US3656940A - Process for the purification of nickel containing solutions - Google Patents
Process for the purification of nickel containing solutions Download PDFInfo
- Publication number
- US3656940A US3656940A US830883A US3656940DA US3656940A US 3656940 A US3656940 A US 3656940A US 830883 A US830883 A US 830883A US 3656940D A US3656940D A US 3656940DA US 3656940 A US3656940 A US 3656940A
- Authority
- US
- United States
- Prior art keywords
- nickel
- cobalt
- solution
- chloride
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title abstract description 99
- 229910052759 nickel Inorganic materials 0.000 title abstract description 47
- 238000000746 purification Methods 0.000 title abstract description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 21
- 239000003957 anion exchange resin Substances 0.000 claims abstract description 14
- 239000007864 aqueous solution Substances 0.000 claims abstract description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 23
- 239000011780 sodium chloride Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical group [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 239000003513 alkali Substances 0.000 claims description 3
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims description 3
- 239000001103 potassium chloride Substances 0.000 claims description 3
- 235000011164 potassium chloride Nutrition 0.000 claims description 3
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 3
- 229910001617 alkaline earth metal chloride Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 60
- 229910017052 cobalt Inorganic materials 0.000 abstract description 42
- 239000010941 cobalt Substances 0.000 abstract description 42
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 42
- 239000000243 solution Substances 0.000 abstract description 39
- 229910052742 iron Inorganic materials 0.000 abstract description 29
- 150000002739 metals Chemical class 0.000 abstract description 15
- 150000001805 chlorine compounds Chemical class 0.000 abstract description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 abstract description 8
- 125000000129 anionic group Chemical group 0.000 abstract description 6
- -1 iron and cobalt Chemical class 0.000 abstract description 6
- 229910000863 Ferronickel Inorganic materials 0.000 abstract description 3
- 150000003839 salts Chemical class 0.000 abstract description 3
- 239000011347 resin Substances 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- 239000000203 mixture Substances 0.000 description 9
- 238000011282 treatment Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000003456 ion exchange resin Substances 0.000 description 5
- 229920003303 ion-exchange polymer Polymers 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 102100021935 C-C motif chemokine 26 Human genes 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 101000897493 Homo sapiens C-C motif chemokine 26 Proteins 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000005325 percolation Methods 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 150000003624 transition metals Chemical group 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 241000969130 Atthis Species 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 241001096445 Noumea Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000004700 cobalt complex Chemical class 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical class [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000009854 hydrometallurgy Methods 0.000 description 1
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical class Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/01—Preparation or separation involving a liquid-liquid extraction, an adsorption or an ion-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/04—Processes using organic exchangers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0009—Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/01—Preparation or separation involving a liquid-liquid extraction, an adsorption or an ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/42—Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- This invention relates to a hydrometallurgical process for the separation of metals and more particularly to a process for purifying nickel solutions containing in admixture small quantitles of metals such as cobalt, iron, and, optionally, molybdenum, copper, aluminum, manganese, and zinc.
- the nickeliferous ores generally contain relatively large quantities of iron and cobalt, and for industrial applications it is desirable to carry out treatments with a view to separately obtaining high-purity nickel and, where appropriate, high-purity cobalt.
- anodes are usually cast from an iron/nickel/cobalt alloy orfrom matte, i.e., sub-sulphides of these metals.
- the anodic corrosion of these cast ingots in anode compartments containing an aqueous electrolyte based on nickel chloride forms on the one hand an impure anolyte rich in nickel and containing iron, cobalt and optionally other metals, and on the other hand an insoluble anodic sludge consisting mainly of metalloids, sulphur and arsenic or certain metal compounds thereof.
- the impure anolyte has to be subjected to a chemical treatment in order to completely remove the iron and cobalt present therein and thus provide a purified electrolyte which can be used as a catholyte.
- the nickel is electrodeposited on metal plates, for example consisting of stainless steel or nickel, in cathode compartments.
- the catholyte poor in nickel is then transferred to the anode compartments by diffusion through porous fabric partitions which limit the cathode compartment.
- chlorides of cobalt and nickel could be separated by equivalent means, such as for example by means of certain amines or carboxylic acids.
- these processes cannot be applied to purification by electrolysis because they involve conditions of acidity that are incompatible with the process of electro-deposition.
- the nickel-cobaltiferous material has to be dissolved in a solution of ammonium chloride to obtain solutions containing nickel cations and complex cobalt chloride anions.
- Ammonia is given off during this reaction, with the result that the technique is not suited to the conditions under which electrolytic purification is carried out, i.e., generally in an acid medium and in the presence of completely dissociated salts such as sodium chloride.
- the quantities of ammonium salts required for the treatment are prohibitive because they lie between concentrations of 4N and ION, usually at sixto eight-times molar.
- the present invention provide an efficient process which is easy to carry out in that it involves very few manual operations whilst at the same time enabling a certain number of metals, in particular nickel, iron and cobalt, to be almost completely separated from mixtures containing them.
- the present invention relates to a process for purifying solutions containing nickel in admixture with metals capable of forming anionic complex chlorides, wherein the anionic complex chlorides of these metals are formed by addition to the solution of an alkaline or alkali earth metal chloride, the chloride concentration of the solution being from 2 to 6N and the temperature above 20 C, after which the solution is contacted with an anion exchange resin to adsorb the complex anions of the metals capable of forming anionic complex chlorides and the nickel solution thus treated is recovered.
- the solution will generally then be treated to remove from it all metals other than those emanating from the supply of the dissociated chloride.
- the metals capable of forming complex chlorides include in particular cobalt and iron and also molybdenum, manganese, aluminum, and zinc.
- the process according to the invention is particularly applicable to the treatment of anolytes such as those emanating from the electrolytic refinement of ferro-nickel or mattes. However, it may also be used for separating cobalt, iron and nickel from mixtures emanating from the direct dissolution of materials containing them. Thus, the process may be used with particular advantages for the purification of nickel salts obtained by the action of hydrochloric acid on such substances as industrial waste, spent catalysts and carbonates and hydroxides emanating from the precipitation of spent nickel-plating baths with soda.
- these anolytes In the case of impure anolytes emanating from the attack of ferro-nickel anodes, these anolytes generally have a pH value of around 4 and contain from 70 to 85 g/liter of nickel, from 0.5 to l g/liter of iron and from 0.10 to 0.20 g/liter of cobalt, and also quantities of sodium chloride of the order of 60 g/liter and more generally between 60 and 180 g/liter.
- the dissociated hydrochloric acid salts are preferably alkali metal chlorides and more particularly sodium chloride and potassium chloride.
- the chloride concentration of the solution is preferably 3N to 4N.
- the temperature employed, in excess of 20 C, is preferably in a range from about 60 to about 80 C, these being the temperatures at which the anionic exchange resin has a maximum effect and does not undergo any deterioration.
- resins that are known to have strongly basic outline groups, such as quaternary amines.
- a preferred resin is polystyrene with active groups of the quaternary ammonium type, this resin working in the form of its chloride which is its most stable form.
- IMAC S 540 One example of such a resin is commercially available under the name IMAC S 540.
- AMBERLITE IRA 400 which is a polystyrene resin containing groups
- DOWEX l which is a polystyrene resin containing groups
- weakly basic resins such as that commercially available under the name lMAC A 20 P, of which the active groups consist of primary, secondary and tertiary amines, may be satisfactorily used in the specific case of anolytes with the concentration indicated previously, because the pH and temperature conditions correspond ideally to the range of activity of these types of base.
- the process comprises anodically attacking nickeliferous, cobaltiferous and ferruginous substances in a hot concentrated solution of a nickel chloride and sodium chloride and continuously treating this solution be percolation on an anion-exchange resin in the form of its chloride, so as to absorb the iron and the cobalt and give a solution of nickel chloride and sodium chloride which is directly recycled to the cathode compartment for the electrodeposition of the nickel in a pure form.
- the impure solution issuing from the anode compartment passes at a predetermined rate through an anion-exchange resin column (such as the resin lMAC S 540).
- the nickel cations pass through the column without being retained whilst the complex cobalt/iron anions are adsorbed by the resin. This results in a complete separation of all the iron and cobalt from the nickel.
- the invention also relates to a process for recovering metals other than nickel retained in complex anionic form by the ion exchanger, comprising desorbing the aforementioned exchanger with optionally acidulated water or even with an aqueous solution of dissociated salts at such a concentration that the aforementioned complex is destroyed.
- the cobalt is preferably extracted with a semi-normal solution of dissociated chlorides, the iron, aluminum, zinc and so on preferably being eliminated with a decinormal to normal hydrochloric acid solution.
- the desorbed metals are directly recovered in the form of chlorides. Elution with the chlorides simultaneously regenerates the resin which is reavailable for continuing the purification cycle.
- the column has a double jacket enabling a temperature of C: 5 C to be maintained during the experiment. Percolation is carried out at an average speed of 4,500 liters per hour.
- the resin On completion of the cycle, the resin is washed with 3 liters of saturated sodium chloride solution in order to entrain the nickel retained, and the cobalt is eluted by percolating hot water through the resin.
- the following table confirms the path along which the various operations progress.
- EXAMPLE 2 Six liters of an anolyte which is produced by the electrolytic purification of a nondeferrized matte and having the following composition:
- Example 2 are brought into contact in a manner substantially similar to that described in Example 1 in the same ion-exchange column which was used for treating the anolyte containing only very small quantities of impurities other than cobalt.
- the first 6 liters of effluent contained less than 50 mg per liter of cobalt and less than mg per liter of nickel.
- almost all the cobalt, i.e., 11.27 g, is recovered in pure fon'n, the iron being desorbed from the resin on completion of the cycle by washing with water at a high rate, i.e., at a rate of four times the volume of resin per hour.
- the initial NirNi-l-Co weight ratio is 83.8%. After treatment, it reaches 99.1 percent.
- the cobalt complex is released during desorption in the form of a solution of cobalt chloride in which the weight ratio of NizCo is lower than 2 percent.
- aqueous solution at least one chloride selected from the group comprising the alkali and alkaline earth metal chlorides in an amount such that said aqueous solution has a chloride concentration in the range from 2N to 6N;
- an eluant selected from the group consisting of water, acidulated water and aqueous solutions of alkali and a1- kaline earth metal chlorides at such a concentration that the said metal is removed from said anion exchange resin.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR156168A FR1583920A (fr) | 1968-06-21 | 1968-06-21 | Procede de purification de solutions de nickel |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3656940A true US3656940A (en) | 1972-04-18 |
Family
ID=8651520
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US830883A Expired - Lifetime US3656940A (en) | 1968-06-21 | 1969-06-05 | Process for the purification of nickel containing solutions |
Country Status (13)
| Country | Link |
|---|---|
| US (1) | US3656940A (cs) |
| JP (1) | JPS518095B1 (cs) |
| BE (1) | BE734070A (cs) |
| BR (1) | BR6909995D0 (cs) |
| CS (1) | CS179356B2 (cs) |
| CU (1) | CU33395A (cs) |
| DE (1) | DE1931426A1 (cs) |
| DO (1) | DOP1969001630A (cs) |
| FI (1) | FI50328C (cs) |
| FR (1) | FR1583920A (cs) |
| GB (1) | GB1276134A (cs) |
| NO (1) | NO125938B (cs) |
| YU (1) | YU33889B (cs) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3839168A (en) * | 1971-05-24 | 1974-10-01 | Nickel Le | Method for producing high-purity nickel from nickel matte |
| US3992270A (en) * | 1974-02-05 | 1976-11-16 | Imetal | Method of reclaiming nickel values from a nickeliferous alloy |
| US4069040A (en) * | 1973-11-19 | 1978-01-17 | Rhone-Poulenc Industries | Method for recovery of platinum and iridium from catalysts |
| US5368703A (en) * | 1992-05-12 | 1994-11-29 | Anco Environmental Processes, Inc. | Method for arsenic removal from wastewater |
| US20040069652A1 (en) * | 2001-08-01 | 2004-04-15 | Yuichiro Shindo | Method for producing high purity nickle, high purity nickle, sputtering target comprising high purity nickel, and thin film formed by using said spattering target |
| WO2006113944A1 (en) * | 2005-04-18 | 2006-10-26 | Edmund Kevin Hardwick | Separation of nickel from cobalt by using chloridizing solution and cobalt-selective resin |
| US20070122324A1 (en) * | 2005-11-25 | 2007-05-31 | Enthone Inc. | Method and apparatus for purification of process solutions |
| AU2004208659B2 (en) * | 2003-09-17 | 2010-05-20 | Sumitomo Metal Mining Co., Ltd. | Method for refining aqueous nickel chloride solution |
| CN106283108A (zh) * | 2016-08-31 | 2017-01-04 | 中南大学 | 一种用离子交换树脂从镍电解阳极液中深度除铜的方法 |
| WO2023213919A1 (en) * | 2022-05-05 | 2023-11-09 | Umicore | Process for the oxidative leaching of a metal |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2138332B1 (cs) * | 1971-05-24 | 1975-07-04 | Nickel Le | |
| FR2834980B1 (fr) * | 2002-01-23 | 2005-01-14 | Sarp Ind | Procede de separation du zinc et d'un second metal ne formant pas de complexe anionique en presence d'ions chlorures |
| JP6602172B2 (ja) * | 2015-11-18 | 2019-11-06 | シチズン時計株式会社 | 金属装飾物及びその製造方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3085054A (en) * | 1960-02-25 | 1963-04-09 | Falconbridge Nickel Mines Ltd | Recovery of nickel |
| US3128156A (en) * | 1960-02-08 | 1964-04-07 | Dow Chemical Co | Recovery and separation of cobalt and nickel |
| US3235377A (en) * | 1962-11-23 | 1966-02-15 | Union Carbide Corp | Use of an anion exchange resin to absorb cobalt from a solution containing cobalt and nickel |
| US3537845A (en) * | 1967-04-24 | 1970-11-03 | Dow Chemical Co | Separation and recovery of cobalt and zinc |
-
1968
- 1968-06-21 FR FR156168A patent/FR1583920A/fr not_active Expired
-
1969
- 1969-05-27 YU YU1319/69A patent/YU33889B/xx unknown
- 1969-05-28 GB GB26880/69A patent/GB1276134A/en not_active Expired
- 1969-06-04 BE BE734070D patent/BE734070A/xx unknown
- 1969-06-05 US US830883A patent/US3656940A/en not_active Expired - Lifetime
- 1969-06-10 FI FI691723A patent/FI50328C/fi active
- 1969-06-13 CS CS6900004196A patent/CS179356B2/cs unknown
- 1969-06-18 NO NO2520/69A patent/NO125938B/no unknown
- 1969-06-20 DO DO1969001630A patent/DOP1969001630A/es unknown
- 1969-06-20 BR BR209995/69A patent/BR6909995D0/pt unknown
- 1969-06-20 CU CU6933395A patent/CU33395A/xx unknown
- 1969-06-20 DE DE19691931426 patent/DE1931426A1/de not_active Withdrawn
- 1969-06-21 JP JP6948848A patent/JPS518095B1/ja active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3128156A (en) * | 1960-02-08 | 1964-04-07 | Dow Chemical Co | Recovery and separation of cobalt and nickel |
| US3085054A (en) * | 1960-02-25 | 1963-04-09 | Falconbridge Nickel Mines Ltd | Recovery of nickel |
| US3235377A (en) * | 1962-11-23 | 1966-02-15 | Union Carbide Corp | Use of an anion exchange resin to absorb cobalt from a solution containing cobalt and nickel |
| US3537845A (en) * | 1967-04-24 | 1970-11-03 | Dow Chemical Co | Separation and recovery of cobalt and zinc |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3839168A (en) * | 1971-05-24 | 1974-10-01 | Nickel Le | Method for producing high-purity nickel from nickel matte |
| US4069040A (en) * | 1973-11-19 | 1978-01-17 | Rhone-Poulenc Industries | Method for recovery of platinum and iridium from catalysts |
| US3992270A (en) * | 1974-02-05 | 1976-11-16 | Imetal | Method of reclaiming nickel values from a nickeliferous alloy |
| US5368703A (en) * | 1992-05-12 | 1994-11-29 | Anco Environmental Processes, Inc. | Method for arsenic removal from wastewater |
| US7435325B2 (en) * | 2001-08-01 | 2008-10-14 | Nippon Mining & Metals Co., Ltd | Method for producing high purity nickle, high purity nickle, sputtering target comprising the high purity nickel, and thin film formed by using said spattering target |
| US20040069652A1 (en) * | 2001-08-01 | 2004-04-15 | Yuichiro Shindo | Method for producing high purity nickle, high purity nickle, sputtering target comprising high purity nickel, and thin film formed by using said spattering target |
| US20090004498A1 (en) * | 2001-08-01 | 2009-01-01 | Nippon Mining & Metals Co., Ltd. | Manufacturing Method of High Purity Nickel, High Purity Nickel, Sputtering Target formed from said High Purity Nickel, and Thin Film formed with said Sputtering Target |
| AU2004208659B2 (en) * | 2003-09-17 | 2010-05-20 | Sumitomo Metal Mining Co., Ltd. | Method for refining aqueous nickel chloride solution |
| WO2006113944A1 (en) * | 2005-04-18 | 2006-10-26 | Edmund Kevin Hardwick | Separation of nickel from cobalt by using chloridizing solution and cobalt-selective resin |
| US20070122324A1 (en) * | 2005-11-25 | 2007-05-31 | Enthone Inc. | Method and apparatus for purification of process solutions |
| US8202431B2 (en) * | 2005-11-25 | 2012-06-19 | Enthone Inc. | Method for removing impurities from a metal deposition process solution |
| EP1803837B1 (de) | 2005-11-25 | 2018-09-12 | MacDermid Enthone Inc. | Verfahren und Vorrichtung zur Reinigung von Prozesslösungen |
| CN106283108A (zh) * | 2016-08-31 | 2017-01-04 | 中南大学 | 一种用离子交换树脂从镍电解阳极液中深度除铜的方法 |
| CN106283108B (zh) * | 2016-08-31 | 2018-04-03 | 中南大学 | 一种用离子交换树脂从镍电解阳极液中深度除铜的方法 |
| WO2023213919A1 (en) * | 2022-05-05 | 2023-11-09 | Umicore | Process for the oxidative leaching of a metal |
Also Published As
| Publication number | Publication date |
|---|---|
| YU131969A (en) | 1977-12-31 |
| BE734070A (cs) | 1969-11-17 |
| FI50328C (fi) | 1976-02-10 |
| JPS518095B1 (cs) | 1976-03-13 |
| FI50328B (cs) | 1975-10-31 |
| FR1583920A (fr) | 1969-12-05 |
| CS179356B2 (en) | 1977-10-31 |
| NO125938B (cs) | 1972-11-27 |
| YU33889B (en) | 1978-06-30 |
| GB1276134A (en) | 1972-06-01 |
| CU33395A (en) | 1981-12-04 |
| BR6909995D0 (pt) | 1973-01-11 |
| DE1931426A1 (de) | 1970-03-19 |
| DOP1969001630A (es) | 1974-07-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3656940A (en) | Process for the purification of nickel containing solutions | |
| US5051128A (en) | Elution process for gold-iodine complex from ion-exchange resins | |
| US4016054A (en) | Hydrometallurgical treatment process for extracting constituent metal values from ferro-nickel | |
| US3251646A (en) | Process for the recovery or purification of metals by liquid-liquid extraction | |
| JPS6261522B2 (cs) | ||
| US3544309A (en) | Recovery of constituents from metal alloy scrap | |
| US3661564A (en) | Extraction of cobalt and nickel from laterite | |
| US5366715A (en) | Method for selectively removing antimony and bismuth from sulphuric acid solutions | |
| US4317804A (en) | Process for the selective removal of ferric ion from an aqueous solution containing ferric and other metal ions | |
| Ando et al. | Recovering Bi and Sb from electrolyte in copper electrorefining | |
| US4572823A (en) | Process for rhenium recovery | |
| US3536597A (en) | Process for recovering mercury from a mercury-containing sludge | |
| Goldblatt | Recovery of cyanide from waste cyanide solutions by ion exchange | |
| NO784358L (no) | Fremgangsmaate til aa skille kobolt fra nikkel | |
| US3650688A (en) | Industrial process for separation of nickel | |
| US3235377A (en) | Use of an anion exchange resin to absorb cobalt from a solution containing cobalt and nickel | |
| US2848322A (en) | Separation of cobalt from nickel | |
| Flett | Solution purification | |
| US4236981A (en) | Hydrometallurgical process for treating nickel mattes | |
| US5026420A (en) | Purification process for gold-bearing iodine lixiviant | |
| JP2023525618A (ja) | スカンジウム含有材料からスカンジウムを抽出する方法 | |
| US20190360073A1 (en) | Method for recovering scandium from red mud left from alumina production | |
| US2863717A (en) | Recovery of uranium values from copper-bearing solutions | |
| US4173520A (en) | Hydrometallurgical method for treating nickel mattes | |
| RU2003708C1 (ru) | Способ ионообменного извлечени цветных металлов из кислых сред |