velocity of the air or gaseous medium once discharge flow has been commenced.
  • This switch consists of a known non-contacting proximity switch which is operated as the molten metal starts to flow from the discharge conduit.
  • an exact metering of the molten metal discharged from a holding or melting furnace is possible without involving any measurement of the changing level within the vessel or of any of the other factors which tend to influence the amount of flow discharged from the vessel.
  • the arrangement in accordance with the present invention, may be used in combination with all melting and holding furnaces, particularly for trough-shaped two-chamber induction furnaces using a gaseous medium to assist in the discharge of the molten material.
  • a gaseous medium to assist in the discharge of the molten material.
  • a device for discharging a predetermined quantity of molten metal comprises a vessel for holding the molten metal to be discharged, a discharge conduit connected to said vessel for discharging molten metal from said vessel, sensing means arranged to generate an output signal representing the velocity of flow of the molten metal from said discharge conduit, an integrating mechanism arranged to receive and integrate the output signal from said sensing means, control means in operative communication with said integrating mechanism for interrupting the discharge of molten metal through said conduit in response to a signal from said integrating mechanism when the cumulative output signal directed to said integrating mechanism has attained a predetermined value, said integrating mechanism comprises a motor having a motor shaft arranged to rotate at a speed in relationship to the output signal representative of the velocity flow of the molten metal from said vessel, a variable revolution counter in communication with the motor shaft of said motor for counting the revolutions thereof, said counter in operative communication with said control means for discontinuing the discharge of molten metal when said counter has counted a predetermined number of revolutions, a thread

Abstract

For discharging predetermined quantities of molten metal a gas tight vessel having a discharge conduit is arranged to hold the molten metal. The vessel is connected to a source of a pressurized gaseous medium so that the gaseous medium assists in the discharge of the molten metal. Sensing means are used to generate an output signal, which is representative of the velocity of flow of the molten metal from the vessel, and the signal is passed to an integrating mechanism attains a predetermined value corresponding to the predetermined quantity of molten metal to be discharged, the discharge flow from the vessel is discontinued.

Description

United States Patent Kapun [451 July 11,1972
[54] ARRANGEMENT FOR DISCHARGING PREDETERMINED AMOUNTS OF MOLTEN METAL FROM A VESSEL [21] Appl. No.: 874,817
Holz ..266/38 3,363,461 1/1968 Minkoff ...73/ l 98 3,396,870 8/1968 Diamond et a1. 164/ 1 55 3,425,483 2/1969 Dearth 164/ 155 3,504,899 4/1970 Breuer et al. ..266/38 FORElGN PATENTS OR APPLICATIONS 1,216,560 5/1966 Germany ...73/194 EM 1,217,638 5/1966 Gennany ..73/I94EM Primary ExaminerGerald A. Dost Attorney-McGlew and Toren [5 7] ABSTRACT For discharging predetermined quantities of molten metal a gas tight vessel having a discharge conduit is arranged to hold the molten metal. The vessel is connected to a source of a pressurized gaseous medium so that the gaseous medium assists in the discharge of the molten metal. Sensing means are used to generate an output signal, which is representative of the velocity of flow of the molten metal from the vessel, and the signal is passed to an integrating mechanism attains a predetermined value corresponding to the predetermined quantity of molten metal to be discharged, the discharge flow from the vessel is discontinued.
1 Claim, 5 Drawing Figures P'ATENTEDJUL 11 I972 3, 675.911
sum 2 or 2 'FIG.4
INVENTOR BY WHLTEQ KIWW lg-UXM ATTORNEY ARRANGEMENT FOR DISCHARGING PREDETERMINED AMOUNTS OF MOLTEN METAL FROM A VESSEL SUMMARY OF THE INVENTION This invention is directed to the discharge of predetermined amounts of molten metal from a vessel, such as a melting furnace, and, more particularly, it is directed to an arrangement for use with closed vessels in which the discharge of molten metal is assisted by a pressurized gaseous means, such as compressed air.
In die casting machines or ingot-casting installations, an exact amount of molten metal must be supplied for each casting operation. In the past the desired amount of metal has been measured by a ladle which receives the metal from a holding furnace. Such an operation is not only very time-consuming, but the metallurgical conditions requiredto produce uniform castings are affected very adversely because the molten metal cools rapidly as it is ladled from the holding furnace into the mold, for example, an ingot mold, and also because slag and other impurities must be skimmed from the surface of the molten metal bath.
To eliminate these disadvantages it has been attempted to provide an automatic discharge of the metal from the melting furnace.- However, the apparatus which has been proposed for such automatic discharge has not met with the desired success.
Means, such as pumps and the like, for handling non-aggressive metals cannot be used for handling the molten metals because of the aggressive character of such metals, particularly aluminum and aluminum alloys and also because of their high melting temperatures since the melting temperatures of the materials used in such means are low.
An apparatus has been disclosed which is especially useful where a pressurized gaseous medium is used in assisting in the discharge of the molten metal. In such apparatus the molten metal is contained in an enclosed gas tight furnace vessel in which the surface of the molten metal is subjected to a gas pressure and the metal is discharged through a gas tight pipe located near the bottom of the vessel. In this apparatus the metered amount of molten metal will depend on the gas pressure and the duration of the withdrawal of the metal, provided that the level of the molten metal in the furnace vessel remains constant. However, each time the molten metal is discharged from the vessel its level drops and the discharge pressure and/or the duration of the discharge must be varied if equal amounts are to be drawn off from the vessel.
Accordingly, it is necessary to utilize means which sense the level of the molten metal in the furnace. Since the furnace atmosphere is hot and the metal is aggressive, the sensing means used are often damaged and result in inaccurate readings. Other devices are known for this purpose, which comprise an overflow or valves and similar means for eliminating the influence of a varying level in the molten metal.
From the metallurgical viewpoint, it is particularly desirable to use as a furnace vessel a trough-shaped two-chamber induction furnace. In such furnaces the amount of discharge will depend on whether the furnace is energized or deenergized since the electrodynamic pressure influences the metered amount discharged. A satisfactory solution to this problem has not as yet been provided.
In die casting machines, special care is to be taken to avoid any loss of time when the molten metal is being discharged from the melting furnace. Since with the means presently available a loss of time cannot be prevented, the pouring operation will be adversely effected if the molten metal cools too quickly as it is discharged. Further, the molten metal may oxidize in contact with the air. The molten metal may be contaminated when it is transferred to a die casting machine through an open tundish during the pouring operation. To obtain a satisfactory casting, it is essential that contamination of the molten metal be prevented and that the metal be held at the required pouring temperature.
The electrodynamic pressure in the melting channel of the furnace may cause the refractory furnace lining to spall off and mix with the molten metal. Such a contamination may occur especially in installations in which the molten metal is discharged from the furnace by means of induction pumps. In other known apparatus relatively delicate or insubstantial components, such as valves, nozzles and floats, are permanently in contact with the molten metal or the furnace atmosphere. Still other apparatus are known in which the stroke of a plunger of the die casting machine is measured as the extent of the discharge material. Such an arrangement has the disadvantage that the flow of the molten material into the charging chamber results in irregular undulatory movements on the surface of the molten material so that any measurements of the level surface are highly inaccurate. It has also been attempted to use the principle of Heros fountain for metering purposes wherein a change in the pressure of the atmosphere in the furnace chamber causes the molten metal to be discharge through a duct into a charging chamber or a pouring cylinder of the die casting machine. This apparatus is not capable of exactly metering the required charge.
Therefore, it is an object of the present invention to measure a predetermined amount of molten metal independently of the level of the metal in the furnace vessel and of any other influences which tend to affect the measured amount. In accordance with the present invention, this object is attained by means of a device which determines the velocity of flow of the molten metal and supplies an output signal to an integrating device which discontinues the discharge flow when the accumulated signal has reached a predetermined amount corresponding to the amount of molten metal to be discharged. The velocity of flow of the metal can be measured directly by electromagnetic action in which a voltage, induced by a magnetic field in the molten metal being discharged, is measured; or alternatively, in furnaces using a pressurized gaseous medium for assisting in the discharge of the molten metal, the velocity of flow can be indirectly measured by measuring the velocity of flow of the pressurized gas.
Where the velocity of the pressurized gas is measured, that portion of the velocity of the gas required to increase the pressure in the furnace to the point at which discharge commences must not be included in the measurement. Therefore, in accordance with the invention, a switch is provided which actuates the measuring means when the discharge flow of metal begins.
The integrating mechanism consists suitably of a motor having a rotational speed that depends on one of current or voltage and a revolution counter which is connected to the motor and initiates the stoppage of the discharge flow of metal after a preset number of revolutions has been attained.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this specification. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference should be had to the accompanying drawings and descriptive matter in which there are illustrated preferred embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:
FIG. 1 is a somewhat schematic sectional view of a troughshaped two-chamber induction furnace disclosing a particularly suitable embodiment of the present invention in which means are provided for supplying a pressurized gaseous medium into the fumace for assisting in the discharge of the molten metal;
FIG. 2 is a diagram representing different curves in which the velocity of the metal being discharged is plotted against time;
FIG. 3 is a somewhat schematic illustration of an electromagnetic sensing device for measuring the velocity of flow of molten metal through a discharge conduit from a vessel;
FIG. 4 is a view of an integrating mechanism for use in the arrangement disclosed in FIG. 1; and
FIG. 5 is a view similar to FIG. 1, disclosing another embodiment of apparatus for measuring the discharge flow of molten metal from a vessel.
DETAILED DESCRIPTION OF THE INVENTION In FIG. 1 a trough-shaped two-chamber induction furnace is shown and is formed of a furnace vessel 1, consisting of sheet steel with a refractory lining 2. The furnace vessel 1 is divided into a charging chamber 3 and a discharge chamber 4 interconnected by heating ducts 5. The power for the induction furnace is supplied by a furnace transformer 6 which heats the metal inductively within the heating ducts because the heating ducts and the adjacent parts of the furnace chamber form a secondary winding cooperating with the coil of the furnace transformer.
For discharging a molten metal 7 from the furnace vessel 1, assisted by a pressurized gaseous medium, the discharge chamber 4 and the charging chamber 3 are sealed by means of gas tight covers 8 and 9 respectively. Branch conduits 10, 10 extend from a air conduit 10 and pass through the gas tight covers 8 and 9, respectively, and communicate with the discharge chamber 4 and the charging chamber 3. A compressor 11 is positioned at one end of the conduit 10 and an inlet solenoid valve 12 is located between the compressor 11 and the branch conduit 10" while an outlet solenoid valve is located at the opposite end of the conduit 10 downstream from the branch conduit 10'. To discharge molten metal from the furnace vessel 1, the inlet valve 12 is opened and the outlet valve 13 is closed so that the gaseous medium pressurized by the compressor 11 is delivered into the charging chamber 3 and discharge chamber 4 for pressurizing the surface of the molten metal 7 and causing it to flow from the discharge chamber 4 through a discharge pipe 14 mounted in the upper end of the chamber. As soon as the desired amount of metal has been evacuated through the discharge pipe 14, the inlet valve 12 is closed and the outlet valve 13 is opened and the pressurization of the surface of the molten metal is relieved.
T is the time during which the furnace is pressurized (metering time),
F is the outlet cross-section (constant), and
k is the pinch effect factor, the outflowing volume to be metered is where v (t) is the discharge velocity as a function of time (FIG. 2).
FIG. 3 shows an arrangement for measuring the velocity of the molten metal flowing through the discharge conduit 14. As shown in FIG. 1, the discharge conduit has a discharge duct 19 which is defined by a pair of oppositely disposed segments 16 formed of insulating refractory material, such as asbestos cement, and a pair of oppositely disclosed electrodes 17 formed, for example, of graphite. In other words, as shown in FIG. 3, the discharge duct 19 is rectangular in cross-section and is formed on two opposite sides by the segments 16 and on the other two opposite sides by the electrodes 17. A permanent magnet or electromagnet 18 surrounds the segments 16 and the electrodes 17 and produces a strong magnetic field about the discharge cross-section of the duct. When molten metal flows through the discharge duct 19, a voltage is generated between the two electrodes 17 and the voltage is proportional to the velocity of flow of the molten metal.
The voltage generated is applied through an amplifier 20 to an integrating mechanism 21. The integrating mechanism may consist of an ampere-hour meter,which in response to a predetermined preset value, which is the analog of the amount to be metered, operates the control valves in the conduit 10 for discontinuing the discharge flow of the metal.
In FIG. 4 a specific embodiment of the integrating mechanism is illustrated and comprises a motor 22, the rotational speed of which is determined by one of the current or voltage supplied to the motor. Coupled to the motor shaft is a screw-threaded spindle 23 and a slider 24 which is longitudinally movable along the spindle and bears in turn on a slideway 25. When the spindle 23 has performed a number of revolutions, the slider is displaced longitudinally and operates one of a pair of longitudinally spaced limit switches 26 depending on the direction in which the revolutions of the motor moves the slider 24. The limit switch contacted then operates the solenoid valves 12 and 13 for regulating the discharge of the molten metal from the furnace vessel.
Preferably, one of the limit switches is displaceable relative to the other. If the direction of rotation of the motor is reversed after each discharge cycle, the distance between the limit switches corresponds to the predetermined amount of metal to be discharged. Accordingly, a scale 27 associated with the displaceable limit switch can be calibrated directly to represent the amount of molten metal to be discharged and the selected amount can be set so that the limit switch defines the extent of the longitudinal movement of the slider for measuring the selected amount of molten metal to be discharged.
In FIG. 5 the arrangement of the furnace vessel 1, with its discharge conduit 14 and the conduit system 10 for supplying pressurized gaseous medium into the furnace vessel, is the same as illustrated in FIG. 1 with the difference residing in the indirect measurement provided for the discharge velocity of the molten metal from the furnace vessel.
In the conduit 10 for supplying a gaseous medium into the furnace vessel a velocity-sensing device 29 is positioned between the compressor 11 and the inlet valve 12. The value of the velocity obtained in the device 29 is converted in a transducer 30 into an electrical value which passes into the amplifier 20 and is delivered therefrom into the integrating mechanism 21.
The volume of metal discharged from the furnace vessel depends on the pressure which is generated by the compressor and the volume of air or gaseous medium which is supplied into the vessel.
However, in measuring the velocity of the air or gaseous medium, the amount required to build up the pressure in the furnace until the metal begins to flow from the outlet opening of the discharge conduit 14 is not included in the output signal to the integrating mechanism.
To compensate for the pressure build-up required to initiate discharge flow, a switch 31 is positioned at the outlet from the discharge conduit to initiate the measurement of the velocity of the air or gaseous medium once discharge flow has been commenced. This switch consists of a known non-contacting proximity switch which is operated as the molten metal starts to flow from the discharge conduit.
In accordance with the present invention an exact metering of the molten metal discharged from a holding or melting furnace is possible without involving any measurement of the changing level within the vessel or of any of the other factors which tend to influence the amount of flow discharged from the vessel. There are no delicate or insubstantial parts which are permanently in contact with the aggressive molten material or with the hot furnace atmosphere. Besides, there is no need for means which prevent a formation of additional oxides or which prevent an ingress of oxides or other impurities into the pouring device.
Therefore, the arrangement, in accordance with the present invention, may be used in combination with all melting and holding furnaces, particularly for trough-shaped two-chamber induction furnaces using a gaseous medium to assist in the discharge of the molten material. In the past it has not been possible to use automatically metered-pressure-assisted discharge with such furnaces.
What is claimed is:
1. A device for discharging a predetermined quantity of molten metal comprises a vessel for holding the molten metal to be discharged, a discharge conduit connected to said vessel for discharging molten metal from said vessel, sensing means arranged to generate an output signal representing the velocity of flow of the molten metal from said discharge conduit, an integrating mechanism arranged to receive and integrate the output signal from said sensing means, control means in operative communication with said integrating mechanism for interrupting the discharge of molten metal through said conduit in response to a signal from said integrating mechanism when the cumulative output signal directed to said integrating mechanism has attained a predetermined value, said integrating mechanism comprises a motor having a motor shaft arranged to rotate at a speed in relationship to the output signal representative of the velocity flow of the molten metal from said vessel, a variable revolution counter in communication with the motor shaft of said motor for counting the revolutions thereof, said counter in operative communication with said control means for discontinuing the discharge of molten metal when said counter has counted a predetermined number of revolutions, a threaded spindle secured to and extending axially from the motor shaft of said motor, a slide member mounted on said spindle and movable longitudinally therealong as said spindle rotates, a pair of limit switches disposed in spaced relationship in the axial direction of said spindle and one of said limit switches being arranged to be contacted by said slide member at the end of a predetermined number of revolutions by said spindle whereby said control means are operable for interrupting the discharge of molten metal through said discharge conduit.
* l i t 1 I UNITED: sqUwriazs 'PATENT OFFICE CERTIFICATE OF CORRECTION Pa'teht 3 75,9 v w t July 11, 197
Inventor WALTER;
QIt i s certified Lthait errora-p pe'ai's the above-identified patent and that said Letters; Patent. are hereby corrected as shown below:
In the heading of the patent, the inventdr's address should read;
- Wurzb'achga sse, Wien, Austria Signed and sealed this 2nd day of January 1973.
Attesting Officer Commissioner of Patents FORM PO-1050 (10-69) USCOMM-DC 6O375-Pfl a [1.5. GOVERNMENY PRINTING OFFICE: 1969 O-366-31

Claims (1)

1. A device for discharging a predetermined quantity of molten metal comprises a vessel for holding the molten metal to be discharged, a discharge conduit connected to said vessel for discharging molten metal from said vessel, sensing means arranged to generate an output signal representing the velocity of flow of the molten metal from said discharge conduit, an integrating mechanism arranged to receive and integrate the output signal from said sensing means, control means in operative communication with said integrating mechanism for interrupting the discharge of molten metal through said conduit in response to a signal from said integrating mechanism when the cumulative output signal directed to said integrating mechanism has attained a predetermined value, said integrating mechanism comprises a motor having a motor shaft arranged to rotate at a speed in relationship to the output signal representative of the velocity flow of the molten metal from said vessel, a variable revolution counter in communication with the motor shaft of said motor for counting the revolutions thereof, said counter in operative communication with said control means for discontinuing the discharge of molten metal when said counter has counted a predetermined number of revolutions, a threaded spindle secured to and extending axially from the motor shaft of said motor, a slide member mounted on said spindle and movable longitudinally therealong as said spindle rotates, a pair of limit switches disposed in spaced relationship in the axial direction of said spindle and one of said limit switches being arranged to be contacted by said slide member at the end of a predetermined number of revolutions by said spindle whereby said control means are operable for interrupting the discharge of molten metal through said discharge conduit.
US874817A 1968-11-11 1969-11-07 Arrangement for discharging predetermined amounts of molten metal from a vessel Expired - Lifetime US3675911A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT1092868 1968-11-11

Publications (1)

Publication Number Publication Date
US3675911A true US3675911A (en) 1972-07-11

Family

ID=3625638

Family Applications (1)

Application Number Title Priority Date Filing Date
US874817A Expired - Lifetime US3675911A (en) 1968-11-11 1969-11-07 Arrangement for discharging predetermined amounts of molten metal from a vessel

Country Status (2)

Country Link
US (1) US3675911A (en)
DE (1) DE1956482B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844453A (en) * 1973-01-05 1974-10-29 Modern Equipment Co Apparatus and method for melting and pouring metal
US4220319A (en) * 1978-05-31 1980-09-02 Westofen Gmbh Ovens
US4340160A (en) * 1979-02-27 1982-07-20 Deutsche Gesellschaft Fur Wiederaufarbeitung Overflow system having pneumatic pressure control
US4942986A (en) * 1988-07-13 1990-07-24 Lewis Thomas W Pressurized tundish for controlling a continuous flow of molten metal
US5146974A (en) * 1990-10-02 1992-09-15 Globe-Union Inc. Lead pouring system
US5477907A (en) * 1993-01-07 1995-12-26 Gasmac Inc. Process and apparatus for delivering a metered shot
US5656235A (en) * 1995-01-27 1997-08-12 Foseco International Limited Through airlock for refining furnance
US5662859A (en) * 1995-04-26 1997-09-02 Toshiba Kikai Kabushiki Kaisha Constant molten metal surface level retaining furnace integrally provided with melting unit
US20150273576A1 (en) * 2014-03-27 2015-10-01 Citic Dicastal Co., Ltd Casting equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530521A (en) * 1947-08-25 1950-11-21 Linde Air Prod Co System for dispensing measured quantities of liquefied gas
US2760769A (en) * 1952-08-22 1956-08-28 Nordahl I Onstad Method and apparatus for automatically controlling certain operations in a production plant by sensing by electro-magnetic induction the density, velocity and rate of flow of flowing magnetic material
US3058180A (en) * 1961-10-11 1962-10-16 Modern Equipment Co Apparatus for pouring molten metal
US3191247A (en) * 1959-09-08 1965-06-29 Lindberg Engineering Co Furnace ladling apparatus
DE1216560B (en) * 1963-03-02 1966-05-12 Bbc Brown Boveri & Cie Device for dosing liquid metals flowing through a pipe
DE1217638B (en) * 1961-04-28 1966-05-26 J C Eckardt A G Counting device for an electromagnetic flow meter
US3363461A (en) * 1965-05-26 1968-01-16 Peerless Paint & Varnish Corp Method for measuring flow
US3396870A (en) * 1967-01-03 1968-08-13 Gen Motors Corp Mechanical metal pouring control system and components thereof
US3425483A (en) * 1966-05-13 1969-02-04 Amsted Ind Inc Means for controlling casting
US3504899A (en) * 1966-11-21 1970-04-07 Bbc Brown Boveri & Cie Melting or holding furnace structure utilizing pressurized gas for discharge of molten material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530521A (en) * 1947-08-25 1950-11-21 Linde Air Prod Co System for dispensing measured quantities of liquefied gas
US2760769A (en) * 1952-08-22 1956-08-28 Nordahl I Onstad Method and apparatus for automatically controlling certain operations in a production plant by sensing by electro-magnetic induction the density, velocity and rate of flow of flowing magnetic material
US3191247A (en) * 1959-09-08 1965-06-29 Lindberg Engineering Co Furnace ladling apparatus
DE1217638B (en) * 1961-04-28 1966-05-26 J C Eckardt A G Counting device for an electromagnetic flow meter
US3058180A (en) * 1961-10-11 1962-10-16 Modern Equipment Co Apparatus for pouring molten metal
DE1216560B (en) * 1963-03-02 1966-05-12 Bbc Brown Boveri & Cie Device for dosing liquid metals flowing through a pipe
US3363461A (en) * 1965-05-26 1968-01-16 Peerless Paint & Varnish Corp Method for measuring flow
US3425483A (en) * 1966-05-13 1969-02-04 Amsted Ind Inc Means for controlling casting
US3504899A (en) * 1966-11-21 1970-04-07 Bbc Brown Boveri & Cie Melting or holding furnace structure utilizing pressurized gas for discharge of molten material
US3396870A (en) * 1967-01-03 1968-08-13 Gen Motors Corp Mechanical metal pouring control system and components thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844453A (en) * 1973-01-05 1974-10-29 Modern Equipment Co Apparatus and method for melting and pouring metal
US4220319A (en) * 1978-05-31 1980-09-02 Westofen Gmbh Ovens
US4340160A (en) * 1979-02-27 1982-07-20 Deutsche Gesellschaft Fur Wiederaufarbeitung Overflow system having pneumatic pressure control
US4942986A (en) * 1988-07-13 1990-07-24 Lewis Thomas W Pressurized tundish for controlling a continuous flow of molten metal
US5146974A (en) * 1990-10-02 1992-09-15 Globe-Union Inc. Lead pouring system
US5477907A (en) * 1993-01-07 1995-12-26 Gasmac Inc. Process and apparatus for delivering a metered shot
US5656235A (en) * 1995-01-27 1997-08-12 Foseco International Limited Through airlock for refining furnance
US5662859A (en) * 1995-04-26 1997-09-02 Toshiba Kikai Kabushiki Kaisha Constant molten metal surface level retaining furnace integrally provided with melting unit
US20150273576A1 (en) * 2014-03-27 2015-10-01 Citic Dicastal Co., Ltd Casting equipment

Also Published As

Publication number Publication date
DE1956482B1 (en) 1971-09-30

Similar Documents

Publication Publication Date Title
US3675911A (en) Arrangement for discharging predetermined amounts of molten metal from a vessel
US5388633A (en) Method and apparatus for charging metal to a die cast
US5407000A (en) Method and apparatus for handling molten metals
KR101530106B1 (en) Semi-liquid metal processing and sensing device and method of using same
US4469162A (en) Continuous casting temperature control apparatus
US2674640A (en) Apparatus for dispensing molten metal
CA1151422A (en) Furnace for pouring metered quantities of metal melt
US3941281A (en) Control device for regulating teeming rate
Hiraki et al. Influence of mold heat fluxes on longitudinal surface cracks during high speed continuous casting of steel slab
US4370719A (en) Control of centrifugal pipe casting operation
US3663730A (en) Molten metal dispensing equipment
US3457985A (en) Continuous casting apparatus with means automatically controlling the holding vessel discharge
JPS59178166A (en) Molten metal charging device
Dubodelov et al. Development of principles to control the processes of continuous casting of alloys using magnetodynamic equipment
FI60821C (en) FOERFARANDE VID VILKET MEDELST EN GJUTMASKIN EN FOERUT BESTAEMD MAENGD SMAELT METALL GJUTES I EFTER VARANDRA FOELJANDE FORMAR OCH ANORDNING FOER GENOMFOERANDE AV DETSAMMA
JPS5653852A (en) Mold heat extraction controlling method of continous casting
GB2057103A (en) Molten metal dispenser
JP2004512958A (en) Method and apparatus for controlling casting temperature from meniscus to furnace tap in continuous casting equipment
CA2166027C (en) Yield metal pouring system
JP2648425B2 (en) How to control the amount of slag flowing out of converter
US1351767A (en) Method of and apparatus for charging rotating pipe-molds
JPH0225562Y2 (en)
EP0459965A2 (en) Method of controlling the flow of outstreaming liquid metal from an inductively heated ladle
GB693267A (en) Improvements in and relating to a process and means for the continuous casting of metals
RU2044601C1 (en) Casting ladle