US3672464A - Muffler for internal combustion engine - Google Patents

Muffler for internal combustion engine Download PDF

Info

Publication number
US3672464A
US3672464A US3672464DA US3672464A US 3672464 A US3672464 A US 3672464A US 3672464D A US3672464D A US 3672464DA US 3672464 A US3672464 A US 3672464A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
muffler
perforated tube
tube
disposed
nozzle member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Douglas W Rowley
John A Campbell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donaldson Co Inc
Original Assignee
Donaldson Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/003Silencing apparatus characterised by method of silencing by using dead chambers communicating with gas flow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/06Silencing apparatus characterised by method of silencing by using interference effect

Abstract

A muffler for internal combustion engines which employs a converging-diverging nozzle and a length of perforated tubing to effect sound attenuation with minimum back pressure. The perforated tube is axially disposed in a cylindrical casing, projecting forwardly from the muffler outlet and defining alternate flow passages. The nozzle member is disposed in the perforated tube, its mouth positioned at the tube inlet and spaced downstream from the muffler inlet. An imperforate baffle disposed in the annular passage between the perforated tube and cylindrical casing intermediate the ends of the nozzle member lengthens the passage with respect to the alternate, causing the divided gas flows to travel different distances prior to recombination and exhaust.

Description

United States Patent Rowley et al. [4 1 June 27, 1972 s41 MUFFLER FOR INTERNAL 3,586,123 6/1971 Marlowe et al. "181/63 x COMBUSTION ENGINE FOREIGN PATENTS 0R APPLICATIONS [72] Inventors: Douglas W. Rowley, St. Paul; John A.

Campbell Minneapolis both of Mhm 498,194 9/1954 Italy ..l8l/48 [73] Assignee: Donaldson Company, Inc., Minneapolis, Primary Examiner-Richard B. Wilkinson Minn. Assistant Examiner-John F. Gonzales Filed: Sept. 1970 Attorney-Merchant & Gould 211 App]. No.: 72,678 ABSTRACT A muffler for internal combustion engines which employs a 52 us. CI. ..1s1/44, 181/47 R I conversing-diverging nqzlle a a le of Perforated tubing 5 I] "p01" -to efiect sound attenuation with minimum back pressure. The [58] Field 0f Search ..18 1/44, 47 R, 48, 63, 46, 57, Perforated tube is aWily disposed in a cylindrical casing, p 181/59 41 49 ectmg forwardly from the muffler outlet and defining alternate flow passages. The nozzle member is disposed in the [56] Rehrences Cited perforated tube, its mouth positioned at the tube inlet and spaced downstream from the muffler inlet. An imperforate UNITED STATES PATENTS baffle disposed in the annular passage between the perforated tube and cylindrical casing intermediate the ends of the nozzle l,598,52l 8/1926 l-lazeltme ..18l/44 1 member lengthens the p g with respect to the alternate 2'047442 7/1936 Starkweather et 181/44 X causing the divided gas flows to travel difi'erent distances prior 2,047,775 7/1936 Gunn .181 I44 UX to recombination and exhaust 2,075,088 3/1937 Blanchard... ....l8l/48 X 3,515,242 6/1970 Lyttle l 8 1/57 X 6 Claims, 3 Drawing Figures 4 i 7, /l i /5 l l 8 1 O I o 86 i 1 8 i la ls 1% i (I) 1 f a O O l 0| /Z l I l I 5 I MUFFLER FOR INTERNAL COMBUSTION ENGINE The invention isdirected to mufflers for internal combustion engines in which sound attenuation is effected with a minimum of back pressure.

The preferred embodiment of the invention consists of a cylindrical casing defining a longitudinal chamber and having an inlet and outlet. A perforated tube of lesser length than the cylindrical casing is axially and concentrically disposed therein, projecting forwardly from the casing outlet and supported by one or more baffles. As described, the casing and perforated tube define a pair of alternating flow passages (which communicate by virtue of the perforations), one through the tube and one in the annular area defined between the tube and easing.

Disposed in the perforated tube at its inlet is an imperforate convergent-divergent nozzle member the mouth of which is spaced from the muffler inlet. The divergence of the nozzle member downstream of its throat is gradual to decrease boundary layer separation as flow decelerates.

An imperforate tube-supporting baffle disposed intermediate the ends of the nozzle member fully blocks the annular passage, thus causing the exhaust gases entering that region to pass inside the perforated tube upstream of the baffle, along the outer surface of the nozzle member and out from the tube into the annular passage beyond the baffle. The nozzle member is shorter than the perforate tube so that the exhaust gases passing through the alternate flow paths can recombine prior to exhaust through the muffler outlet.

We have found that the structure described above is extremely effective in attenuating sound generated by an internal combustion engine while keeping back pressure, which hampers efficiency of the engine, to a minimum. We believe the reasons for this performance to be at least twofold:

l The acoustical impedance of the nonle throat is greater than that at the nozzle mouth. Consequently, a portion of the sound waves attempting to enter the nozzle member are reflected back, thereby reducing the sound level. (2) By reason of the imperforate baffle, the annular flow passage is longer than the nozzle-tube flow passage. Consequently, upon recombination of gases at a point downstream of the nozzle the sound waves carried in the medium of the respective exhaust gas flows are out of phase with respect to each other, and cancellation further reduces the sound level.

The sound attenuation is not done at the expense of an extensive pressure build-up within the muffler. Straight through construction, which arises from axial and concentric disposition of the nozzle member and perforated tube with respect to the muffler inlet and outlet, presents a minimum resistance to exhaust gas flow. Further, the diverging portion of the nozzle member tapers gradually to decrease flow separation, thus preserving the continuous and steady flow characteristic necessary for minimum pressure build-up.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a muffler embodying the inventive principle;

FIG. 2 is an end view of a mufiler as viewed from the muffler intake; and

FIG. 3 is an end view of a muffler as viewed from the muffler exhaust.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the figures, a mufiler intended for use with intemal combustion engines and embodying the inventive principle as represented generally by the numeral 11. Muffler 11 consists of a cylindrical casing 12 of predetermined length having annular end caps 13 and 14 which respectively define the mufiler inlet and outlet.

A tube 15 is axially and concentrically disposed in casing 12, its outlet end being sealably affixed to end cap 14, as by welding, and its inlet end spaced from the muffler inlet a predetermined distance. Tube 15 has a plurality of perforations 16 extending over the major portion of its length, all of which lie within casing 12. The outlet end of tube 15 may be slit, as at 17, for connection to a tailpipe.

Tube 15 is supported internally by a first annular baffle 18 which includes a plurality of perforations l9, and a second annular baffle 21 which is imperforate. Baffle 21 is constructed and arranged to block the annular passage defined by tube 15 and casing 12.

Disposed within tube 15, commencing at its inlet end and projecting rearwardly therefrom, is a nozzle member 22'having an abruptly tapering converging portion 23, a throat 24 and a diverging portion 25 which tapers gradually into engagement with the inner surface of tube 15. Nozzle member 22 is imperforate, and as best shown in FIG. 1, bafile 21 is disposed at a point intermediate its ends. Thus, the flow of exhaust gases entering the'annular passage are forced inside tube 15 upstream of baffle 21 (as represented by the arrows), and back out of tube 15 downstream of baffle 21. Thus, it is apparent that exhaust gases entering the annular passage must necessarily take a longer journey than those passing directly through nozzle member 22 and tube 15 prior to recombination downstream of the nozzle outlet.

Disposed in the muffler inlet is a tube 26 which is of the same size as tube 15 and is disposed in axial alignment therewith. Tube 26 is also formed with a plurality of perforations 27, all of which lie within cylindrical casing 12, and is given support by end cap 13 and another annular support member 28. The inlet end of tube 26 may include one or more slits 29 to facilitate connection of muffler 11 to an exhaust pipe.

The size, shape and arrangement of the constituent parts of muffler 11 are chosen so that the flow of exhaust gases entering tube 26 is divided as evenly as possible between the longer annular passage and the passage through nozzle 22 and tube 15. Thus, the flow of exhaust gases through perforations 27 of tube 26 into the dead end chamber defined by end cap 13 and support member 28, which assists in the attenuation of sound to a limited degree. That portion of the flow proceeding directly to nozzle member 22 is caused by portion 23 to converge upon throat 24, at which point it attains its maximum velocity and lowest static pressure. The flow then proceeds in a smooth pattern by virtue of the gradual divergence of portion 25 and. continues on through tube 15. A portion of the sound waves existing in the gaseous medium, however, are

, prevented from passing through throat 24 by virtue of the increased acoustical impedance encountered at that point. A portion of the waves are reflected back, which serves to significantly attenuate the sound level.

The remaining portion of exhaust gas flow passes through the longer annular passage, and, at a point downstream of the outlet of imperforate nozzle member 22 begins to recombine with the flow that has moved through nozzle 22 and into tube 15. The sound waves carried through the alternate flow passage, in seeking their paths of least resistance, must also journey further before the recombination. As a result, the sound waves moving through the alternate passages are out of phase by the time they reach a point of recombination, thus effecting a significant wave cancellation and further attenuation of sound. The result is a substantial decrease in the sound level emanating from the internal combustion engine.

By virtue of the straight through" construction and the gradual taper of diverging portion 25, the flow of exhaust gases, whether through the central or annular passage, encounters minimum fluid resistance. Thus, the back pressure which hampers operating efficiency of the internal combustion engine is kept to a minimum while sound attenuation takes place.

As can be readily observed, the'structure which permits this desirable operation is extremely simple and comprises a minimum number of parts. This is due in large part to the unique disposition of nozzle member 22, which not only attenuates sound and preserves laminar flow, but also defines with baffle 21 a portion of the longer annular passage which effects the downstream cancellation of out of phase sound waves.

What is claimed is:

1. A muffler comprising:

a housing defining a longitudinal chamber having an inlet and an outlet;

a perforated tube disposed in substantial axial alignment with the chamber inlet, the perforated tube having an inlet end spaced a predetennined distance from the chamber inlet and an outlet end communicating directly with the chamber outlet;

an imperforate noule member disposed in the perforated tube, the nozzle member having a mouth generally conforming to and disposed at the inlet end of the tube, and a portion converging to a throat and a portion diverging from the throat to an outlet conforming to the perforate tube;

and an imperforate baffle disposed in the passage between the perforated tube and the housing intermediate the ends of the nozzle member, the baffle constructed and arranged to divert the flow of exhaust gases between the outer surface of the nozzle means and the perforated tube.

2. The muffler as defined by claim 1, wherein the housing,

the perforated tube, the nozzle member and the imperforate baffle are circular in shape and concentrically disposed.

3. The mufiler. as defined by claim 1, wherein the constituent parts of the muffler are constructed and arranged to divide flow through the passage between the perforated tube and the housing and the passage through the nozzle member essentially equally.

4. The mufiler as defined by claim 1, and further comprising a second perforated tube having an inlet end and an outlet end, the second perforated tube being of the same size as the first claimed perforated tube and disposed in spaced axial alignment therewith, the inlet end of the second perforated tube communicating directly with the chamber inlet and the outlet end being supported within the housing by an imperforate member.

5. The muffler as defined by claim 1, wherein the divergent portion of the nozzle member tapers more gradually than the converging portion.

6. The muffler as defined by claim 1, wherein the imperforate bafile supports the perforated tube within the housing.

* I I i i

Claims (6)

1. A muffler comprising: a housing defining a longitudinal chamber having an inlet and an outlet; a perforated tube disposed in substantial axial alignment with the chamber inlet, the perforated tube having an inlet end spaced a predetermined distance from the chamber inlet and an outlet end communicating directly with the chamber outlet; an imperforate nozzle member disposed in the perforated tube, the nozzle member having a mouth generally conforming to and disposed at the inlet end of the tube, and a portion converging to a throat and a portion diverging from the throat to an outlet conforming to the perforate tube; and an imperforate baffle disposed in the passage between the perforated tube and the housing intermediate the ends of the nozzle member, the baffle constructed and arranged to divert the flow of exhaust gases between the outer surface of the nozzle means and the perforated tube.
2. The muffler as defined by claim 1, wherein the housing, the perforated tube, the nozzle member and the imperforate baffle are circular in shape and concentrically disposed.
3. The muffler as defined by claim 1, wherein the constituent parts of the muffler are constructed and arranged to divide flow through the passage between the perforated tube and the housing and the passage through the nozzle member essentially equally.
4. The muffler as defined by claim 1, and further comprising a second perforated tube having an inlet end and an outlet end, the second perforated tube being of the same size as the first claimed perforated tube and disposed in spaced axial alignment therewith, the inlet end of the second perforated tube communicating directly with the chamber inlet and the outlet end being supported within the housing by an imperforate member.
5. The muffler as defined by claim 1, wherein the divergent portion of the nozzle member tapers more gradually than the converging portion.
6. The muffler as defined by claim 1, wherein the imperforate baffle supports the perforated tube within the housing.
US3672464A 1970-09-16 1970-09-16 Muffler for internal combustion engine Expired - Lifetime US3672464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US7267870 true 1970-09-16 1970-09-16

Publications (1)

Publication Number Publication Date
US3672464A true US3672464A (en) 1972-06-27

Family

ID=22109125

Family Applications (1)

Application Number Title Priority Date Filing Date
US3672464A Expired - Lifetime US3672464A (en) 1970-09-16 1970-09-16 Muffler for internal combustion engine

Country Status (3)

Country Link
US (1) US3672464A (en)
JP (1) JPS4941223B1 (en)
CA (1) CA929431A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786791A (en) * 1972-01-27 1974-01-22 Hoehn A Exhaust control method and apparatus
US4267899A (en) * 1979-08-31 1981-05-19 Donaldson Company, Inc. Muffler assembly
US4359135A (en) * 1979-08-31 1982-11-16 Donaldson Company, Inc. Muffler assembly
US4361206A (en) * 1980-09-02 1982-11-30 Stemco, Inc. Exhaust muffler including venturi tube
US4368799A (en) * 1980-10-16 1983-01-18 Donaldson Company, Inc. Straight-through flow muffler
US4580657A (en) * 1983-06-16 1986-04-08 Donaldson Company, Inc. Integral fluted tube for sound suppression and exhaust ejection
US4632216A (en) * 1984-06-27 1986-12-30 Donaldson Company, Inc. Muffler apparatus and method for making same
US4690245A (en) * 1983-03-17 1987-09-01 Stemco, Inc. Flattened venturi, method and apparatus for making
GB2197026A (en) * 1986-09-29 1988-05-11 Truscott John Henry Peycke Exhaust silencers for i.c. engines
US4969537A (en) * 1988-11-10 1990-11-13 Donaldson Company, Inc. Muffler assembly and method of manufacture
US5112372A (en) * 1991-10-22 1992-05-12 Donaldson Company, Inc. Advanced disposable air cleaner
US5123501A (en) * 1988-10-21 1992-06-23 Donaldson Company, Inc. In-line constricted sound-attenuating system
US5355973A (en) * 1992-06-02 1994-10-18 Donaldson Company, Inc. Muffler with catalytic converter arrangement; and method
US5426269A (en) * 1992-06-02 1995-06-20 Donaldson Company, Inc. Muffler with catalytic converter arrangement; and method
US5602368A (en) * 1993-12-24 1997-02-11 Apex Co., Ltd. Muffler for an internal combustion engine
US5808245A (en) * 1995-01-03 1998-09-15 Donaldson Company, Inc. Vertical mount catalytic converter muffler
US6082487A (en) * 1998-02-13 2000-07-04 Donaldson Company, Inc. Mufflers for use with engine retarders; and methods
US6148519A (en) * 1998-09-18 2000-11-21 Donaldson Company, Inc. Apparatus for installing a packing material in a muffler assembly; and methods thereof
US6334506B1 (en) 2000-08-10 2002-01-01 Donaldson Company, Inc. Muffler arrangements and methods
US6354398B1 (en) 1998-02-13 2002-03-12 Donaldson Company, Inc. Mufflers for use with engine retarders; and methods
US6419718B1 (en) 2000-10-13 2002-07-16 Donaldson Company, Inc. Cover member and air cleaner construction; use; and, method of assembly
US20030089105A1 (en) * 2001-10-17 2003-05-15 Reeves Gary D. Exhaust treatment apparatus and method of making
US6915877B2 (en) 2003-01-13 2005-07-12 Garabed Khayalian Muffler device
US20050217929A1 (en) * 2004-04-05 2005-10-06 Kicinski Kenneth J Muffler with secondary flow path
US20060053779A1 (en) * 2004-09-08 2006-03-16 Belisle John I Joint for an engine exhaust system component
US20060067860A1 (en) * 2004-09-08 2006-03-30 Faircloth Arthur E Jr Construction for an engine exhaust system component
US20060070375A1 (en) * 2004-10-01 2006-04-06 Blaisdell Jared D Exhaust flow distribution device
US20060277900A1 (en) * 2005-03-17 2006-12-14 Hovda Allan T Service joint for an engine exhaust system component
US20070039316A1 (en) * 2003-02-28 2007-02-22 Bosanec John M Jr Compact combination exhaust muffler and aftertreatment element and water trap assembly
US20070107982A1 (en) * 2005-11-17 2007-05-17 Sullivan John T Flow-through sound-cancelling mufflers
US20070158135A1 (en) * 2006-01-06 2007-07-12 Yamaha Hatsudoki Kabushiki Kaisha Muffler and Vehicle Equipped with Muffler
WO2007078411A2 (en) * 2005-12-22 2007-07-12 Fleetguard, Inc. Compact combination exhaust muffler and aftertreatment element and water trap assembly
US20070234713A1 (en) * 2006-04-03 2007-10-11 Blaisdell Jared D Exhaust flow distribution device
US20080104949A1 (en) * 2002-08-23 2008-05-08 Donaldson Company, Inc. Apparatus for Emissions Control, Systems, and Methods
CN102226421A (en) * 2011-05-26 2011-10-26 无锡百发电机有限公司 Heat collecting silencer of internal combustion engine
US8256571B1 (en) * 2010-10-29 2012-09-04 Butler Boyd L Frequency-modifying muffler
US20120273611A1 (en) * 2011-04-26 2012-11-01 Hamilton Sundstrand Corporation Exhaust silencer with baffles
US20130048416A1 (en) * 2011-08-31 2013-02-28 Caterpillar Inc. Exhaust muffler
RU2508458C2 (en) * 2008-12-19 2014-02-27 Агко Гмбх Automotive exhaust system
US8746401B2 (en) 2010-10-29 2014-06-10 Boyd L. Butler Frequency-modifying muffler
US8844673B2 (en) 2010-02-01 2014-09-30 Futaba Industrial Co., Ltd. Muffler for internal combustion engine
US9103262B2 (en) 2010-11-24 2015-08-11 Cnh Industrial America Llc Combined intake aspirator venturi tube and water trap in vertical exhaust outlet stack

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953786B2 (en) * 2012-02-07 2016-07-20 マツダ株式会社 Of a multi-cylinder engine exhaust system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1598521A (en) * 1920-06-29 1926-08-31 Robert H Hazeltine Muffler
US2047775A (en) * 1933-09-01 1936-07-14 Walker Mfg Co Vacuum muffler
US2047442A (en) * 1935-08-15 1936-07-14 Buffalo Pressed Steel Company Muffler
US2075088A (en) * 1934-12-18 1937-03-30 Cecil Gordon Vokes Means for silencing gaseous currents
US3515242A (en) * 1969-09-05 1970-06-02 Alexander Tagg Ind Inc Exhaust silencer for internal combustion engines
US3586123A (en) * 1970-03-16 1971-06-22 Pacific Car & Foundry Co Muffler with sequential expansion chambers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1598521A (en) * 1920-06-29 1926-08-31 Robert H Hazeltine Muffler
US2047775A (en) * 1933-09-01 1936-07-14 Walker Mfg Co Vacuum muffler
US2075088A (en) * 1934-12-18 1937-03-30 Cecil Gordon Vokes Means for silencing gaseous currents
US2047442A (en) * 1935-08-15 1936-07-14 Buffalo Pressed Steel Company Muffler
US3515242A (en) * 1969-09-05 1970-06-02 Alexander Tagg Ind Inc Exhaust silencer for internal combustion engines
US3586123A (en) * 1970-03-16 1971-06-22 Pacific Car & Foundry Co Muffler with sequential expansion chambers

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786791A (en) * 1972-01-27 1974-01-22 Hoehn A Exhaust control method and apparatus
US4359135A (en) * 1979-08-31 1982-11-16 Donaldson Company, Inc. Muffler assembly
US4267899A (en) * 1979-08-31 1981-05-19 Donaldson Company, Inc. Muffler assembly
US4361206A (en) * 1980-09-02 1982-11-30 Stemco, Inc. Exhaust muffler including venturi tube
US4368799A (en) * 1980-10-16 1983-01-18 Donaldson Company, Inc. Straight-through flow muffler
US4690245A (en) * 1983-03-17 1987-09-01 Stemco, Inc. Flattened venturi, method and apparatus for making
US4580657A (en) * 1983-06-16 1986-04-08 Donaldson Company, Inc. Integral fluted tube for sound suppression and exhaust ejection
US4632216A (en) * 1984-06-27 1986-12-30 Donaldson Company, Inc. Muffler apparatus and method for making same
GB2197026A (en) * 1986-09-29 1988-05-11 Truscott John Henry Peycke Exhaust silencers for i.c. engines
US5123501A (en) * 1988-10-21 1992-06-23 Donaldson Company, Inc. In-line constricted sound-attenuating system
US4969537A (en) * 1988-11-10 1990-11-13 Donaldson Company, Inc. Muffler assembly and method of manufacture
US5112372A (en) * 1991-10-22 1992-05-12 Donaldson Company, Inc. Advanced disposable air cleaner
US6550573B2 (en) 1992-06-02 2003-04-22 Donaldson Company, Inc. Muffler with catalytic converter arrangement, and method
US5355973A (en) * 1992-06-02 1994-10-18 Donaldson Company, Inc. Muffler with catalytic converter arrangement; and method
US6892854B2 (en) 1992-06-02 2005-05-17 Donaldson Company, Inc. Muffler with catalytic converter arrangement; and method
US20040031643A1 (en) * 1992-06-02 2004-02-19 Donaldson Company, Inc. Muffler with catalytic converter arrangement; and method
US5828013A (en) * 1992-06-02 1998-10-27 Donaldson Company, Inc. Muffler with catalytic converter arrangement; and method
US5426269A (en) * 1992-06-02 1995-06-20 Donaldson Company, Inc. Muffler with catalytic converter arrangement; and method
US5602368A (en) * 1993-12-24 1997-02-11 Apex Co., Ltd. Muffler for an internal combustion engine
US5808245A (en) * 1995-01-03 1998-09-15 Donaldson Company, Inc. Vertical mount catalytic converter muffler
US6354398B1 (en) 1998-02-13 2002-03-12 Donaldson Company, Inc. Mufflers for use with engine retarders; and methods
US6082487A (en) * 1998-02-13 2000-07-04 Donaldson Company, Inc. Mufflers for use with engine retarders; and methods
US6148519A (en) * 1998-09-18 2000-11-21 Donaldson Company, Inc. Apparatus for installing a packing material in a muffler assembly; and methods thereof
US6334506B1 (en) 2000-08-10 2002-01-01 Donaldson Company, Inc. Muffler arrangements and methods
US6419718B1 (en) 2000-10-13 2002-07-16 Donaldson Company, Inc. Cover member and air cleaner construction; use; and, method of assembly
US20030089105A1 (en) * 2001-10-17 2003-05-15 Reeves Gary D. Exhaust treatment apparatus and method of making
US7607289B2 (en) 2002-08-23 2009-10-27 Donaldson Company, Inc. Apparatus for emissions control, systems, and methods
US20080104949A1 (en) * 2002-08-23 2008-05-08 Donaldson Company, Inc. Apparatus for Emissions Control, Systems, and Methods
US6915877B2 (en) 2003-01-13 2005-07-12 Garabed Khayalian Muffler device
US7713493B2 (en) * 2003-02-28 2010-05-11 Fleetguard, Inc. Compact combination exhaust muffler and aftertreatment element and water trap assembly
US20070039316A1 (en) * 2003-02-28 2007-02-22 Bosanec John M Jr Compact combination exhaust muffler and aftertreatment element and water trap assembly
US7174992B2 (en) * 2004-04-05 2007-02-13 Fleetguard, Inc. Muffler with secondary flow path
US20050217929A1 (en) * 2004-04-05 2005-10-06 Kicinski Kenneth J Muffler with secondary flow path
US20060053779A1 (en) * 2004-09-08 2006-03-16 Belisle John I Joint for an engine exhaust system component
US20060067860A1 (en) * 2004-09-08 2006-03-30 Faircloth Arthur E Jr Construction for an engine exhaust system component
US7779624B2 (en) 2004-09-08 2010-08-24 Donaldson Company, Inc. Joint for an engine exhaust system component
US7997071B2 (en) 2004-10-01 2011-08-16 Donaldson Company, Inc. Exhaust flow distribution device
US20090031717A1 (en) * 2004-10-01 2009-02-05 Donaldson Company, Inc. Exhaust flow distribution device
US7451594B2 (en) 2004-10-01 2008-11-18 Donaldson Company, Inc. Exhaust flow distribution device
US20060070375A1 (en) * 2004-10-01 2006-04-06 Blaisdell Jared D Exhaust flow distribution device
US20060277900A1 (en) * 2005-03-17 2006-12-14 Hovda Allan T Service joint for an engine exhaust system component
US7600607B2 (en) * 2005-11-17 2009-10-13 John Timothy Sullivan Flow-through sound-cancelling mufflers
US20070107982A1 (en) * 2005-11-17 2007-05-17 Sullivan John T Flow-through sound-cancelling mufflers
WO2007078411A3 (en) * 2005-12-22 2007-11-29 Fleetguard Inc Compact combination exhaust muffler and aftertreatment element and water trap assembly
WO2007078411A2 (en) * 2005-12-22 2007-07-12 Fleetguard, Inc. Compact combination exhaust muffler and aftertreatment element and water trap assembly
US7677357B2 (en) * 2006-01-06 2010-03-16 Yamaha Hatsudoki Kabushiki Kaisha Muffler and vehicle equipped with muffler
US20070158135A1 (en) * 2006-01-06 2007-07-12 Yamaha Hatsudoki Kabushiki Kaisha Muffler and Vehicle Equipped with Muffler
US8110151B2 (en) 2006-04-03 2012-02-07 Donaldson Company, Inc. Exhaust flow distribution device
US20070234713A1 (en) * 2006-04-03 2007-10-11 Blaisdell Jared D Exhaust flow distribution device
US8470253B2 (en) 2006-04-03 2013-06-25 Donaldson Company, Inc. Exhaust flow distribution device
RU2508458C2 (en) * 2008-12-19 2014-02-27 Агко Гмбх Automotive exhaust system
US8844673B2 (en) 2010-02-01 2014-09-30 Futaba Industrial Co., Ltd. Muffler for internal combustion engine
US8746401B2 (en) 2010-10-29 2014-06-10 Boyd L. Butler Frequency-modifying muffler
US8256571B1 (en) * 2010-10-29 2012-09-04 Butler Boyd L Frequency-modifying muffler
US9103262B2 (en) 2010-11-24 2015-08-11 Cnh Industrial America Llc Combined intake aspirator venturi tube and water trap in vertical exhaust outlet stack
US8596568B2 (en) * 2011-04-26 2013-12-03 Hamilton Sundstrand Corporation Exhaust silencer with baffles
US20120273611A1 (en) * 2011-04-26 2012-11-01 Hamilton Sundstrand Corporation Exhaust silencer with baffles
CN102226421B (en) 2011-05-26 2013-05-15 无锡百发电机有限公司 Heat collecting silencer of internal combustion engine
CN102226421A (en) * 2011-05-26 2011-10-26 无锡百发电机有限公司 Heat collecting silencer of internal combustion engine
US20130048416A1 (en) * 2011-08-31 2013-02-28 Caterpillar Inc. Exhaust muffler

Also Published As

Publication number Publication date Type
CA929431A (en) 1973-07-03 grant
JPS4941223B1 (en) 1974-11-07 grant
CA929431A1 (en) grant

Similar Documents

Publication Publication Date Title
US5426269A (en) Muffler with catalytic converter arrangement; and method
US4094644A (en) Catalytic exhaust muffler for motorcycles
US5365025A (en) Low backpressure straight-through reactive and dissipative muffler
US2239549A (en) Silencing device for pulsating gases
US4579195A (en) Exhaust gas silencer
US6105716A (en) Venturi muffler having plural nozzles
US4580657A (en) Integral fluted tube for sound suppression and exhaust ejection
US5378435A (en) Silencer combined with catalytic converter for internal combustion engines and modular diaphragm elements for said silencer
US2583366A (en) Muffler with perforated cylinder containing inwardly and rearwardly inclined holes
US5828013A (en) Muffler with catalytic converter arrangement; and method
US3894610A (en) Gas stream silencer
US3404749A (en) Chain saw muffler
US4011922A (en) Muffler construction
US4204586A (en) Silencer on the intake side of a compressor with assembly of axially spaced annular sound-damping elements
US2205899A (en) Silencing device for pulsating gases
US4579194A (en) Muffler with catalyst for internal combustion engine
US6588545B1 (en) Muffler for internal combustion engine
US4006793A (en) Engine muffler apparatus providing acoustic silencer
US6158546A (en) Straight through muffler with conically-ended output passage
US4192401A (en) Complete louver flow muffler
US3212603A (en) Muffler with tuned silencing chambers
US4128769A (en) Eductor muffler
US4209493A (en) Combination catalytic converter and muffler for an exhaust system
US5760348A (en) Noise attenuating apparatus
US2056608A (en) Silencer