US3672536A - Container and closure therefor - Google Patents

Container and closure therefor Download PDF

Info

Publication number
US3672536A
US3672536A US3672536DA US3672536A US 3672536 A US3672536 A US 3672536A US 3672536D A US3672536D A US 3672536DA US 3672536 A US3672536 A US 3672536A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
container
closure
rim
wall section
stacking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Alfred W Kinney
James W Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ConocoPhillips Co
Original Assignee
ConocoPhillips Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D43/00Lids or covers for rigid or semi-rigid containers
    • B65D43/02Removable lids or covers
    • B65D43/0202Removable lids or covers without integral tamper element
    • B65D43/0204Removable lids or covers without integral tamper element secured by snapping over beads or projections
    • B65D43/021Removable lids or covers without integral tamper element secured by snapping over beads or projections only on the inside, or a part turned to the inside, of the mouth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D21/00Nestable, stackable or joinable containers; Containers of variable capacity
    • B65D21/02Containers specially shaped, or provided with fittings or attachments, to facilitate nesting, stacking, or joining together
    • B65D21/0233Nestable containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/16Closures not otherwise provided for with means for venting air or gas
    • B65D51/1633Closures not otherwise provided for with means for venting air or gas whereby venting occurs by automatic opening of the closure, container or other element
    • B65D51/1661Closures not otherwise provided for with means for venting air or gas whereby venting occurs by automatic opening of the closure, container or other element by means of a passage for the escape of gas between the closure and the lip of the container mouth
    • B65D51/1666Closures not otherwise provided for with means for venting air or gas whereby venting occurs by automatic opening of the closure, container or other element by means of a passage for the escape of gas between the closure and the lip of the container mouth the closure being for a box-like container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00018Overall construction of the lid
    • B65D2543/00064Shape of the outer periphery
    • B65D2543/00074Shape of the outer periphery curved
    • B65D2543/00092Shape of the outer periphery curved circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00018Overall construction of the lid
    • B65D2543/00259Materials used
    • B65D2543/00296Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00481Contact between the container and the lid on the inside or the outside of the container
    • B65D2543/0049Contact between the container and the lid on the inside or the outside of the container on the inside, or a part turned to the inside of the mouth of the container
    • B65D2543/00509Cup
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00481Contact between the container and the lid on the inside or the outside of the container
    • B65D2543/00537Contact between the container and the lid on the inside or the outside of the container on the outside, or a part turned to the outside of the mouth of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00481Contact between the container and the lid on the inside or the outside of the container
    • B65D2543/00555Contact between the container and the lid on the inside or the outside of the container on both the inside and the outside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00601Snapping means on the container
    • B65D2543/00611Profiles
    • B65D2543/0062Groove or hollow bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00601Snapping means on the container
    • B65D2543/00675Periphery concerned
    • B65D2543/00685Totality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00712Snapping means on the lid
    • B65D2543/00722Profiles
    • B65D2543/00731Groove or hollow bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00712Snapping means on the lid
    • B65D2543/00787Periphery concerned
    • B65D2543/00814Dots

Abstract

A container with a closure retention groove is provided with a rigid stacking ring structure of reduced height, comprising a vertical wall section extending upwardly from the outer periphery of a horizontal lower stacking shoulder to the inner periphery of a horizontal annular rim. A compressional camming wall section extends inwardly and downwardly from the inner periphery of the lower stacking shoulder to the upper extent of the closure retention groove. A closure for the container can be formed so that the portion of the closure between the closure rim and the retention bead grips the portion of the container between the retention groove and the container rim, to secure the closure to the container.

Description

United States Patent Kinney et a1.

[ 51 June 27, 1972 Alfred W. Kinney, Kansas City, Mo.; James W. Williams, Bartlesville, Okla.

Assignee: Phillips Petroleum Company Filed: Feb. 5, I970 AppI.N0.: 8,98]

[72] Inventors:

U.S. Cl ..220/60 R, 220/44 R, 220/97 C Int. Cl. ..B6Sd 43/10, B65d 2 1/02, 865d 51/16 Field of Search ..220/44 R, 60 R, 97 C, 97 F',

(56] References Cited UNITED STATES PATENTS FOREIGN PATENTS OR APPLICATIONS 1,160,783 2/1964 Germany ..220/60 R Primary Examiner-George E. Lowrance Artorney-Young and Quigg 5 7] ABSTRACT A container with a closure retention groove is provided with a rigid stacking ring structure of reduced height, comprising a vertical wall section extending upwardly from the outer periphery of a horizontal lower stacking shoulder to the inner periphery of a horizontal annular rimv A compressional camming wall section extends inwardly and downwardly from the inner periphery of the lower stacking shoulder to the upper extent of the closure retention groove. A closure for the container can be formed so that the portion of the closure between the closure rim and the retention bead grips the portion of the container between the retention groove and the container rim, to secure the closure to the container.

8 Claims, 6 Drawing Figures P'A'TENTEDJum m2 3.672.536

sum 1 or i FIG.

INVENTORS.

A. W. KINNEY BY J. W. WILLIAMS PATENTEDJum I972 sum 2 or a FIG. 4

FIG. 3

iNVENTORS. A. w. KINNEY J. w. WILLIAMS ATTORNEYS PATENTEDJUMY 1222 3.672 536 sum 3 or 3 l 17L? M ATTORNEYS mvsmoas.

A. W. KINNEY J. W. IIIIII MS CONTAINER AND CLOSURE THEREFOR This invention relates to improvements in packaging containers and closures therefor.

Variations in the outer diameter of the retention bead on a closure and variations in a maximum inner diameter of the closure retention groove in the container have caused numerous problems with such packages. If the retention bead is too large for the retention groove, the closure can be distorted with unsightly buckling, and the closure can be difficult to remove from the container. If the retention bead is too small, the closure fits loosely in the container and can be inadvertently dislodged from the container, exposing the contents of the package. With some products, it is desirable that the package be provided with a reclosable venting means. Numerous closures have been designed utilizing venting grooves in the closure retention bead which open into the packaging space of the container only when a pressure buildup causes a distortion of the closure. If the closure retention bead fits too tightly in the retention groove of the container, the venting action may be impaired or even prevented. If the closure fits loosely in the container, the venting grooves may be open continuously, eliminating any sanitary seal.

While the problem of dimensional accuracy is acute with paper containers and closures, it is also serious with thermoplastic containers and closures, particularly of the thermofonned type. The retention groove in thermoformed containers and the retention bead of thermoforrned closures are customarily formed in an undercut in a female mold wall, which causes localized variations in the reduction in thickness of the thermoplastic sheet in these particular areas during the thermoforming operation. The location of these areas a significant distance below the rim of the mold also results in the sheet thickness being reduced to a substantially greater extent than in the rim portions of the container or closure.

In addition many of the containers have been designed to provide resiliency in the upper wall portion thereof for stacking purposes. However, a significant degree of compressibility of the stacking ring section of the containers can promote jamming of the containers, depending upon the type of thermoplastic material, the wall thickness, the size of the container and the overall container design, the configuration of the closure, and the handling procedures to which the package is to be subjected. The seal between the container and closure can be improved or adversely afiected by such resiliency in the portions of the container and closure involved in the closure retention function.

While the stacking structure of the container can be separated from the closure retention structure of the container by placing the stacking structure below the closure retention portion of the container, this increases the height of the configurated portion of the sidewall of the container, which can adversely affect the esthetic values of the container design as well as reducing the area of the sidewall available for printing.

In accordance with the present invention it has been discovered that the stacking ring section and the closure retention section of the container can be combined while providing different degrees of resilience for the stacking function and the closure retention function.

Accordingly, it is an object of the invention to provide a new and improved container. It is another object of the invention to provide an improved stacking structure for a container. Another object of the invention is to provide an improved package comprising a container and a closure therefor wherein the closure is formed as a C-clamp to grip the container, and the thus gripped portion of the container is contoured for increased resilience. Another object of the invention is to provide an improved reclosable venting structure for a combined container and closure. A further object of the invention is to provide a more effective sanitary seal for a combined container and closure. Yet another object of the invention is to reduce the effects of dimensional variations on the fit of a closure and container.

Other objects, aspects and advantages of the invention will be apparent from a study of the specification, the drawings, and the appended claims to the invention.

1n the drawings FIG. I is a side elevational view of a container and closure constructed in accordance with the present invention;

FIG. 2 is a top plan view of the container and closure of FIG. 1;

FIG. 3 is a fragmentary cross-sectional view taken along line 33 in FIG. 2 when the package is in a static or non-venting condition;

FIG. 4 is a fragmentary cross-sectional view taken along line 4-4 in FIG. 2;

FIG. 5 is a fragmentary cross-sectional view taken along line 3-3 in FIG. 2 when the package is in a venting condition;

FIG. 6 is a fragmentary cross-sectional view of a stack of the containers of FIG. 1.

Referring now to the drawings in detail, and to FIGS. I, 3, 4, and 6 in particular, the package I0 comprises a container or cup 11 and a closure I2. The container I1 is a one piece integral structure, and can be fabricated by thermoforming a sheet of thermoplastic material. Container 11 comprises a bottom wall 13, an upstanding sidewall 14, a closure retention groove wall section IS, a compressional camming wall section 16, a stacking shoulder 17, a stacking spacing ring wall section 18, and a rim I9. The sidewall 14 is a circumferentially continuous frustoconically contoured wall section which extends generally upwardly and outwardly from the outer periphery of bottom wall I3. Closure retention groove wall section I5 is contoured to provide a circumferentially continuous, outwardly directed, inwardly opening, annular groove, extending generally upwardly from the periphery of the upper extent of sidewall I4. Compressional camming wall section 16 is a circumferentially continuous frustoconically contoured wall section extending upwardly and outwardly from the periphery of the upper extent of closure retention groove wall section I5. Stacking shoulder 17 is a circumferentially continuous annular ring extending substantially horizontally outwardly from the periphery of the upper extent of compressional camming wall section I6. Stacking or spacing ring 18 extends at least substantially vertically upwardly from the outer extent of stacking shoulder 17 and is a circumferentially continuous substantially cylindrical wall section. Rim 19 comprises a flat annular ring portion 20 which extends outwardly substantially horizontally from the upper extent of spacer wall section 18, the ring portion 20 being joined to the spacer section 18 at a substantially angle. A second portion II of rim I9 extends outwardly and downwardly from the outer periphery of the annular ring portion 20. The rim [9 can be in the form of an inverted U or in the form of a rolled rim, as illustrated. In either case the vertical height of the rim I9 is less than the vertical height of spacer wall section 18. The outer diameter of the closure retention groove wall section 15 is less than the inner diameter of the upper extent of the stacking ring section 18 to permit the insertion of the closure retention stacking groove wall section 15 of an upper container within the area bounded by the spacer ring section 18 of the next lower container in the operation of providing a nested stack of identical containers. The outer diameter of stacking shoulder ring 17 is greater than the inner diameter of rim I9, preferably at least by twice die thickness of spacer wall section I8 at its upper extent. As illustrated in FIG. 6, this configuration permits the nesting of identical containers in a vertical stack with at least the outer porn'on of the annular stacking shoulder 17 of an upper container resting upon the inner portion of annular ring section 20 of rim 19 of the next lower container in the stack. The alignment of spacer wall sections 18 in a straight vertical line, with each shoulder 17 resting on the ring portion 20 of the next lower container in the nested stack provides the maximum stacking rigidity for a given wall thickness and a given thermoplastic material.

Referring now to FIG. 2, 3, 4, and 5, closure 12 is a one piece, thermoformed structure having substantially horizontal cross-sections and comprises a circular closure disc or diaphragm 22, a retention bead 23, upwardly and outwardly sloping wall section 24, rim 25, and depending flange or skirt 26. Disc 22 is illustrated as being planar, but can be bowed upwardly or dished downwardly and/or provided with an annular expansion groove, if desired. The retention bead 23 is an inwardly opening, outwardly directed, concavely shaped groove section extending generally upwardly between the periphery of disc 22 and the lower extent of wall section 24. Retention bead 23 is interrupted at circumferentially spaced locations by a plurality of inwardly directed, outwardly opening notches or venting grooves 27. Each notch 27 will generally be disposed with the elongated axis thereof in a substantially vertical plane. The innermost wall portion of each notch 27 extends downwardly and inwardly from wall section 24 to a point on disc 22 which has a significantly smaller diameter than the inner diameter of the upper extent of sidewall 14. Wall 24 of closure 12 is spaced inwardly from the wall formed by wall section 16, stacking shoulder 17, and wall section 18 of container 11 to form a continuous annular space 28. The upper portion of each notch 27 opens into the annular space 28. This provides continuous fluid access between the annular space 28 and the packaging space 29 within wall 14 of container 11 below disc 22.

Stacking lugs 31 are provided at circumferentially spaced positions in side wall 24. The stacking lugs 31 are inwardly directed, outwardly opening embossments. Each lug 31 has a substantially vertical or upwardly and slightly inwardly inclined back wall 32, a generally horizontal shoulder 33, and substantially vertical sidewalls 34. Shoulder 33 extends outwardly in a generally horizontal direction from the upper extent of back or inner wall 32 to wall 24. Shoulder 33 can be curved outwardly and upwardly in conformance with the contour of the lower portion of bead 23. The outer diameter of shoulder 33 is at least equal to the outer diameter of the corresponding portion of bead 23 so that the bead 23 of one closure rests upon the shoulder 33 of the next lower closure in a nested stack of superimposed identical closures. The circumferential discontinuity of stacking shoulders 33 readily permits air to flow out of or into the space between superimposed clo sures during stacking or denesting operations.

Referring now to FIG. 3, upon insertion of closure 12 into container 11, bend 23 is initially centered on and cammed inwardly by compressional camming wall section 16, and then snaps outwardly into closure retention groove 15. The notches 27 permit continuous outflow of air from the interior of the package during the insertion of closure 12 into container 11, thereby preventing a buildup of excessive pressure in the package during the capping operation.

The upper surface of bead 23 contacts the inner surface of the upper portion of retention groove at point 35. The underside of rim 25 contacts the top of rim at point 36. This results from the formation of closure 12 in such a manner that the distance between points 35 and 36 in the unstressed closure is less than the distance between points 35 and 36 on the uncapped container. Thus, the upper portion of bead 23, wall 24 and rim act as a C-clamp to grip the mating surface of container 11 to thereby removably secure the closure 12 to the container 11. The contact of closure rim 25 and the container rim section 20 is circumferentially continuous and serves as a seal for the capped container. in contrast to containers which provide a sealing surface at the top or bottom of the closure retention bead, the present configuration provides a seal at the top of the rim to insure sanitary conditions for the entire interior of the container, The incorporation of the flat annular ring 20in the rim 19 provides for contact between the rim l9 and rim 25 of the closure 12 along an annular band rather than merely a line contact. This increased width of contact area increases the effectiveness of the seal. The angle between camming wall section 16 and spacer wall section 18 and the presence of the shoulder 17 permits the desired degree of resiliency of the portion of the container within the C-clamp,

Closure 12 is provided with a plurality of circumferentially spaced venting cams 37, bridging rim 25 and depending flange 26. Cams 37 project inwardly from flange 26 and downwardly from rim 25 to form a camming surface which is inclined downwardly at an acute angle to the horizontal reference. The earns 37 are positioned at least closely adjacent to the initially outwardly and downwardly curving portion of rim 21, and camming contact therebetween occurs during venting of the package. Preferably this contact is made in the first 45 of curvature of rim section 21 outwardly and downwardly from the annular ring section 20. When the pressure in packaging space 29 and annular space 28 is not excessive, the relationship of the closure 12 and the container 11 is illustrated in FIG. 3. Upon the occurrence of excessive pressure in packaging space 29 and annular space 28, the upstanding wall 24 of closure 12 is forced inwardly, causing the cams 37 to contact and slide on the upper half of the upper and outer quadrant of rim 19. The camming action causes the rim 25 of the closure 12 to move upwardly from rim 19 to the position shown in FIG. 5, thereby providing a continuous passageway to the atmosphere from packaging space 29 through annular space 28 and the space between rim l9 and rim 25 and depending flange 26. The inner diameter of the flange 26 is sufficiently greater than the outer diameter of the container rim 19 to provide a clearance therebetween even when the closure is contorted to the vent ing condition. Upon the release of the excessive pressure the closure and container return to the relationship shown in FIG. 3.

Thermofonned containers and thermoformed closures are customarily formed in female molds. This has the advantage that the outside dimensions of the container are substantially constant; however, the wall thickness varies within each container. The retention bead 23 of closure 12 is obviously thin because of the double stretching to which the thermoplastic sheet material is subjected. The sheet is initially stretched as it is drawn downwardly into the main mold cavity and then a portion thereof is additionally stretched as that portion is drawn into the mold groove which forms bead 23. A similar double stretching action occurs in the formation of closure retention groove wall section 15 in container 11. Increased resiliency of the thinner wall of bead 23 assists in the insertion of closure 12 into container 11 as the bead 23 will flex in wardly to pass the compressional camming wall section l6 of container 11 and then snap outwardly into the groove of wall section 15. However, the thinner wall of head 23 is more subject to a stress fold than rim 25, which could prevent a normally closed venting groove from being opened or which could result in the formation of an undesired continuously open passageway.

The rim 25 and depending skirt 26 will normally have the greatest thicknesses of any part of a thermoformed closure 12. Similarly, the rim 19 will normally have the greatest thickness of any part of a thermoformed container 11. These greater thicknesses also normally result in the greatest rigidity and dimensional accuracy for any portion of the container or closure. This results in a more effective seal where the seal is between the container rim and the closure rim than where the seal is between the retention bead and the retention groove. The location of the venting cams at the junction of the rim 25 and skirt 26 also takes advantage of the greater rigidity and dimensional accuracy to provide a more effective reclosable venting action than would be obtained with reclosable vent in the retention bead or in the retention groove.

Reasonable variations and modifications are possible within the scope of the foregoing disclosure, the drawings and the appended claims to the invention.

We claim:

1. A container comprising a bottom wall, an upstanding wall extending generally upwardly and outwardly from the periphery of said bottom wall, an inwardly opening outwardly directed closure retention groove wall section extending generally upwardly from the periphery of the upper extent of said upstanding wall, a compressional camming wall section extending generally upwardly and outwardly from the periphery of the upper extent of said closure retention groove wall section, a circumferentially continuous annular ring stacking shoulder extending at least substantially horizontally outwardly from the upper extent of said compressional camming wall section, a stacking ring wall section extending at least substantially vertically upwardly from the outer extent of said stacking shoulder, a rim having a flat annular ring portion extending horizontally outwardly from the periphery of the upper extent of said stacking ring wall section, said flat annular ring being joined to the upper extent of said stacking ring wall section at a substantially 90 angle, the outer diameter of said closure retention groove wall section being less than the inner diameter of the upper extent of said stacking ring wall section, the outer diameter of said stacking shoulder being greater than the inner diameter of said rim so that the stacking shoulder of an upper container rests upon the rim of the next lower container in a stack of superimposed identical containers, with the at least substantially vertical configuration of the stacking ring wall section providing at least substantially maximum stacking rigidity.

2. A container in accordance with claim 1 wherein said upstanding wall and said compressional camming wall section are circumferentially continuous frustoconically contoured wall sections.

3. A container in accordance with claim 1 wherein the outer diameter of said stacking shoulder exceeds the inner diameter of said rim by at least twice the thickness of the upper extent of said stacking ring wall section.

4. A container in accordance with claim I wherein said rim further comprises a second portion extending outwardly and downwardly from the outer periphery of said annular ring portion, the vertical height of said rim being less than the vertical height of said stacking ring wall section.

5. A container in accordance with claim 4 wherein said upstanding wall and said compressional camming wall section are circumferentially continuous frustoconically contoured wall sections, and wherein the outer diameter of said stacking shoulder exceeds the inner diameter of said rim by approximately twice the thickness of the upper extent of said stacking ring wall section.

6. A container in accordance with claim 1 wherein said container is a one piece, integral thermoformed structure with the thickness of said stacking ring wall section decreasing from the upper extent thereof to the lower extent thereof.

7. A container in accordance with claim I further comprising a closure applied to said container and having a diaphragm, a sidewall, an outwardly directed, inwardly opening retention bead extending generally upwardly from the periphery of said diaphragm to the lower extent of said sidewall, and a rim extending outwardly from the upper extent of said sidewall; said retention bead being dimensioned to snap into said closure retention groove wall section of said container; said rim of said closure extending outwardly over said rim of said container and in contact therewith; the distance between the point of contact of the container rim and the closure rim and the point of contact of the retention bead and the closure retention groove wall section being greater than the distance between the same points in the unstressed closure before the unstressed closure is applied to said container, so that the portion of said closure between said points of contact serves as a C-clamp to grip the mating portion of said container to thereby secure said closure to said container; each of said stacking shoulder and said spacer wall section being inclined at an acute angle to an imaginary line through said points of contact to increase the resilience of the portion of said container between said points of contact.

8. A container and closure in accordance with claim 7 wherein said retention bead is interrupted at circumferentially spaced locations by a plurality of venting grooves which extend to a point on said diaphragm which is spaced inwardly a significant distance from the inner edge of said closure retention groove wall section to providecontinuouslyl open fluid communication between the packaging space wit m the container below said diaphragm and the annular space between said sidewall of said closure and the laterally adjacent portion of said container; wherein said rim of said container curves outwardly and downwardly; and further comprising a skirt depending from the outer periphery of the rim of said closure, and inwardly directed camming grooves formed at the junction of said rim of said closure and said depending skirt, said camming grooves contacting said outwardly and downwardly curved portion of said rim of said container to effect a lifting of the closure rim from the container rim upon the occurrence of excessive pressure in said packaging space to thereby vent said packaging space.

Claims (8)

1. A container comprising a bottom wall, an upstanding wall extending generally upwardly and outwardly from the periphery of said bottom wall, an inwardly opening outwardly directed closure retention groove wall section extending generally upwardly from the periphery of the upper extent of said upstanding wall, a compressional camming wall section extending generally upwardly and outwardly from the periphery of the upper extent of said closure retention groove wall section, a circumferentially continuous annular ring stacking shoulder extending at least substantially horizontally outwardly from the upper extent of said compressional camming wall section, a stacking ring wall section extending at least substantially vertically upwardly from the outer extent of said stacking shoulder, a rim having a flat annular ring portion extending horizontally outwardly from the periphery of the upper extent of said stacking ring wall section, said flat annular ring being joined to the upper extent of said stacking ring wall section at a substantially 90* angle, the outer diameter of said closure retention groove wall section being less than the inner diameter of the upper extent of said stacking ring wall section, the outer diameter of said stacking shoulder being greater than the inner diameter of said rim so that the stacking shoulder of an upper container rests upon the rim of the next lower container in a stack of superimposed identical containers, with the at least substantially vertical configuration of the stacking ring wall section providing at least substantially maximum stacking rigidity.
2. A container in accordance with claim 1 wherein said upstanding wall and said compressional camming wall section are circumferentially continuous frustoconically contoured wall sections.
3. A container in accordance with claim 1 wherein the outer diameter of said stacking shoulder exceeds the inner diameter of said rim by at least twice the thickness of the upper extent of said stacking ring wall section.
4. A container in accordance with claim 1 wherein said rim further comprises a second porTion extending outwardly and downwardly from the outer periphery of said annular ring portion, the vertical height of said rim being less than the vertical height of said stacking ring wall section.
5. A container in accordance with claim 4 wherein said upstanding wall and said compressional camming wall section are circumferentially continuous frustoconically contoured wall sections, and wherein the outer diameter of said stacking shoulder exceeds the inner diameter of said rim by approximately twice the thickness of the upper extent of said stacking ring wall section.
6. A container in accordance with claim 1 wherein said container is a one piece, integral thermoformed structure with the thickness of said stacking ring wall section decreasing from the upper extent thereof to the lower extent thereof.
7. A container in accordance with claim 1 further comprising a closure applied to said container and having a diaphragm, a sidewall, an outwardly directed, inwardly opening retention bead extending generally upwardly from the periphery of said diaphragm to the lower extent of said sidewall, and a rim extending outwardly from the upper extent of said sidewall; said retention bead being dimensioned to snap into said closure retention groove wall section of said container; said rim of said closure extending outwardly over said rim of said container and in contact therewith; the distance between the point of contact of the container rim and the closure rim and the point of contact of the retention bead and the closure retention groove wall section being greater than the distance between the same points in the unstressed closure before the unstressed closure is applied to said container, so that the portion of said closure between said points of contact serves as a C-clamp to grip the mating portion of said container to thereby secure said closure to said container; each of said stacking shoulder and said spacer wall section being inclined at an acute angle to an imaginary line through said points of contact to increase the resilience of the portion of said container between said points of contact.
8. A container and closure in accordance with claim 7 wherein said retention bead is interrupted at circumferentially spaced locations by a plurality of venting grooves which extend to a point on said diaphragm which is spaced inwardly a significant distance from the inner edge of said closure retention groove wall section to provide continuously open fluid communication between the packaging space within the container below said diaphragm and the annular space between said sidewall of said closure and the laterally adjacent portion of said container; wherein said rim of said container curves outwardly and downwardly; and further comprising a skirt depending from the outer periphery of the rim of said closure, and inwardly directed camming grooves formed at the junction of said rim of said closure and said depending skirt, said camming grooves contacting said outwardly and downwardly curved portion of said rim of said container to effect a lifting of the closure rim from the container rim upon the occurrence of excessive pressure in said packaging space to thereby vent said packaging space.
US3672536A 1970-02-05 1970-02-05 Container and closure therefor Expired - Lifetime US3672536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US898170 true 1970-02-05 1970-02-05

Publications (1)

Publication Number Publication Date
US3672536A true US3672536A (en) 1972-06-27

Family

ID=21734840

Family Applications (1)

Application Number Title Priority Date Filing Date
US3672536A Expired - Lifetime US3672536A (en) 1970-02-05 1970-02-05 Container and closure therefor

Country Status (1)

Country Link
US (1) US3672536A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773207A (en) * 1971-11-30 1973-11-20 American Can Co Easy-open thermoplastic container package
US4770318A (en) * 1982-09-30 1988-09-13 Dart Container Corporation Interlocking lid and associated container
EP0385565A2 (en) 1989-02-02 1990-09-05 Oscar Mayer Foods Corporation Food package containing a reclosable means
US5025948A (en) * 1989-06-13 1991-06-25 Georges Fixon Sealed packaging box with mechanical or manual vacuum, full or partial vacuum
US5129517A (en) * 1988-11-03 1992-07-14 Oscar Mayer Foods Corporation Food package containing a reclosable means
US5180072A (en) * 1990-07-23 1993-01-19 Oehlert Neil L Safety container and closure system with child resistance
US5722562A (en) * 1996-03-28 1998-03-03 C.A.P.S. Inc. Tube cap
US5810197A (en) * 1996-10-30 1998-09-22 Mazzarolo; Ivonis Plastic container and lid with tab
US20050139090A1 (en) * 2003-12-29 2005-06-30 Clougherty Kenan J. Pressure/moisture release cooking container
US20070295632A1 (en) * 2006-06-27 2007-12-27 Palisin Stephen P Shipping container
US8777046B2 (en) * 2010-10-08 2014-07-15 Berry Plastics Corporation Drink cup with rolled brim

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1160783B (en) * 1961-09-09 1964-01-02 Alfons Thiel Thin-walled Kunststoffbehaelter with thin-walled snap-on lid
US3358879A (en) * 1965-10-20 1967-12-19 Lily Tulip Cup Corp Nesting container
US3362565A (en) * 1965-10-15 1968-01-09 Dow Chemical Co Container lid
US3388827A (en) * 1967-03-30 1968-06-18 Pantasote Company Of New York Sealed reclosable food package

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1160783B (en) * 1961-09-09 1964-01-02 Alfons Thiel Thin-walled Kunststoffbehaelter with thin-walled snap-on lid
US3362565A (en) * 1965-10-15 1968-01-09 Dow Chemical Co Container lid
US3358879A (en) * 1965-10-20 1967-12-19 Lily Tulip Cup Corp Nesting container
US3388827A (en) * 1967-03-30 1968-06-18 Pantasote Company Of New York Sealed reclosable food package

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773207A (en) * 1971-11-30 1973-11-20 American Can Co Easy-open thermoplastic container package
US4770318A (en) * 1982-09-30 1988-09-13 Dart Container Corporation Interlocking lid and associated container
US5129517A (en) * 1988-11-03 1992-07-14 Oscar Mayer Foods Corporation Food package containing a reclosable means
EP0385565A2 (en) 1989-02-02 1990-09-05 Oscar Mayer Foods Corporation Food package containing a reclosable means
US5025948A (en) * 1989-06-13 1991-06-25 Georges Fixon Sealed packaging box with mechanical or manual vacuum, full or partial vacuum
US5180072A (en) * 1990-07-23 1993-01-19 Oehlert Neil L Safety container and closure system with child resistance
US5722562A (en) * 1996-03-28 1998-03-03 C.A.P.S. Inc. Tube cap
US5810197A (en) * 1996-10-30 1998-09-22 Mazzarolo; Ivonis Plastic container and lid with tab
US20050139090A1 (en) * 2003-12-29 2005-06-30 Clougherty Kenan J. Pressure/moisture release cooking container
US7337916B2 (en) 2003-12-29 2008-03-04 Sonoco Development, Inc. Pressure/moisture release cooking container
US20070295632A1 (en) * 2006-06-27 2007-12-27 Palisin Stephen P Shipping container
US8777046B2 (en) * 2010-10-08 2014-07-15 Berry Plastics Corporation Drink cup with rolled brim

Similar Documents

Publication Publication Date Title
US3322308A (en) Plastic container cover with hinged closures
US3323671A (en) Container closure with hinged cover portion
US3572413A (en) Container and snap-on cover
US3189072A (en) Container outlet and closure therefor
US3458079A (en) Sealing arrangement for plastic container
US3519163A (en) Container and closure therefor
US3200944A (en) Container package
US3223278A (en) Snap ring closure seal for plastic containers
US3487972A (en) Container
US3353708A (en) Disposable plastic article
US3583596A (en) Lid
US3203571A (en) Self sealing cap construction
US3465910A (en) Container closure having integral strip opening means
US3285452A (en) Container finish and closure cap construction
US3482725A (en) Closures and methods of making the same
US3384265A (en) Container lid
US5385255A (en) Snap-on lid
US7357272B2 (en) Ventable container assembly
US5996837A (en) Method and apparatus for forming drink-thru cup lids
US3473685A (en) Resilient closure with a frangible skirt
US3454158A (en) Vacuum package and container therefor
US5097977A (en) Closure assembly for container
US3190530A (en) Thin wall container with thickened rim structure
US6688487B2 (en) Locking cup and lid with negative draft sealing surfaces
US3160302A (en) Conainer closure