US3664362A - Pilot valve - Google Patents

Pilot valve Download PDF

Info

Publication number
US3664362A
US3664362A US3664362DA US3664362A US 3664362 A US3664362 A US 3664362A US 3664362D A US3664362D A US 3664362DA US 3664362 A US3664362 A US 3664362A
Authority
US
United States
Prior art keywords
valve
seat
chamber
pressure
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Irvin B Weise
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANDERSON GREENWOOD AND Co
Original Assignee
ANDERSON GREENWOOD AND Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US79696169A priority Critical
Application filed by ANDERSON GREENWOOD AND Co filed Critical ANDERSON GREENWOOD AND Co
Priority to US10890671A priority
Application granted granted Critical
Publication of US3664362A publication Critical patent/US3664362A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/14Control of fluid pressure with auxiliary non-electric power
    • G05D16/16Control of fluid pressure with auxiliary non-electric power derived from the controlled fluid
    • G05D16/166Control of fluid pressure with auxiliary non-electric power derived from the controlled fluid using pistons within the main valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/025Check valves with guided rigid valve members the valve being loaded by a helicoidal spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/10Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with auxiliary valve for fluid operation of the main valve
    • F16K17/105Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with auxiliary valve for fluid operation of the main valve using choking or throttling means to control the fluid operation of the main valve
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/10Control of fluid pressure without auxiliary power the sensing element being a piston or plunger
    • G05D16/107Control of fluid pressure without auxiliary power the sensing element being a piston or plunger with a spring-loaded piston in combination with a spring-loaded slideable obturator that move together over range of motion during normal operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2544Supply and exhaust type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2564Plural inflows
    • Y10T137/2567Alternate or successive inflows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7762Fluid pressure type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7762Fluid pressure type
    • Y10T137/7769Single acting fluid servo

Abstract

A pilot valve to be utilized in a pressure relieving system. The pilot valve controls the pressure setting for relief and blowdown through the main valve and assures that there is no reverse flow through the fluid pressure supply line, thereby allowing field testing of the main valve to determine if it is functioning properly while the pilot valve is installed in the system controlling the operation of the main valve.

Description

United States Patent Weise 1451 May 23, 1972 [54] PILOT VALVE 2,661,023 12/1953 Griswold 137/488 3,196,891 7/1965 Valentine ....137/l02 [72] min was, Bella, 3,294,111 12/1966 Abercrombie ....137/102 [73] Assignee: Anderson, Greenwood & C H u to 3,419,030 12/1968 Gratzmuller ..l37/l02 Tex. Primary Examiner-Samuel B. Rothberg [22] Flled' Jm 1971 Assistant Examiner-William H. Wright [21] Appl. No.: 108,906 Attomey -J. Vincent Martin, Joe E. Edwards, M. H. Gay, Al-

R and U s A p 60 Dan fred H. Evans and Jack R. Springgate e p on n [62] Division of Set. NO. 796,961, Feb. 6, 1969, Pat. NO. 1 ABSTRACT A pilot valve to be utilized in a pressure relieving system. The

pilot valve controls the pressure setting for relief and blow- [52] U.S.Cl ..l37/102,137/112,1112743985 down through the main valve and assures that there is no [51] Int. Cl Fmk 17/10 reverse flow through the fluid pressure supply line, thereby al- [581 semis 15:61:33..ijiiiiiiaiiiizi '4895 496 lovingfieldtestingomemamvalvewdeminemime- I tioning properly while the pilot valve is installed in the system I controlling the operation of the main valve.

[56] References Cited ,snra i Figures UNITED STATES PATENTS I 2,649,115 8/1953 Deardoff ..l37/488 Z2 M6 34 4i 17- a9 PATENTEDMAY23 I972 3,664,362

sum 1 or 2 fr in 49. 'We/Lr e 7/ INVENTOR. BY 5- PILOT VALVE This is a division of application Ser. No. 796,96l, filed Feb.

6, 1969 now US. Pat. No. 3,568,706. The present invention relates to an improved pilot valve for controlling a relief system. This invention is an improvement on the system and structure disclosed in my prior copending application Ser. No. 711,821 filed Feb. 19, 1968 now US. Pat. No. 3,512,560.

SUMMARY An object of the present invention is to provide an improved pressure relieving system in which the outlet of the main valve may be connected into a header with assurance that the main valve will not open to allow reverse flow therethrough when the header pressure exceeds the main valve inlet pressure.

Another object is to provide an improved pilot valve for a pressure relieving system whose setting may be tested with a testing fluid after it has been installed in controlling position on a relief valve without having the testing fluid flow through the pilot fluid supply line.

A further object is to provide an improved pilot valve suita ble for use on liquids and gases which includes a check valve to prevent backflow through the fluid supply line and eliminates the possibility of the inlet valve and check valve both closing and being held closed by pressure of fluid trapped therebetween.

Still another object of the present invention is to provide an improved pressure responsive device adapted to be used with a pressure relieving valve to prevent the valve from opening when the valve is subjected to higher pressures at its outlet than at its inlet.

A still further object is to provide an improved pressure relieving system which may be set for a preselected relieving pressure and also for a preselected blowdown independent of the relieving pressure setting. 7

Another object is to provide as a subcombination in an improved pressure relieving system a pressure responsive device to be used with the pressure relieving system which applies the higher of two fluid pressures to a pressure responsive member in the system.

BRIEF DESCRIPTION OF THE DRAWINGS These and other objects and advantages of the present invention are hereinafter set forth and described with reference to the structure of the present invention illustrated in the drawings wherein:

FIG. 1 is a schematic diagram of the improved relieving system of the present invention.

FIG. 2 is a detailed sectional view of the improved pilot valve of the present invention and schematically illustrating the equipment for testing the pilot valve relief setting.

FIG. 3 is an enlarged detailed sectional view of the improved pilot valve showing the inlet valve member in seated position.

FIG. 4 is a partial sectional view of the improved backflow preventer of the present invention.

FIG. 5 is a sectional view taken along line 55 in FIG. 4 showing the cross-sectional configuration of the pressure responsive member of the improved backflow preventer of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT As shown in FIG. 1, the improved pressure relieving system of the present invention is installed to protect tank T from over-pressure conditions. The main relief valve R is connected to have its inlet in communication with the interior of the tank -T and has its outlet 12 connected to a suitable disposal line L which may be a manifold or header of outlets from several pressure relieving systems (not shown). The main valve R includes a valve member 14 controlling the flow therethrough responsive to the pressure delivered to the pressure responsive member 16. Main valve R may be of any suitable type which includes a pressure responsive means actuating the valve member to control the flow through the main valve.

With valve R pressure on the pressure responsive member 16 is used to hold valve member 14 in closed position andwhen the pressure is vented from member 16, the pressure in inlet 10 causes valve member 14 to open.

The improved pilot valve is supplied with fluid under pressure from the tank T by the line 18 which connects from inlet 10 to the pilot valve P. Control pressure is supplied by pilot valve P through the line 20 and the back flow preventer 22 to the pressure responsive member 16 of main valve R. By controlling the pressure supplied to the pressure responsive member, 16, the pilot valve P controls the venting of tank T through the main valve R. Also, line 24 connects from outlet 12 to the backflow preventer 22 to cause the main valve R to close or remain closed whenever the pressure in the disposal line L rises to a pressure above the pressure at the inlet 10 to thereby prevent flow of fluids through the main valve R in the reverse direction. The pilot valve P is also provided with a vent port 26 through which fluid pressure in pressure responsive member 16 is vented to allow the main valve to open and relieve pressure within tank T.

The pilot valve P is shown in greater detail in FIGS. 2 and 3. Pilot valve P includes the body 28 in which a central bore 30 is formed with a plurality of ports communicating with bore 30 as hereinafter described. The shoulder 32 projecting into the bore 30 receives the valve seat assembly 34 which is held on shoulder 32 by the cage 36 and the bonnet 38. The cage 40 supports the seat insert 42 within the central bore 30 and is adjustable axially of bore 30 as hereinafter described. Communication through the central bore 30 is first through the back check seat 44 defined within the interior of cage 40, the second seat 46 defined by seat insert 42 and the outlet seat 48 defined by the seat assembly 34. The cage 40 is sealed against the walls of bore 30 and provided with ports 50 communicating from the inlet chamber 52 to the inlet seat 44 so that all flow through the pilot valve P is directed through the inlet seat 44 and the second seat 46. The inlet ports 54 and 56 both communicate with the inlet chamber 52, inlet port 54 being provided with a filter screen 58 and inlet port 56 being an alternate communication into inlet chamber 52 and normally closed by the plug 60. Control ports 62 and 64 both communicate with the intermediate chamber 66 between seats 46 and 48. Port 64 is normally closed but is provided to allow testing of the pilot valve P after it has been installed in position controlling the relief valve R as hereinafter explained. Outlet or vent port 68 communicates with outlet chamber 70. Ports 72 and 74 through cage 36 provide communication between the interior of cage 36 and outlet chamber 70. The port 76 extends through cage 36 to provide communication between the interior of bonnet 38 and the interior of cage 36.

The valve member 78 which is slidably mounted within cage 36 controls the flow through valve seat 48 responsive to the pressure forces exerted thereon and the force of the adjustable biasing means (spring 80). Spring 80 is adjustable by the threading of screw 82 through bonnet 38. Lock nut 84 is provided to retain screw 82 in its preselected position and cap 86 engages bonnet 36 and covers the outer end of screw 82 and lock nut 84. When valve member 78 is open allowing flow through valve seat 48 a portion of this flow flows through each of port 74 and port 72. The flow to port 72 is restricted by the flange 88 extending outwardly from valve member 78 and terminating in close spaced relationship to the interior of cage 36. This restricts the flow to cause the valve member 78 to snap to full open position when it first opens by exposing the entire lower side of valve member 78 to the fluid pressure from the intermediate chamber 66.

Flow from the inlet chamber 52 to the intermediate chamber 66 is controlled by valve member 90 which is slidably mounted within bore 92 of cage 40 and movable between seats 44 and 46 responsive to the pressure differential across valve member 90. Valve member 90 is preferably closely spaced with respect to the wall of bore 92 to provide a restriction to the flow of fluid through bore 92 around valve member 90. It has been found that if valve member 90 has a polygonal cross-sectional shape such as a hexagon, the points of the polygon engage the walls of bore 92 to guide the movement of valve member 90 in the bore 92 and the restricted flow area is provided between the flats of the hexagon and the wall of the bore 92.

The valve member 90 includes the body 91, the sealing ring 94 which is adapted to engage seat 44 when valve member 90 is in its lower position and the sealing ring 96 held in place by the tubular retainer 98 which sealing ring 96 is adapted to engage the seat 46 as best shown in FIG. 3 when valve member 90. is in its upper position. When valve member 90 is not required to function as a check valve then seal ring 94 may be omitted so that valve member 90 does not seal on seat 44. Tubular retainer 98 is positioned within the bore 100 defined in body 91, includes the annular flange 102 which projects radially outwardly and is adapted to engage the sealing ring 96 to support it in position for sealing engagement with valve seat 46. This support configuration for sealing ring 96 allows pressure tobe equalized across ring 96 through tubular retainer 98 and the space around retainer 98 within the bore 100 in body 91. By equalizing pressure on opposite sides of ring 96 it remains in position to engage seat 46 at all times and is not extruded or pulled out of its support position because of pressure differentials to which it might be exposed resulting from the flow of fluids through seat 46. Valve member 90 thus is the inlet valve when seated on seat 46 and the back check valve when seated on seat 44. Valve member 90 when seated on seat 46 is held by pressure differential to assure that it also cannot engage seat 44. When lower pressures are encountered, the two piece construction of valve member 90 may be eliminated in favor of a single piece and a relatively firm Q-ring 96 which would not require pressure equalization during flow.

In order to insure that valve member 90 is disengaged from seat 46 when valve member 78 is in engagement with seat 48 and that valve member 78 is open when valve member 90 is in engagement with seat 46, the spacer rod 104 is positioned between the two valve members 78 and 90. Rod 104 extends through both valve seats 46 and 48 and is closely spaced with respect to the valve seats to provide a flow restriction to the fluids flowing through these two annular passages. The engagement of spacer rod 104 with valve member 78 is within the bore 106 defined in member 78 to allow some relative movement between the valve members 78 and 90 while assuring that both valve members are not seated at the same time. The length of rod 104 is preselected with respect to the distance between the seated position of valve member 78 on seat 48 and the seated position of valve member 90 on seat 46 to assure that both are not closed at the same time.

The effective areas of valve members 78 and 90 are each larger than the area of valve seat 46. The cross-sectional area of rod 106 is significantly smaller than the area of either seat 46 or seat 48 so that it is ineffective as a force developing member.

In addition, the position of valve seat 46 is adjustable with respect to valve seat 48 to provide a blowdown control adjustment. This adjustment is provided by the threaded engagement of the lower or projecting end of cage 40 in bushing 108. Lock nut 110 is provided to secure the cage 40 in its preselected position. Also, shim 112 is positioned between the shoulder 114 on cage 40 and the inner end of bushing 108. The thickness of the shim 112 is preselected to assure that seats 46 and 48 are not spaced apart a sufficient distance so that both may be closed at the same time. For convenience in adjusting, the outer end of cage 40 is provided with flats to allow cage 40 to be turned with a wrench or a suitable handle.

The testing system shown in FIG. 2 includes a test pressure source or tank 116 and a pressure gage 118. Valve 120 connects into alternate port 64 and flow lines connect between valve 120 and pressure gauge 118 and also through valve 122 to tank 116 as shown. With the testing system connected as shown, valve 120 is opened first and valve 122 is then opened gradually to pressurize intermediate chamber 66. This pressure is registered on gage 118. By increasing the pressure until valve member 78 lifts off valve seat 48 to vent chamber 66, the opening setting of pilot valve P may be checked and reset if needed. During the time that the pressure in intermediate chamber 66 exceeds the pressure in inlet chamber 52, valve member is held in seated position on seat 44 to prevent test fluid from flowing back into the supply system. This allows air to be used in testing even though it could not be tolerated in tank T. The pressure fluid delivered to intermediate chamber 66 only leaves the system through valve seat 48 and vent port 68 and is not conducted to the tank T or the disposal line L. As previously mentioned, the seal ring 94 may be omitted if this testing system is not to be used. With the testing system valve remains connected in port 64 and when the testing system is not to be used, a plug may be used to close port 64 in place of valve 120.

The control pressure maintained in intermediate chamber 66 is delivered through port 62, line 20 to backflow preventer 22. If this control pressure is greater than the pressure in outlet 12, it is conducted through backflow preventer 22 into the main valve R where it is exerted against the pressure responsive member 16 to control the position of valve member 14. Thus, backflow preventer 22 functions as a switching valve to direct the greater of the two fluid pressures to the pressure responsive means 16. Backflow preventer 22 has a tee-shaped body 124 and includes a double-acting valve member 126. The branch leg of body 124 is threaded for connection into main valve R.

Connection of line 20 to backflow preventer 22 is provided into one of the aligned legs of body 124 by the bushing 128 which also defines the inwardly facing valve seat 130. Line 24 is connected into the other of the aligned legs of body 124 by bushing 132 which defines inwardly facing seat 134. As shown, valve member 126 is positioned within body 124, responsive to the pressures exerted on opposite ends thereof and coacts with seats and 134 to provide communication to main valve R from line 20 or line 24 whichever has the higher pressure.

The valve member 126 includes a cylindrical body 136 with heads 138 and 140 at each end of body 136. Head 138 supports the seal ring 142 which in one position of member 126 engages seat 130 to seal off flow from line 20. Head 140 supports seal ring 144 which in the other position of valve member 126 engages seat 134. Heads 138 and 140 are preferred to be generally polygonal shaped in cross-section. As shown, the heads 138 and 140 are square shaped with rounded corners and terminate in a frustoconical portion supporting the seal rings 142 and 144. As best seen in FlG. 5, the rounded corners of the heads guide the valve member 126 in its axial movement by engagement with the walls of the bores in bushings 128 and 132. Further, the heads provide sufficient restriction to flow of fluids through the spaces between the head flats and the walls of the bushing bores to cause movement of the valve member 126 to the other seat responsive to changes in the pressures delivered to bushings 128 and 132. Thus, the backflow preventer 22 functions to assure that the pressure responsive member 16 in main valve R is exposed to the fluid pressure in line 20 or line 24 whichever is higher.

In operation, the pressure fluid from inlet 10 is supplied to inlet port 54 and inlet chamber 52 of pilot valve P. When the valve member 90 is disengaged from both seats 44 and 46 fluid flows around valve member 90 into intermediate chamber 66. Port 62 and line 20 communicate from chamber 66 to backflow preventer 22 and supply fluid to the pressure responsive member 16 of valve R to hold valve member 14 in closed position. Member 16 has a greater effective pressure area than valve member 14 to assure that valve R is closed when inlet pressure is delivered through pilot valve P and backflow preventer 22 to pressure responsive member 16.

The fluid pressure in intermediate chamber 66 is exerted on the exposed portion of valve member 78 through seat 48. The force exerted by spring 80 is adjusted to allow valve member 78 to lift off seat 48 at the maximum pressure which is desired in tank T. As previously explained when valve member 78 cracks open, it snaps to its full open position because of the increased area of valve member exposed to the pressure in intermediate chamber 66 and the flow through valve seat 48 causes a flow past valve member 90 to urge valve member 90 toward closed position and exert a force on valve member 78 by the connection of rod 106 urging valve member 78 toward full open position. When valve member 78 is fully open, valve member 90 engages seat 46 to shut off the inlet supply of fluid. The pressure control fluid in valve R is vented through valve seat 48 and out vent port 68. With the reduced control, pressure valve member 14 opens to relieve the pressure in tank T.

Control of blowdown or closing pressure is controlled by the adjustment of the position of seat 46 in relation to seat 48. The effectiveness of such control is explained in my aforementioned patent application Ser. No. 71 1,821. Such control is accomplished by loosening lock nut 110 and rotating cage 40 within housing 108. Thus, as cage 40 is threaded inwardly, seat 46 is moved closer to seat 48 providing a greater lift 'of valve member 78 to cause valve member 90 to engage seat 46 thereby compressing spring 80 so that the force exerted by spring 80 toward closing is greater. With valve seats 46 and 48 closer together, the closing pressure of valve member 78 is higher than the closing pressure when valve seats 46 and 48 are spaced farther apart. The closing pressure of valve member 78 is preselected to provide the desired blowdown of tank T before valve R closes. This adjusting of blowdown has no effect on the opening setting of pilot valve P since the force exerted by spring 80 on valve member 78 when valve member 78 is seated remains the same regardless of the position of seat 46.

The closing of seat 48 and the opening of flow through seat 46 is responsive to the pressure force on valve member 90 and the spring force exerted by spring 80. The restriction to flow in the areas around rod 106 through the seats 46 and 48 creates a restriction to flow which causes valve 90 to snap away from seat 46 once it cracks open and also causes valve member 78 to snap to closed position on seat 48. This restriction creates a slight increase in back pressure on valve member 90 as it first opens to provide some additional opening force which is sufficient to snap valve member 90 open.

The restriction between valve 90 and bore 92 is particularly important to the operation of pilot valve P whenit is set to handle gas and liquid is supplied through line 18. Such conditions can occur in propane or butane systems and it is important that the pilot valve P function properly to cause the system to be relieved at the preselected relieving pressure when exposed to either gas or liquid. With liquid in pilot valve P, as valve member 78 cracks open, flow around valve member 90 creates a small pressure drop to produce an added force lifting valve member 78 to snap it to full open position.

From the foregoing, it can be seen that the improved pressure relieving system is responsive to pressure in the pressure vessel and in the discharge line so that the system vents the pressure vessel to the discharge line when the pressure in the vessel reaches a preselected pressure but the system functions to assure that there is no communication between the vessel and the discharge line when the pressure in the discharge line increases to a level above the pressure in the vessel. Also, the improved pilot valve may be tested after it is installed in a pressure relieving system without danger of the testing fluid leaking back into the pressure system. The pressure relieving system of the present invention is adaptable for relieving pressure of a gas or liquid in a pressure vessel.

The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the size, shape and materials, as well as in the details of the illustrated construction, may be made within the scope of the appended claims without departing from the spirit of the invention.

What is claimed is:

1. A pilot valve comprising,

a body having three ports in communication with a bore through said body and three valve seats defined within the bore of said body,

the first of said ports communicating with said bore on the first side of the first of said valve seats,

the second of said ports communicating with said bore between the second and third of said valve seats,

the third of said ports communicating with said bore on the opposite side of said third valve seat from said second port,

a first valve member movably mounted within said bore and adapted to engage said first and second valve seats,

said first valve member engaging only one of said valve seats at a time,

a second valve member movably mounted to engage the third valve seat,

means urging said second valve member toward engagement with said third valve seat, and

a rod extending between said first valve member and said second valve member,

said rod being sufficiently long so that when said first valve member is seated on said second valve seat, said second valve member is held out of engagement with said third valve seat and when said second valve member is seated, said first valve member is held out of engagement with said second valve seat.

2. A pilot valve according to claim 1, including means for adjusting the relative position of said second valve seat within said bore with respect to said third valve seat.

3. A pilot valve according to claim 1, including stop means coacting with said position adjusting means to prevent moving said valve seats sufficiently far apart with respect to said rod to allow both of said second and said third valve seats to be closed at one time.

4. A pilot valve according to claim 1, including a valve body having an axial bore,

a tubular retainer positioned in said axial bore and having an outwardly extending annular flange, and

a sealing ring mounted around said tubular retainer between said flange and said valve body whereby said retainer equalizes pressures across said sealing ring,

said sealing ring adapted to engage said second valve seat.

5. A pilot valve according to claim 1, including a second sealing ring mounted on the opposite end of said body from said first sealing ring,

said second sealing ring adapted to engage said first valve seat.

6. A pilot valve according to claim 1, including said second valve member includes a radially extending flange,

said flange coacts with said body to restrict the flow of fluid to said third port after said second valve member initially disengages from said third valve seat to exert additional pressure force on said second valve member to snap it to full open position.

7. A pilot valve according to claim 1, including a fluid pressure source, and

means connecting said fluid pressure source to said pilot valve between said first and third valve seats whereby the opening setting of said second valve member may be tested.

8. A pilot valve according to claim 1, including said first valve member is free to move to and from seated engagement with said first valve seat responsive to pressure difierentials exerted thereacross when said second valve member is in seated engagement with said third valve seat.

9. A pilot valve comprising,

a body with a bore therein,

means defining a first valve member chamber, a control chamber, and a second valve member chamber within said bore,

an inlet port,

said inlet port being in communication with said first valve member chamber through a first valve seat, said first valve member chamber in turn being in communication with said control chamber through a second valve seat, and said control chamber in turn being incommunication with said second valve member chamber through a third valve seat,

a control port in communication with said control chamber, and an outlet port in communication with said second valve member chamber,

a first valve member movably mounted in said first valve member chamber and adapted to engage said first and second valve seats to control flow from said inlet port through said first valve member chamber to said control chamber, said first valve member engaging only one of said first and second valve seats at a time,

a second valve member movably mounted in said second valve member chamber and adapted to engage said third valve seat to control flow from said control chamber to said outlet chamber,

a rod extending between said first valve member and said second valve member, said rod being sufficiently long so that when said first valve member is seated on said second valve seat, said second valve member is held out of engagement with said third valve seat and when said second valve member is seated on said third valve seat, said first valve member is held out of engagement with said second valve seat, and

means urging said second valve member toward engagement with said third valve seat,

said first valve member opening in response to the pressure of the fluid in said inlet port,

said second valve member opening in response to pressure from fluid flowing from said inlet port through said first valve member chamber to said control chamber,

said first valve member seating on said second valve seat in response to flow from said inlet port through said control chamber to said second valve member chamber upon opening of said second valve member and thereby shutting off flow from said inlet port to said control chamber,

said second valve member seating on said third valve seat and said first valve member moving out of engagement with said second valve seat when the force of said urging means overcomes the pressure of the fluid in the first valve member chamber.

Claims (9)

1. A pilot valve comprising, a body having three ports in communication with a bore through said body and three valve seats defined within the bore of said body, the first of said ports communicating with said bore on the first side of the first of said valve seats, the second of said ports communicating with said bore between the second and third of said valve seats, the third of said ports communicating with said bore on the opposite side of said third valve seat from said second port, a first valve member movably mounted within said bore and adapted to engage said first and second valve seats, said first valve member engaging only one of said valve seats at a time, a second valve member movably mounted to engage the third valve seat, means urging said second valve member toward engagement with said third valve seat, and a rod extending between said first valve member and said second valve member, said rod being sufficiently long so that when said first valve member is seated on said second valve seat, said second valve member is held out of engagement with said third valve seat and when said second valve member is seated, said first valve member is held out of engagement with said second valve seat.
2. A pilot valve according to claim 1, including means for adjusting the relative position of said second valve seat within said bore with respect to said third valve seat.
3. A pilot valve according to claim 1, including stop means coacting with said position adjusting means to prevent moving said valve seats sufficiently far apart with respect to said rod to allow both of said second and said third valve seats to be closed at one time.
4. A pilot valve according to claim 1, including a valve body having an axial bore, a tubular retainer positioned in said axial bore and having an outwardly extending annular flange, and a sealing ring mounted around said tubular retainer between said flange and said valve body whereby said retainer equalizes pressures across said sealing ring, said sealing ring adapted to engage said second valve seat.
5. A pilot valve according to claim 1, including a second sealing ring mounted on the opposite end of said body from said first sealing ring, said second sealing ring adapted to engage said first valve seat.
6. A pilot valve according to claim 1, including said second valve member includes a radially extending flange, said flange coacts with said body to restrict the flow of fluid to said third port after said second valve member initially disengages from said third valve seat to exert additional pressure force on said second valve member to snap it to full open position.
7. A pilot valve according to claim 1, including a fluid pressure source, and means connecting said fluid pressure source to said pilot valve between said first and third valve seats whereby the opening setting of said second valve member may be tested.
8. A pilot valve according to claim 1, including said first valve member is free to move to and from seated engagement with said first valve seat responsive to pressure differentials exerted thereacross when said second valve member is in seated engagement with said third valve seat.
9. A pilot valve comprising, a body with a bore therein, means defining a first valve member chamber, a control chamber, and a second valve member chamber within said bore, an inlet port, said inlet port being in communication with said first valve member chamber through a first valve seat, said first valve member chamber in turn being in communication with said control chamber through a second valve seat, and said control chamber in turn being in communication with said second valve member chamber through a third valve seat, a control port in communication with said control chamber, and an outlet port in communication with said second valve member chamber, a first valve member movably mounted in said first valve member chamber and adapted to engage said first and second valve seats to control flow from said inlet port through said first valve member chamber to said control chamber, said first valve member engaging only one of said first and second valve seats at a time, a second valve member movably mounted in said second valve member chamber and adapted to engage said third valve seat to control flow from said control chamber to said outlet chamber, a rod extending between said first valve member and said second valve member, said rod being sufficiently long so that when said first valve member is seated on said second valve seat, said second valve member is held out of engagement with said third valve seat and when said second valve member is seated on said third valve seat, said first valve member is held out of engagement with said second valve seat, and means urging said second valve member toward engagement with said third valve seat, said first valve member opening in response to the pressure of the fluid in said inlet port, said second valve member opening in response to pressure from fluid flowing from said inlet port through said first valve member chamber to said control chamber, said first valve member seating on said second valve seat in response to flow from said inlet port through said control chamber to said second valve member chamber upon opening of said second valve member and thereby shutting off flow from said inlet port to said control chamber, said second valve member seating on said third valve seat and said first valve member moving out of engagement with said second valve seat when the force of said urging means overcomes the pressure of the fluid in the first valve member chamber.
US3664362D 1969-02-06 1971-01-22 Pilot valve Expired - Lifetime US3664362A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US79696169A true 1969-02-06 1969-02-06
US10890671A true 1971-01-22 1971-01-22

Publications (1)

Publication Number Publication Date
US3664362A true US3664362A (en) 1972-05-23

Family

ID=26806408

Family Applications (1)

Application Number Title Priority Date Filing Date
US3664362D Expired - Lifetime US3664362A (en) 1969-02-06 1971-01-22 Pilot valve

Country Status (1)

Country Link
US (1) US3664362A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760859A (en) * 1972-02-08 1973-09-25 Dilar Inc Air pressure control for dual tires
US3881505A (en) * 1974-03-04 1975-05-06 Vapor Corp Pressure responsive pilot valve
US3896843A (en) * 1973-05-11 1975-07-29 Parker Hannifin Corp Pilot valve for controlling a fluid pressure operated valve
WO1980000625A1 (en) * 1978-09-18 1980-04-03 Vapor Corp Pilot operated relief valve
US4200116A (en) * 1976-04-22 1980-04-29 Francois Gemignani Device for sensing pressure and governing the operation of safety valves
DE2953106A1 (en) * 1978-09-18 1981-01-29 Vapor Corp Pilot operated relief valve - has two=stage pilot valve with testing facility in operating communication with main relief valve
DE3129346A1 (en) * 1980-07-25 1982-08-05 Vapor Corp Counterpressure relief valve with new sealing arrangement
DE3204213A1 (en) * 1980-09-17 1982-09-09 Vapor Corp Servo actuated pressure valve
FR2510705A1 (en) * 1981-04-06 1983-02-04 Vapor Corp Pilot-controlled safety valve - has pilot valve operating in two stages with flow adaptor
US4384590A (en) * 1981-06-03 1983-05-24 Crosby Valve & Gage Company Pressure responsive pilot valve
US4390041A (en) * 1978-09-18 1983-06-28 Vapor Corporation Pilot operated relief valve
US4462420A (en) * 1982-06-14 1984-07-31 Teledyne Farris Engineering Safety pressure relief valve
US4527770A (en) * 1982-08-12 1985-07-09 Axelson, Inc. In-service test valve
US4586533A (en) * 1985-07-01 1986-05-06 Crosby Valve & Gage Company Non-flowing modulating pilot operated relief valve
US4596360A (en) * 1984-12-26 1986-06-24 Sunstrand Corporation Pilot operated pressure regulating valve
EP0245947A2 (en) * 1986-05-14 1987-11-19 ANDERSON GREENWOOD & CO. Testing device for pilot valves
US4848397A (en) * 1988-06-20 1989-07-18 Keystone International, Inc. High temperature safety relief system
US4865074A (en) * 1988-06-20 1989-09-12 Keystone International Inc. High temperature safety relief system
US4870989A (en) * 1988-06-20 1989-10-03 Keystone International, Inc. High temperature safety relief system
US4881571A (en) * 1983-09-22 1989-11-21 Dresser Industries, Inc. Modulating pressure operated pilot relief valve
US4917144A (en) * 1989-02-07 1990-04-17 Dresser Industries, Inc. Modulating pilot operated safety relief valve for low pressure application
US5178177A (en) * 1988-01-06 1993-01-12 Texaco Inc. Gas saving back pressure device
US5249593A (en) * 1992-06-29 1993-10-05 Keystone International Holdings Corp. Fluid pressure relief system for pressure vessels
DE4331515A1 (en) * 1993-09-16 1995-03-23 Buerkert Gmbh Pilot-controlled shut-off valve with backflow preventer
US5590684A (en) * 1995-09-01 1997-01-07 Keystone International Holdings Corporation Dual pilot manifold assembly for a safety relief valve
US5725015A (en) * 1996-03-14 1998-03-10 Dresser Industries, Inc. Pilot-operated safety relief valve assembly
US5762102A (en) * 1995-06-01 1998-06-09 Becker Precision Equipment, Inc. Pneumatically controlled no-bleed valve and variable pressure regulator
US6016826A (en) * 1995-09-26 2000-01-25 M&Fc Holding Company, Inc. Automatic center cavity equalizing valve
US6161571A (en) * 1999-05-14 2000-12-19 The Living Trust of Eleanor A. Taylor Modulating relief valve
US6161570A (en) * 1999-06-01 2000-12-19 Tyco Flow Control, Inc. Pilot-operated relief valve
US6192924B1 (en) 2000-01-19 2001-02-27 Tyco Flow Control, Inc. Pilot operated relief valve
WO2002038994A1 (en) 2000-09-19 2002-05-16 Curtiss Wright Corporation Pressure releif valve actuated by pilot valve
US6516828B2 (en) 2001-06-19 2003-02-11 Mercer Valve Company, Inc. Snap-type safety relief valve having a consistent low blow-down value
US20040060600A1 (en) * 2001-06-19 2004-04-01 Choate Jeremy R. Safety relief valve having a low blow-down value and spring therefore
ES2204226A1 (en) * 2001-04-16 2004-04-16 Hidroconta, S.A. Valve-governing pilot with closure by membrane or by piston permits reduction of pressure at valve outlet and maintenance of pressure at its entry
US6769880B1 (en) 2002-09-19 2004-08-03 Mangonel Corporation Pressure blowdown system for oil injected rotary screw air compressor
US7316241B1 (en) * 2005-01-27 2008-01-08 Spirax Sarco, Inc. Steam trap
US20080105307A1 (en) * 2006-11-08 2008-05-08 Denso Corporation Fluid pressure actuated poppet valve
US20090032116A1 (en) * 2007-07-31 2009-02-05 Gm Global Technology Operations, Inc. Ball Check Valve Assembly for Hydraulic Control Circuit
US8573250B1 (en) 2009-09-01 2013-11-05 Spirax Sarco, Inc. Steam trap with integrated temperature sensors
US20140053387A1 (en) * 2012-08-23 2014-02-27 Daniel Martin Adams Methods and apparatus to assemble actuators
CN104358917A (en) * 2014-11-05 2015-02-18 北京航天动力研究所 Pilot operated safety valve with independent gas source control
RU2560651C2 (en) * 2013-08-08 2015-08-20 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Dynamically stable drain safety valve
CN107143671A (en) * 2017-06-22 2017-09-08 苏州诺纳可电子科技有限公司 A kind of slow pressure check valve of easily assembling
CN107228212A (en) * 2017-06-22 2017-10-03 苏州诺纳可电子科技有限公司 A kind of easily assembling pressure-control check valve
CN107420592A (en) * 2017-06-22 2017-12-01 苏州诺纳可电子科技有限公司 A kind of easily assembling voltage stabilizing check valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2649115A (en) * 1948-01-26 1953-08-18 Bendix Aviat Corp Pressure-responsive mechanism
US2661023A (en) * 1943-05-29 1953-12-01 Clayton Manufacturing Co Fluid pressure-operated valve
US3196891A (en) * 1963-01-28 1965-07-27 Bendix Westinghouse Automotive Step-up relay valve
US3294111A (en) * 1965-06-01 1966-12-27 Us Industries Inc Relief valve
US3419030A (en) * 1964-11-20 1968-12-31 Gratzmuller Jean Louis Fast evacuation valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2661023A (en) * 1943-05-29 1953-12-01 Clayton Manufacturing Co Fluid pressure-operated valve
US2649115A (en) * 1948-01-26 1953-08-18 Bendix Aviat Corp Pressure-responsive mechanism
US3196891A (en) * 1963-01-28 1965-07-27 Bendix Westinghouse Automotive Step-up relay valve
US3419030A (en) * 1964-11-20 1968-12-31 Gratzmuller Jean Louis Fast evacuation valve
US3294111A (en) * 1965-06-01 1966-12-27 Us Industries Inc Relief valve

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760859A (en) * 1972-02-08 1973-09-25 Dilar Inc Air pressure control for dual tires
US3896843A (en) * 1973-05-11 1975-07-29 Parker Hannifin Corp Pilot valve for controlling a fluid pressure operated valve
US3881505A (en) * 1974-03-04 1975-05-06 Vapor Corp Pressure responsive pilot valve
DE2509395A1 (en) * 1974-03-04 1975-09-11 Vapor Corp control valve
US4200116A (en) * 1976-04-22 1980-04-29 Francois Gemignani Device for sensing pressure and governing the operation of safety valves
US4390041A (en) * 1978-09-18 1983-06-28 Vapor Corporation Pilot operated relief valve
WO1980000625A1 (en) * 1978-09-18 1980-04-03 Vapor Corp Pilot operated relief valve
DE2953106A1 (en) * 1978-09-18 1981-01-29 Vapor Corp Pilot operated relief valve - has two=stage pilot valve with testing facility in operating communication with main relief valve
DE3129346A1 (en) * 1980-07-25 1982-08-05 Vapor Corp Counterpressure relief valve with new sealing arrangement
DE3204213A1 (en) * 1980-09-17 1982-09-09 Vapor Corp Servo actuated pressure valve
US4402341A (en) * 1981-02-13 1983-09-06 Vapor Corporation Pilot operated relief valve
FR2510705A1 (en) * 1981-04-06 1983-02-04 Vapor Corp Pilot-controlled safety valve - has pilot valve operating in two stages with flow adaptor
US4384590A (en) * 1981-06-03 1983-05-24 Crosby Valve & Gage Company Pressure responsive pilot valve
US4462420A (en) * 1982-06-14 1984-07-31 Teledyne Farris Engineering Safety pressure relief valve
US4527770A (en) * 1982-08-12 1985-07-09 Axelson, Inc. In-service test valve
US4881571A (en) * 1983-09-22 1989-11-21 Dresser Industries, Inc. Modulating pressure operated pilot relief valve
US4596360A (en) * 1984-12-26 1986-06-24 Sunstrand Corporation Pilot operated pressure regulating valve
US4586533A (en) * 1985-07-01 1986-05-06 Crosby Valve & Gage Company Non-flowing modulating pilot operated relief valve
AU583353B2 (en) * 1985-07-01 1989-04-27 Crosby Valve & Gage Company Pilot operated relief valve
EP0245947A3 (en) * 1986-05-14 1989-03-15 Anderson Greenwood & Co. Testing device for pilot valves
EP0245947A2 (en) * 1986-05-14 1987-11-19 ANDERSON GREENWOOD & CO. Testing device for pilot valves
US5178177A (en) * 1988-01-06 1993-01-12 Texaco Inc. Gas saving back pressure device
US4870989A (en) * 1988-06-20 1989-10-03 Keystone International, Inc. High temperature safety relief system
US4848397A (en) * 1988-06-20 1989-07-18 Keystone International, Inc. High temperature safety relief system
EP0348035A2 (en) * 1988-06-20 1989-12-27 Keystone International Inc. High temperature safety relief system
EP0348035A3 (en) * 1988-06-20 1991-01-09 Keystone International Inc. High temperature safety relief system
US4865074A (en) * 1988-06-20 1989-09-12 Keystone International Inc. High temperature safety relief system
US4917144A (en) * 1989-02-07 1990-04-17 Dresser Industries, Inc. Modulating pilot operated safety relief valve for low pressure application
US5249593A (en) * 1992-06-29 1993-10-05 Keystone International Holdings Corp. Fluid pressure relief system for pressure vessels
US5282491A (en) * 1992-06-29 1994-02-01 Keystone International Holdings Corp. Fluid pressure relief system for pressure vessels
US5333635A (en) * 1992-06-29 1994-08-02 Keystone International Holdings Corp. Fluid pressure relief system for pressure vessels
DE4331515A1 (en) * 1993-09-16 1995-03-23 Buerkert Gmbh Pilot-controlled shut-off valve with backflow preventer
DE4331515C2 (en) * 1993-09-16 2002-07-18 Buerkert Gmbh Pilot operated shut-off valve with backflow preventer
US5762102A (en) * 1995-06-01 1998-06-09 Becker Precision Equipment, Inc. Pneumatically controlled no-bleed valve and variable pressure regulator
US5590684A (en) * 1995-09-01 1997-01-07 Keystone International Holdings Corporation Dual pilot manifold assembly for a safety relief valve
US5769113A (en) * 1995-09-01 1998-06-23 Keystone International Holdings Corporation Dual pilot manifold assembly for a safety relief valve
US6016826A (en) * 1995-09-26 2000-01-25 M&Fc Holding Company, Inc. Automatic center cavity equalizing valve
US5725015A (en) * 1996-03-14 1998-03-10 Dresser Industries, Inc. Pilot-operated safety relief valve assembly
US6161571A (en) * 1999-05-14 2000-12-19 The Living Trust of Eleanor A. Taylor Modulating relief valve
US6161570A (en) * 1999-06-01 2000-12-19 Tyco Flow Control, Inc. Pilot-operated relief valve
US6192924B1 (en) 2000-01-19 2001-02-27 Tyco Flow Control, Inc. Pilot operated relief valve
WO2001053734A1 (en) * 2000-01-19 2001-07-26 Tyco Flow Control, Inc. Pilot operated relief valve
EP1252459A1 (en) * 2000-01-19 2002-10-30 Tyco Flow Control Inc. Pilot operated relief valve
EP1252459A4 (en) * 2000-01-19 2003-04-23 Tyco Flow Control Inc Pilot operated relief valve
WO2002038994A1 (en) 2000-09-19 2002-05-16 Curtiss Wright Corporation Pressure releif valve actuated by pilot valve
ES2204226A1 (en) * 2001-04-16 2004-04-16 Hidroconta, S.A. Valve-governing pilot with closure by membrane or by piston permits reduction of pressure at valve outlet and maintenance of pressure at its entry
US7744071B2 (en) 2001-06-19 2010-06-29 Mercer Valve Company, Inc. Safety relief valve having a low blow-down value and spring therefore
US20040060600A1 (en) * 2001-06-19 2004-04-01 Choate Jeremy R. Safety relief valve having a low blow-down value and spring therefore
US6516828B2 (en) 2001-06-19 2003-02-11 Mercer Valve Company, Inc. Snap-type safety relief valve having a consistent low blow-down value
US20060090796A1 (en) * 2001-06-19 2006-05-04 Mercer Valve Company, Inc. Safety relief valve having a low blow-down value and spring therefore
US7337796B2 (en) 2001-06-19 2008-03-04 Mercer Valve Company, Inc. Safety relief valve having a low blow-down value and spring therefore
US20080017257A1 (en) * 2001-06-19 2008-01-24 Mercer Valve Company, Inc. Safety relief valve having a low blow-down value and spring therefore
US7628169B2 (en) 2001-06-19 2009-12-08 Mercer Valve Company, Inc. Safety relief valve having a low blow-down value and spring therefore
US6769880B1 (en) 2002-09-19 2004-08-03 Mangonel Corporation Pressure blowdown system for oil injected rotary screw air compressor
US7316241B1 (en) * 2005-01-27 2008-01-08 Spirax Sarco, Inc. Steam trap
US7793912B2 (en) * 2006-11-08 2010-09-14 Denso Corporation Fluid pressure actuated poppet valve
US20080105307A1 (en) * 2006-11-08 2008-05-08 Denso Corporation Fluid pressure actuated poppet valve
US8327869B2 (en) * 2007-07-31 2012-12-11 GM Global Technology Operations LLC Ball check valve assembly for hydraulic control circuit
US20090032116A1 (en) * 2007-07-31 2009-02-05 Gm Global Technology Operations, Inc. Ball Check Valve Assembly for Hydraulic Control Circuit
US8573250B1 (en) 2009-09-01 2013-11-05 Spirax Sarco, Inc. Steam trap with integrated temperature sensors
US9228674B2 (en) * 2012-08-23 2016-01-05 Fisher Controls International, Llc Methods and apparatus to assemble actuators
US20140053387A1 (en) * 2012-08-23 2014-02-27 Daniel Martin Adams Methods and apparatus to assemble actuators
CN103629420A (en) * 2012-08-23 2014-03-12 费希尔控制国际公司 Methods and apparatus to assemble actuators
CN103629420B (en) * 2012-08-23 2017-12-01 费希尔控制国际公司 Assemble the method and device of actuator
US9933084B2 (en) 2012-08-23 2018-04-03 Fisher Controls International Llc Methods and apparatus to assemble actuators
RU2560651C2 (en) * 2013-08-08 2015-08-20 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Dynamically stable drain safety valve
CN104358917B (en) * 2014-11-05 2017-03-01 北京航天石化技术装备工程有限公司 The pilot operated safety valve controlling with individual gas sources
CN104358917A (en) * 2014-11-05 2015-02-18 北京航天动力研究所 Pilot operated safety valve with independent gas source control
CN107143671A (en) * 2017-06-22 2017-09-08 苏州诺纳可电子科技有限公司 A kind of slow pressure check valve of easily assembling
CN107228212A (en) * 2017-06-22 2017-10-03 苏州诺纳可电子科技有限公司 A kind of easily assembling pressure-control check valve
CN107420592A (en) * 2017-06-22 2017-12-01 苏州诺纳可电子科技有限公司 A kind of easily assembling voltage stabilizing check valve

Similar Documents

Publication Publication Date Title
JP5922734B2 (en) Internal relief valve device for use with load regulator
US3860066A (en) Safety valves for wells
US3379405A (en) Valve
JP3803729B2 (en) valve
CA2403386C (en) Pilot operated relief valve
EP0289513B1 (en) An arrangement for changing the pressure in pneumatic or hyd-raulic systems
US3765642A (en) Valve and actuator assembly
US3782410A (en) Valve
US5400817A (en) High-capacity pressure limiting valve
US6634375B2 (en) Leak arresting valve
CA1254483A (en) Non-flowing modulating pilot operated relief valve
US7735514B2 (en) Apparatus for regulating flow of a medium in a heating and cooling system
US6978799B2 (en) Emergency pressure relief valve with enhanced reset
US2664674A (en) Fluid regulator valve
US3085589A (en) Safety valve
US3331583A (en) Balanced shut-off valve
US3294112A (en) Remotely operable fluid flow control valve
US7302961B2 (en) Surge relief valve
US4402341A (en) Pilot operated relief valve
US3592224A (en) Relief valve
US4967791A (en) Pressure activated check valve
US4191208A (en) Automatic fill-stop valve
US4705065A (en) Safety relief system for control or vent valves
US4121619A (en) Tapered valves with conical seats
US3776506A (en) Valve structure having fluid pressure actuated sealing members