US3640090A - Cold-heat recovery for air conditioning - Google Patents

Cold-heat recovery for air conditioning Download PDF

Info

Publication number
US3640090A
US3640090A US42972A US3640090DA US3640090A US 3640090 A US3640090 A US 3640090A US 42972 A US42972 A US 42972A US 3640090D A US3640090D A US 3640090DA US 3640090 A US3640090 A US 3640090A
Authority
US
United States
Prior art keywords
duct
air
unit
ducts
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US42972A
Inventor
Roland A Ares
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MERCANTILE TEXAS CREDIT Corp
Trane US Inc
Daikin Applied Americas Inc
Original Assignee
American Standard Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Standard Inc filed Critical American Standard Inc
Application granted granted Critical
Publication of US3640090A publication Critical patent/US3640090A/en
Assigned to MERCANTILE TEXAS CREDIT CORPORATION reassignment MERCANTILE TEXAS CREDIT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SYNDER GENERAL CORPORATION
Assigned to SNYDER GENERAL CORPORATION reassignment SNYDER GENERAL CORPORATION ASSIGNS THE ENTIRE INTEREST, AS OF APRIL 2, 1982 SUBJECT TO LICENSES AND CONDITIONS RECITED, SEE DOCUMENT FOR DETAILS Assignors: SINGER COMPANY, THE
Assigned to CITICORP INDUSTRIAL CREDIT, INC., reassignment CITICORP INDUSTRIAL CREDIT, INC., SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SYNDER GENERAL CORPORATION A TX CORP
Assigned to SNYDER GENERAL CORPORATION reassignment SNYDER GENERAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MCQUAY INC.
Assigned to MCQUAY INC., A CORP. OF MINNESOTA reassignment MCQUAY INC., A CORP. OF MINNESOTA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SNYDER GENERAL CORPORATION, A TX CORP.
Assigned to CITICORP INDUSTRIAL CREDIT INC. reassignment CITICORP INDUSTRIAL CREDIT INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SNYDERGENERAL CORPORATION
Assigned to CITICORP NORTH AMERICA, INC. reassignment CITICORP NORTH AMERICA, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SNYDERGENERAL CORPORATION, A MN CORP.
Assigned to SNYDERGENERAL CORPORATION, A MN CORP. reassignment SNYDERGENERAL CORPORATION, A MN CORP. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MCREDIT
Anticipated expiration legal-status Critical
Assigned to MCQUAY INC., A CORP. OF MINNESOTA, SNYDERGENERAL CORPORATION, A CORP. OF MINNESOTA reassignment MCQUAY INC., A CORP. OF MINNESOTA RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP NORTH AMERICA, INC.
Assigned to SNYDERGENERAL CORPORATION A CORP. OF DELAWARE reassignment SNYDERGENERAL CORPORATION A CORP. OF DELAWARE RELEASE BY SECOND PARTY OF A SECURITY AGREEMENT RECORDED AT REEL 5013 FRAME 592. Assignors: CITICORP NORTH AMERICA, INC. A CORP. OF DELAWARE
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • ABSTRACT A cold air replenishment unit for an enclosed building space comprising a purge air system, a replenish air system, a heat pipe assembly spanning the two systems to simultaneously provide cold-heat potential transfer from the purge air to the replenish air, a mechanical refrigeration system comprising the commonly known cycle components, having an air-over fin tube evaporator located downstream of the replenish air heat pipe section, and having an air-over fin tube condenser located upstream of the purge air heat pipe section, all systems jointly forming a cold-heat recovery apparatus.
  • FIGHL 26 FIG- E FLUID sou RCE 4 INVIQJTOR.
  • the field of the invention is concerned primarily with large volume cold storage warehouses, wherein itinerant stored produce or produces are material-handled by means of manually operated forklift trucks.
  • Such material handling equipment during constant operation produce carbon monoxide exhaust byproducts which contaminate the warehouse air, thereby posing a danger to both operators working within the enclosures and to certain aspirating produce, say apples.
  • ripening rooms such as tomato repack storage vaults. These require an atmosphere of ethylene gas for ripening prior to market preparation, and which require air purging.
  • the invention is particularly applicable as a makeup air unit for use, but not necessarily limited as such, within the priorexplained intended field of use.
  • the cold-heat recovery mechanism of the present invention provides for the contaminated enclosure cold air heat potential recovery, plus the added utilization of the contaminated purge air and replenish air electromechanically induced airstreams for further supplementary refrigeration effect, this effect being required to return replenishing air to the enclosure at the same approximate temperature as the outgoing purge air temperature.
  • FIG. 2 is a side elevational view of the FIG. 1 unit.
  • FIG. 3 illustrates a charging apparatus for heat pipes unit in the FIG. 1 embodiment.
  • FIG. 4 is a chart depicting the performance of a refrigeration machine used in the FIG. 1 unit.
  • FIGS. 1 and 2 show a cold air replenishment unit comprising a rectangular casing 10 having a top wall 12, sidewalls 14 and 16, bottom wall 18, and end walls 20 and 22.
  • the unit as shown in FIG. 2 is mounted on the rooftop 24 of a building which may be a cold storage warehouse, but not necessarily limited to such structures, or other structure requiring both a periodic (or continuous) replacement and purge of its room air with fresh air replenishment, at a temperature below the prevailing outdoor ambient temperature and near equivalent to the purged air temperature.
  • Unit 10 is subdivided by a longitudinal partition 26 into a purge exhaust air passage 28 and a replenish air supply passage 13.
  • a fan (propeller or otherwise) 32 driven by an electric motor 34, draws air out of the building through a duct elbow 36 that connects with a duct opening in the building roof.
  • the temperature of the air to be purged may be as high as +30 F. or as low as 20 F., depending on the product storage requirement of the warehouse.
  • the purge air of the warehouse at an illustrative temperature of say 30 F. is drawn by fan 32 rightwardly through section 40a of the transversely extending heat pipe or sealed container assembly 40.
  • Replenish air passage 30 comprises an inlet opening 46 in end wall 22. Flow through the passage or duct is established by a conventional fan (centrifugal or otherwise) 48 which is beltdriven or direct-driven by an electric motor (not shown). The fan discharges into a flaring transition duct 50 leading to section 401) of the heat pipe assembly 40. It will be seen from FIG. 1 that pipes 40 are of sufficient length to span both ducts 28 and 30, i.e., the entire space between sidewalls l4 and 16. Thus, the heat pipes enjoy complete thermal contact with both necessary system airstreams, thus allowing for its performance of cold-heat transfer plus preconditioning its resultant oppositely flowing airstreams.
  • the incoming replenish air in duct 30 will in many cases be at a comparatively high temperature, for example averaging F.
  • This high temperature air flows across the heat pipes and causes evaporation of the volatile cold potential liquid in the heat pipes, thereby conductively cooling this air to a lower temperature, for example 60 F.
  • the 60 F. air flows through a conventional refrigerant evaporator coil 50 which is refrigerant cycle-connected with condenser 42 and an interconnecting refrigeration compressor, not shown.
  • the compressor may be located upstream of coil 42, below outlet 44 or in a compartment 43 on the unit top wall 12, or in any event, in close proximity to this cold-heat recovery apparatus.
  • the compressor conduit transmits hot-compressed refrigerant gas (containing both the heat of compression and low side 50 extracted heat) to condenser coil 42 which is cooled by the duct 28 airstream to effect change of state condensation of the refrigerant.
  • Condensed refrigerant is transmitted through a liquid line and then directly fed to a restriction (e.g., capillary tube) to the evaporator 50 where it is vaporized by the duct 30 airstream. Vaporized refrigerant is returned to the compressor for recycle.
  • a restriction e.g., capillary tube
  • each duct 28 or 30 might be about 1,000 c.f.m.
  • Each duct might have a cross-sectional area of about 2 square feet to provide a linear flow rate of about 500 ft./min., but understanding that these air values and duct sizes will vary as to the applications and requirement, they are not limited therein but only typical in nature.
  • FIG. 2 shows three rows of heat pipes, each row containing seven pipes.
  • a greater number of pipes would probably be required, depending on the heat load, airflow, and refrigerating or heating effect to be produced by the heat pipes.
  • Each heat pipe may be formed as shown and described in U.S. Pat. No. 2,350,348 issued to R. S. Gaugler.
  • an individual heat pipe comprises a sealed container in the form of an elongated cylindrical tube 56.
  • the plate-type fins 38 are secured on the tube outer surface by the usual flangelike collars 39.
  • Each heat pipe is preferably lined with capillary wick material 58 for its full length.
  • the wick material may be porous sintered metal bonded to the interior surface of the tube, for example as a part of the sintering operation.
  • Various other methods of retaining the capillary lining in the tube may be employed, as described for example in US. Pat. No.
  • each pipe or tube is charged with a volatile liquid which undergoes condensation in pipe area 40a and vaporization in pipe area 40b.
  • FIG. 3 illustrates an apparatus for charging each tube 56 prior to installation of the heat pipe'assembly into casing 10.
  • the tube may be closed at its left end by means of a conventional cap 60.
  • the right end of the tube may have inserted therein a cap 62 having a capillary filler tube 64 projecting therethrough.
  • the apparatus designated by numeral 66 is used initially to evacuate pipe 56, and to then introduce volatile liquid from fluid source 68 into pipe 56.
  • the apparatus comprises a stationary cylinder 70 having a movable piston 72 slidable therein to alternately compress and relax an O-ring seal element 74.
  • compressed air from a source may be introduced through a fitting 78 to chamber 76, thereby moving cylinder 72 leftwardly to compress the O-ring 74 and produce an inward radial motion of the seal element against the outer surface of tube 64.
  • the vacuum pump 80 may be operated to evacuate the interior of pipe 56 through passage 82 and selector valve 84.
  • the selector valve 84 may be rotated to the dotted line position wherein pipe 56 communicates with fluid source 68.
  • Valve 84 is maintained in the fluid-charging mode for a sufficient time period calculated in accordance with the thickness and length of porous lining 58. Normally the charging time will be chosen so that sufficient liquid is charged into pipe 56 to completely saturate lining 58 without substantially supersaturating the lining. A slight liquid excess is not fatal to performance.
  • a suitable pinch clamp (not shown) may be closed on tube 64 to seal the unit, after which valve 84 may be turned to its full line position, and the air pressure vented from space 76 by valve means, not shown; this allows spring 86 to move piston 72 rightwardly for relaxing O-ring 74 to permit insertion of the next heat pipe unit into the apparatus.
  • the various heat pipes 40 may be evacuated and charged together in a single fixture which includes duplicates of apparatus 66; alternately the various heat pipes may be evacuated and charged in successive operations, using a single apparatus 66 or a singlerow of such apparatus.
  • Heat pipe operation is generally similar to the operation described in aforementioned US. Pat. No. 2,350,348.
  • Heat pipe areas 40a within duct 28 are subjected to 30 air, while heat pipe areas 40b in duct 30 are subjected to higher temperature air, for example 60 F.
  • the cold airstream in duct 28 causes the liquid in the pipe 40a interior lining 58 to be condensed, while the hotter airstream in duct 30 causes the condensed liquid in the 40b interior lining 58 to be evaporated.
  • a suitable tube charging liquid is selected that will provide an intended economic temperature conductance between 30 and 60 under the pressure chosen for the tube 56 chamber.
  • Each heat pipe has a central space 61 which allows vapor from section 40b to move longitudinally into section 40a; meanwhile the capillary porous lining 58 functions to pump condensed liquid from section 40a into section 40b.
  • the overall operation involves a cyclic mass transfer and heat transfer between section 40a and section 40b.
  • the heat pipes 40 are arranged with their axis substantially horizontal or slightly pitched so that section 40a is slightly elevated above pipe section 40b, the purpose being to enable gravitational forces to assist or at least not interfere with capillary flow of liquid from section 40a to section 40b.
  • this preferred pitching is not of significant importance in the heat pipe theory of acceptable performance.
  • FIG. 4 illustrates in chart form the general operation of a refrigeration machine having a condenser 42 and evaporator 50. Compressor operation involves the adiabatic compression of refrigerant vapor from condition C along line C-D.
  • Refrigerant condensation in condenser 42 involves the isothermal condensation of super-cooled refrigerant along line D-A.
  • the usual restrictor capillary tube or expansion valve
  • line A-B measures the useful cooling produced by the evaporator.
  • Efficiency of the refrigeration cycle is improved by super-cooling the refrigerant in the condenser but, more beneficially by the reduction of the compression and resultant condensing energy requirement thus producing line C'-D'.
  • the super-cooling causes line D-A to be displaced leftwardly, thereby somewhat increasing the length of useful cooling line A-B.
  • the lower condenser coil entry (purge) air temperature reduces the compressor input power requirement (compressor size) to line BC' and results in a lowering of the condenser coil work load and relevant size to line C-D.
  • the added effect of the heat pipe onto intended replenish airstream can be diagrammatically illustrated in relative respect, by the h BTU/lb. increase by line A-A'.
  • the air supplied to condenser 42 is at a relatively low temperature, for example 60 F., so that condenser 42 is able to achieve more super-cooling of the refrigerant and require less work effect than if the air were supplied at a higher temperature, for example 85 F.
  • the cooling of the air in duct 30 by heat pipes 40 reduces the heat load on coil 50 and thus decreases the mass refrigerant flow requirements through the evaporator, thereby appreciably reducing the operating costs and refrigerant cycle component sizes for compressor operation.
  • operational savings might be on the order of 50 percent of the cost based on units wherein heat pipes 40 supplemental to mechanical refrigeration are not employed. It is an apparatus that not only recovers the potential cold content of the purged contaminated air but, by using the same air moving devices normally needed for air purge and replenish, also transfers or uses the cold content in the incoming airstream and the crossflow-arranged refrigeration coils.
  • thermowheel equipment having porous rotating cell(s) that embrace the two air systems, having mechanical seals and subject to air bypass.
  • the thermowheel requiring a deep cell or banks of in-parallel cells for effective heat recovery at large At, does not lend itself in practical nature to low-refrigerated enclosure temperature use. Also, the thermowheel can never return replenish air at the same or even near same dehumidified air temperature as the enclosure purge air exhausted.
  • thermowheels intent is for air conditioned or heated enclosure use whereas this invention is an apparatus intended for refrigeration use.
  • casing is disposed on the roof top of the building or enclosure so that elbow ducts 36 and 54 are both located at the same end of the casing.
  • This arrangement may have some advantage in reducing erection costs because a single large opening in the roof top can then be used to contain the duct work which connects with the two elbows 36 and 54.
  • a curb structure or framework must be formed for each duct elbow which enters the building; the cost of a single subdivided curb structure is probably somewhat less than the cost of two separate curb structures located at opposite ends of the casing.
  • the illustrated unit 10 is a cool-only unit wherein duct 30 supplies only cool replenish air to the building.
  • the unit 10 can be made as a heat-cool unit by substituting a reversible heat pump refrigeration machine for the described machine.
  • coils 50 and 42 would function both as evaporators and as condensers.
  • coil 50 would function as an evaporator while doil 42 would function as a condenser.
  • coil 42 would function as an evaporator and coil 50 would function as a condenser; a refrigerant flow reversing valve would of course be used to enable the two coils to perform the dual evaporationcondenser functions.
  • supplemental heat could be added to the duct 30 airstream by a conventional gas-fired heater or oil-fired heater. Such a reverse cycle unit operation could be used, but not limited to, say banana ripening vaults.
  • a cold air replenishment unit for an enclosed cold storage space comprising a first duct for withdrawing stale air from the space; a second duct for supplying fresh air to the space; and a refrigerating machine comprising a refrigerant condenser in the first duct, and a refrigerant evaporator in the second duct: the improvement comprising sealed container means spanning the two ducts to exchange heat with both duct airstreams; said container means containing a heat transfer liquid that undergoes condensation due to thermal contact with the outgoing stale air and vaporization due to thermal contact with the incoming fresh air; said container means having the portion thereof spanning the first duct located upstream from the condenser; said container means having the portion thereof spanning the second duct located upstream from the evaporator.
  • the unit of claim 1 wherein the unit 15 arranged for rooftop mounting on the building; the two ducts extending parallel and adjacent one another in counterflow relation so that the inlet for the first duct and the outlet for the second duct are in a common vertical plane; said unit being connected to the building via two elbow ducts arranged between the roof and respective ones of the aforementioned inlet and outlet.

Abstract

A cold air replenishment unit for an enclosed building space comprising a purge air system, a replenish air system, a heat pipe assembly spanning the two systems to simultaneously provide cold-heat potential transfer from the purge air to the replenish air, a mechanical refrigeration system comprising the commonly known cycle components, having an air-over fin tube evaporator located downstream of the replenish air heat pipe section, and having an air-over fin tube condenser located upstream of the purge air heat pipe section, all systems jointly forming a coldheat recovery apparatus.

Description

United States Patent [151 3,640,090 Ares 1 Feb. 8, 1972 [54] COLD-HEAT RECOVERY FOR AIR OTHER PUBLICATIONS CONDITIONING Roland A. Ares, Wilmington, NC.
American Standard Inc., New York, NY.
June 3, 1970 Inventor:
Assignee:
Filed:
Appl. No.:
References Cited UNITED STATES PATENTS 2,212,356 8/1940 Shore ..62/305 1,725,906 8/1929 Gay 2,206,858
7/1940 McKee Article entitled The Heat Pipe in Mechanical Engineering- Feb. 1967 Pgs. 30-32 Authors Feldman and Whiting 62/1 19 Primary Examiner-Meyer Perlin Attorney-John E. McRae, Tennes l. Erstad and Robert G. Crooks [57] ABSTRACT A cold air replenishment unit for an enclosed building space comprising a purge air system, a replenish air system, a heat pipe assembly spanning the two systems to simultaneously provide cold-heat potential transfer from the purge air to the replenish air, a mechanical refrigeration system comprising the commonly known cycle components, having an air-over fin tube evaporator located downstream of the replenish air heat pipe section, and having an air-over fin tube condenser located upstream of the purge air heat pipe section, all systems jointly forming a cold-heat recovery apparatus.
, 7 ims 4 D'Wi Figures PATENIED FEB 81972 3,640,090
FIGHL 26" FIG- E FLUID sou RCE 4 INVIQJTOR.
COLD-HEAT RECOVERY FOR AIR CONDITIONING FIELD OF THE INVENTION The field of the invention is concerned primarily with large volume cold storage warehouses, wherein itinerant stored produce or produces are material-handled by means of manually operated forklift trucks. Such material handling equipment during constant operation produce carbon monoxide exhaust byproducts which contaminate the warehouse air, thereby posing a danger to both operators working within the enclosures and to certain aspirating produce, say apples.
Also within the field of the invention are large produce ripening rooms such as tomato repack storage vaults. These require an atmosphere of ethylene gas for ripening prior to market preparation, and which require air purging.
BACKGROUND OF INVENTION The invention is particularly applicable as a makeup air unit for use, but not necessarily limited as such, within the priorexplained intended field of use. The cold-heat recovery mechanism of the present invention provides for the contaminated enclosure cold air heat potential recovery, plus the added utilization of the contaminated purge air and replenish air electromechanically induced airstreams for further supplementary refrigeration effect, this effect being required to return replenishing air to the enclosure at the same approximate temperature as the outgoing purge air temperature.
THE DRAWINGS FIG. 1 is a top plan view of a cold air replenishment unit embodying the invention.
FIG. 2 is a side elevational view of the FIG. 1 unit.
FIG. 3 illustrates a charging apparatus for heat pipes unit in the FIG. 1 embodiment.
FIG. 4 is a chart depicting the performance of a refrigeration machine used in the FIG. 1 unit.
FIGS. 1 and 2 show a cold air replenishment unit comprising a rectangular casing 10 having a top wall 12, sidewalls 14 and 16, bottom wall 18, and end walls 20 and 22. The unit as shown in FIG. 2 is mounted on the rooftop 24 of a building which may be a cold storage warehouse, but not necessarily limited to such structures, or other structure requiring both a periodic (or continuous) replacement and purge of its room air with fresh air replenishment, at a temperature below the prevailing outdoor ambient temperature and near equivalent to the purged air temperature.
Unit 10 is subdivided by a longitudinal partition 26 into a purge exhaust air passage 28 and a replenish air supply passage 13. A fan (propeller or otherwise) 32, driven by an electric motor 34, draws air out of the building through a duct elbow 36 that connects with a duct opening in the building roof. When the building is a cold storage warehouse the temperature of the air to be purged may be as high as +30 F. or as low as 20 F., depending on the product storage requirement of the warehouse. The purge air of the warehouse, at an illustrative temperature of say 30 F. is drawn by fan 32 rightwardly through section 40a of the transversely extending heat pipe or sealed container assembly 40. As this cold purge air flows across the heat pipe assembly it causes condensation of a volatile saturated gas element contained internally in each parallel bank pipe of assembly 40, thus abstracting coolness from the purge air and raising the heat pipe assembly leavingair temperature to a high value such as 60 F. The 60 air is impelled by fan 32 through a conventional finned condenser coil 42 which forms part of a mechanical refrigeration system. The 60 air flows across the condenser coil finned surface and out of the unit through an outlet opening 44 in the unit top wall 12 (or thereabouts), thereby condensing refrigerant flowing through condenser coil 42; the outlet air temperature may be on the order of 97 F. when the refrigerating system is operating, all in the same manner as commonly known air cooled condensing units operate.
Replenish air passage 30 comprises an inlet opening 46 in end wall 22. Flow through the passage or duct is established by a conventional fan (centrifugal or otherwise) 48 which is beltdriven or direct-driven by an electric motor (not shown). The fan discharges into a flaring transition duct 50 leading to section 401) of the heat pipe assembly 40. It will be seen from FIG. 1 that pipes 40 are of sufficient length to span both ducts 28 and 30, i.e., the entire space between sidewalls l4 and 16. Thus, the heat pipes enjoy complete thermal contact with both necessary system airstreams, thus allowing for its performance of cold-heat transfer plus preconditioning its resultant oppositely flowing airstreams.
The incoming replenish air in duct 30 will in many cases be at a comparatively high temperature, for example averaging F. This high temperature air flows across the heat pipes and causes evaporation of the volatile cold potential liquid in the heat pipes, thereby conductively cooling this air to a lower temperature, for example 60 F. The 60 F. air flows through a conventional refrigerant evaporator coil 50 which is refrigerant cycle-connected with condenser 42 and an interconnecting refrigeration compressor, not shown. The compressor may be located upstream of coil 42, below outlet 44 or in a compartment 43 on the unit top wall 12, or in any event, in close proximity to this cold-heat recovery apparatus. In operation, the compressor conduit transmits hot-compressed refrigerant gas (containing both the heat of compression and low side 50 extracted heat) to condenser coil 42 which is cooled by the duct 28 airstream to effect change of state condensation of the refrigerant. Condensed refrigerant is transmitted through a liquid line and then directly fed to a restriction (e.g., capillary tube) to the evaporator 50 where it is vaporized by the duct 30 airstream. Vaporized refrigerant is returned to the compressor for recycle. The aforegiven description of the refrigerant cycle operation is brief and intended so for such U.S. Pat. No. 2,445,527 to Hirsch and U.S. Pat. No. 2,511,127 to Phillip show the art detail of such commonly known refrigeration systems. The resultant cooled replenish air flowing off of the fins on evaporator 50 is directed through an outlet 52 into an elbow passage 54 that communicates with an opening in the building roof. Suitable duct work within the building (not shown) is acceptable to distribute the cold replenish air to different areas of the building as required.
At the same time suitable purge air is drawn from the building at near to equal volumetric flow rate as the replenish makeup air, thus providing needed enclosure (building) air change rate and satisfactory air pressure balance in the building. The replenish makeup airflow may be greater than or equal to the purge airflow, since some enclosure air leakage may be expected to occur through various normal openings, etc. In a typical installation the airflow through each duct 28 or 30 might be about 1,000 c.f.m. Each duct might have a cross-sectional area of about 2 square feet to provide a linear flow rate of about 500 ft./min., but understanding that these air values and duct sizes will vary as to the applications and requirement, they are not limited therein but only typical in nature.
HEAT PIPE 40 (SEALED CONTAINERS) FIG. 2 shows three rows of heat pipes, each row containing seven pipes. In practice a greater number of pipes would probably be required, depending on the heat load, airflow, and refrigerating or heating effect to be produced by the heat pipes. In most cases it is preferred to provide extended heat transfer surface in each airstream, as by means of the illustrated plate-type fins 38 extending parallel to the duct axes. Such fins would be provided for the full length of the heat pipe assembly.
Each heat pipe may be formed as shown and described in U.S. Pat. No. 2,350,348 issued to R. S. Gaugler. As shown in FIG. 1, an individual heat pipe comprises a sealed container in the form of an elongated cylindrical tube 56. The plate-type fins 38 are secured on the tube outer surface by the usual flangelike collars 39. Each heat pipe is preferably lined with capillary wick material 58 for its full length. As described in aforementioned U.S. Pat. No. 2,350,348, the wick material may be porous sintered metal bonded to the interior surface of the tube, for example as a part of the sintering operation. Various other methods of retaining the capillary lining in the tube may be employed, as described for example in US. Pat. No. 3,095,255 to J. F. D. Smith or US. Pat. No. 3,460,612 to E. I. Valyi. As before mentioned, each pipe or tube is charged with a volatile liquid which undergoes condensation in pipe area 40a and vaporization in pipe area 40b.
FIG. 3 illustrates an apparatus for charging each tube 56 prior to installation of the heat pipe'assembly into casing 10. As shown in FIG. 3, the tube may be closed at its left end by means of a conventional cap 60. The right end of the tube may have inserted therein a cap 62 having a capillary filler tube 64 projecting therethrough. The apparatus designated by numeral 66 is used initially to evacuate pipe 56, and to then introduce volatile liquid from fluid source 68 into pipe 56.
The apparatus comprises a stationary cylinder 70 having a movable piston 72 slidable therein to alternately compress and relax an O-ring seal element 74.-In operation, compressed air from a source, not shown, may be introduced through a fitting 78 to chamber 76, thereby moving cylinder 72 leftwardly to compress the O-ring 74 and produce an inward radial motion of the seal element against the outer surface of tube 64. With the passage structure thus sealed, the vacuum pump 80 may be operated to evacuate the interior of pipe 56 through passage 82 and selector valve 84. Upon establishment of a suitable low pressure in tube 56 the selector valve 84 may be rotated to the dotted line position wherein pipe 56 communicates with fluid source 68. The vacuum in pipe 56 then I draws fluid from source 68 into the pipe 56 interior. Valve 84 is maintained in the fluid-charging mode for a sufficient time period calculated in accordance with the thickness and length of porous lining 58. Normally the charging time will be chosen so that sufficient liquid is charged into pipe 56 to completely saturate lining 58 without substantially supersaturating the lining. A slight liquid excess is not fatal to performance. After tube 56 is charged a suitable pinch clamp (not shown) may be closed on tube 64 to seal the unit, after which valve 84 may be turned to its full line position, and the air pressure vented from space 76 by valve means, not shown; this allows spring 86 to move piston 72 rightwardly for relaxing O-ring 74 to permit insertion of the next heat pipe unit into the apparatus.
The various heat pipes 40 may be evacuated and charged together in a single fixture which includes duplicates of apparatus 66; alternately the various heat pipes may be evacuated and charged in successive operations, using a single apparatus 66 or a singlerow of such apparatus.
HEAT PIPE OPERATION Heat pipe operation is generally similar to the operation described in aforementioned US. Pat. No. 2,350,348. Heat pipe areas 40a within duct 28 are subjected to 30 air, while heat pipe areas 40b in duct 30 are subjected to higher temperature air, for example 60 F. The cold airstream in duct 28 causes the liquid in the pipe 40a interior lining 58 to be condensed, while the hotter airstream in duct 30 causes the condensed liquid in the 40b interior lining 58 to be evaporated. A suitable tube charging liquid is selected that will provide an intended economic temperature conductance between 30 and 60 under the pressure chosen for the tube 56 chamber.
Each heat pipe has a central space 61 which allows vapor from section 40b to move longitudinally into section 40a; meanwhile the capillary porous lining 58 functions to pump condensed liquid from section 40a into section 40b. The overall operation involves a cyclic mass transfer and heat transfer between section 40a and section 40b.
Preferably the heat pipes 40 are arranged with their axis substantially horizontal or slightly pitched so that section 40a is slightly elevated above pipe section 40b, the purpose being to enable gravitational forces to assist or at least not interfere with capillary flow of liquid from section 40a to section 40b. However this preferred pitching, as I understand, is not of significant importance in the heat pipe theory of acceptable performance.
OPERATION OF THE REFRIGERATION MACHINE FIG. 4 illustrates in chart form the general operation of a refrigeration machine having a condenser 42 and evaporator 50. Compressor operation involves the adiabatic compression of refrigerant vapor from condition C along line C-D.
Refrigerant condensation in condenser 42 involves the isothermal condensation of super-cooled refrigerant along line D-A. The usual restrictor (capillary tube or expansion valve) is interposed between condenser 42 and evaporator 50 so that evaporation of refrigerant occurs adiabatically along line AB; line A-B measures the useful cooling produced by the evaporator. Efficiency of the refrigeration cycle is improved by super-cooling the refrigerant in the condenser but, more beneficially by the reduction of the compression and resultant condensing energy requirement thus producing line C'-D'. The super-cooling causes line D-A to be displaced leftwardly, thereby somewhat increasing the length of useful cooling line A-B. The lower condenser coil entry (purge) air temperature reduces the compressor input power requirement (compressor size) to line BC' and results in a lowering of the condenser coil work load and relevant size to line C-D. The added effect of the heat pipe onto intended replenish airstream can be diagrammatically illustrated in relative respect, by the h BTU/lb. increase by line A-A'.
In the arrangement of FIGS. 1 and 2 the air supplied to condenser 42 is at a relatively low temperature, for example 60 F., so that condenser 42 is able to achieve more super-cooling of the refrigerant and require less work effect than if the air were supplied at a higher temperature, for example 85 F. The cooling of the air in duct 30 by heat pipes 40 reduces the heat load on coil 50 and thus decreases the mass refrigerant flow requirements through the evaporator, thereby appreciably reducing the operating costs and refrigerant cycle component sizes for compressor operation. In a typical installation it is estimated that operational savings might be on the order of 50 percent of the cost based on units wherein heat pipes 40 supplemental to mechanical refrigeration are not employed. It is an apparatus that not only recovers the potential cold content of the purged contaminated air but, by using the same air moving devices normally needed for air purge and replenish, also transfers or uses the cold content in the incoming airstream and the crossflow-arranged refrigeration coils.
DIFFERENTIATION OVER PRIOR PRACTICE The described apparatus in operation differs from known methods of enclosure air purge and replenish primarily in the respect that it returns makeup air at relatively the same temperature as purged. Known conventional methods of accommodating contaminated air purge is by thermowheel equipment, having porous rotating cell(s) that embrace the two air systems, having mechanical seals and subject to air bypass. The thermowheel, requiring a deep cell or banks of in-parallel cells for effective heat recovery at large At, does not lend itself in practical nature to low-refrigerated enclosure temperature use. Also, the thermowheel can never return replenish air at the same or even near same dehumidified air temperature as the enclosure purge air exhausted. The introduction of nondehumidified replenished air can cause psychrometric vaporization within the enclosure, in the form of frost vapor, in excess, can cause stalactite formation within the enclosure, but also can sanitarily affect the stored product, say beef, by causing sliming or bacteria formation. The thermowheels intent is for air conditioned or heated enclosure use whereas this invention is an apparatus intended for refrigeration use.
There are no known devices that this invention parallels or duplicates in its intended use or scope.
UNIT ORIENTATION As shown in FIGS. 1 and 2, casing is disposed on the roof top of the building or enclosure so that elbow ducts 36 and 54 are both located at the same end of the casing. This arrangement may have some advantage in reducing erection costs because a single large opening in the roof top can then be used to contain the duct work which connects with the two elbows 36 and 54. Normally a curb structure or framework must be formed for each duct elbow which enters the building; the cost of a single subdivided curb structure is probably somewhat less than the cost of two separate curb structures located at opposite ends of the casing.
It is not essential that the unit be rooftop mounted. For example, casing 10 can be mounted on a slab outside the building, in which event the inlet 37 for duct 28 and the outlet 52 for duct 30 can connect with the building through a common subdivided opening. The unit can also be mounted in the building or enclosure, in which event outlet 44 for duct 28 and inlet 46 for duct 30 would connect with a common subdivided opening in the building wall; duct 44 might in that case be located in end wall 22.
The illustrated unit 10 is a cool-only unit wherein duct 30 supplies only cool replenish air to the building. The unit 10 can be made as a heat-cool unit by substituting a reversible heat pump refrigeration machine for the described machine. In that event coils 50 and 42 would function both as evaporators and as condensers. During regular cycle operation, coil 50 would function as an evaporator while doil 42 would function as a condenser. During reverse cycle operation, coil 42 would function as an evaporator and coil 50 would function as a condenser; a refrigerant flow reversing valve would of course be used to enable the two coils to perform the dual evaporationcondenser functions. During reverse cycle operations, supplemental heat could be added to the duct 30 airstream by a conventional gas-fired heater or oil-fired heater. Such a reverse cycle unit operation could be used, but not limited to, say banana ripening vaults.
Heat pipes 40 are able to reversibly transfer heat, either from duct 28 to duct 30 or from duct 30 to duct 28, depending on the prevailing temperatures in the two ducts. Therefore heat pipes 40 are adapted to summertime operation or wintertime operation without adjustment or structural change.
Iclaim:
1. In a cold air replenishment unit for an enclosed cold storage space comprising a first duct for withdrawing stale air from the space; a second duct for supplying fresh air to the space; and a refrigerating machine comprising a refrigerant condenser in the first duct, and a refrigerant evaporator in the second duct: the improvement comprising sealed container means spanning the two ducts to exchange heat with both duct airstreams; said container means containing a heat transfer liquid that undergoes condensation due to thermal contact with the outgoing stale air and vaporization due to thermal contact with the incoming fresh air; said container means having the portion thereof spanning the first duct located upstream from the condenser; said container means having the portion thereof spanning the second duct located upstream from the evaporator.
2. The unit of claim 1 wherein the two ducts are parallel and adjacent one another; said ducts having a common divider wall, and said sealed container means comprising hollow pipes extending through said common wall normal to the duct axis.
3. The unit of claim 2 wherein the two ducts are horizontal ducts arranged in a common horizontal plane; said hollow pipes extending horizontally crosswise of the ducts; each pipe having a wick lining for capillary pumping of condensed liquid longitudinally along the pipe.
4. The unit of claim 3 wherein the inlet for the first duct and the outlet for the second duct are in a common plane for connection with the building through a common opening.
5. The unit of claim 1 wherein the two ducts are parallel and adjacent one another, said ducts having their respective inlets and outlets at opposite ends of the unit so that the duct streams flow counter-current to one another.
6. The unit of claim 1 wherein the unit 15 arranged for rooftop mounting on the building; the two ducts extending parallel and adjacent one another in counterflow relation so that the inlet for the first duct and the outlet for the second duct are in a common vertical plane; said unit being connected to the building via two elbow ducts arranged between the roof and respective ones of the aforementioned inlet and outlet.
7. The unit of claim 1 wherein the enclosed building space takes the form of a cold space for storing perishable commodities at temperatures below about 30 F.

Claims (7)

1. In a cold air replenishment unit for an enclosed cold storage space comprising a first duct for withdrawing stale air from the space; a second duct for supplying fresh air to the space; and a refrigerating machine comprising a refrigerant condenser in the first duct, and a refrigerant evaporator in the second duct: the improvement comprising sealed container means spanning the two ducts to exchange heat with both duct airstreams; said container means containing a heat transfer liquid that undergoes condensation due to thermal contact with the outgoing stale air and vaporization due to thermal contact with the incoming fresh air; said container means having the portion thereof spanning the first duct located upstream from the condenser; said container means having the portion thereof spanning the second duct located upstream from the evaporator.
2. The unit of claim 1 wherein the two ducts are parallel and adjacent one another; said ducts having a common divider wall, and said sealed container means comprising hollow pipes extending through said common wall normal to the duct axis.
3. The unit of claim 2 wherein the two ducts are horizontal ducts arranged in a common horizontal plane; said hollow pipes extending horizontally crosswise of the ducts; each pipe having a wick lining for capillary pumping of condensed liquid longitudinally along the pipe.
4. The unit of claim 3 wherein the inlet for the first duct and the outlet for the second duct are in a common plane for connection with the building through a common opening.
5. The unit of claim 1 wherein the two ducts are parallel and adjacent one another, said ducts having their respective inlets and outlets at opposite ends of the unit so that the duct streams flow countercurrent to one another.
6. The unit of claim 1 wherein the unit is arranged for rooftop mounting on the building; the two ducts extending parallel and adjacent one another in counterflow relation so that the inlet for the first duct and the outlet for the second duct are in a common vertical plane; said unit being connected to the building via two elbow ducts arranged between the roof and respective ones of the aforementioned inlet and outlet.
7. The unit of claim 1 wherein the enclosed building space takes the form of a cold space for storing perishable commodities at temperatures below about 30* F.
US42972A 1970-06-03 1970-06-03 Cold-heat recovery for air conditioning Expired - Lifetime US3640090A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US4297270A 1970-06-03 1970-06-03

Publications (1)

Publication Number Publication Date
US3640090A true US3640090A (en) 1972-02-08

Family

ID=21924753

Family Applications (1)

Application Number Title Priority Date Filing Date
US42972A Expired - Lifetime US3640090A (en) 1970-06-03 1970-06-03 Cold-heat recovery for air conditioning

Country Status (1)

Country Link
US (1) US3640090A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807493A (en) * 1971-09-28 1974-04-30 Kooltronic Fan Co Heat exchanger using u-tube heat pipes
JPS4983252A (en) * 1972-12-18 1974-08-10
FR2299605A1 (en) * 1975-01-31 1976-08-27 Bernier Jean Paul Contraflow heat exchange system - has several heat pumps with heat exchangers adjacent and connected together in series
FR2309805A1 (en) * 1974-12-20 1976-11-26 Chausson Usines Sa Space heating system using heat pump - circulates heat:transmitting fluid through condenser supplementing heat from evaporator
US4040477A (en) * 1976-06-17 1977-08-09 Garberick Thayne K Heat recovery apparatus
FR2357828A1 (en) * 1976-07-08 1978-02-03 Daikin Ind Ltd HEAT AND HUMIDITY EXCHANGE SYSTEM
US4100963A (en) * 1974-11-18 1978-07-18 Dillenbeck Warren H Heat exchange system
FR2380521A1 (en) * 1977-02-14 1978-09-08 Hughes Aircraft Co HEAT EXCHANGER WITH HEAT TUBES
US4175403A (en) * 1976-06-07 1979-11-27 Jon Lunde Heat recovery system
FR2479435A1 (en) * 1980-04-01 1981-10-02 Bernier Jacques Heat exchanger circuit for opposed gas flows - has circuits in series and adjacent to one another working in conjunction with heat pumps
US4296796A (en) * 1978-09-21 1981-10-27 Daimler-Benz Aktiengesellschaft Heat transfer system
US5826443A (en) * 1997-12-06 1998-10-27 Ares; Roland Heat pump with heat-pipe enhancement and with primary system reheat
US5924479A (en) * 1998-11-03 1999-07-20 Egbert; Mark A. Heat exchanger with heat-pipe amplifier
DE10126475A1 (en) * 2001-05-31 2003-03-20 Juergen Loose Room air conditioning unit replaces window ventilation with combined unit having air intake, filtration, heating and cooling units with automatically operated control flaps
US20070221360A1 (en) * 2006-03-27 2007-09-27 Honda Motor Co., Ltd. Temperature control apparatus for vehicle
US20100212334A1 (en) * 2005-11-16 2010-08-26 Technologies Holdings Corp. Enhanced Performance Dehumidification Apparatus, System and Method
US20100275630A1 (en) * 2005-11-16 2010-11-04 Technologies Holdings Corp. Defrost Bypass Dehumidifier
US20120285663A1 (en) * 2011-05-10 2012-11-15 Chun-Ming Wu Condensing device and thermal module using same
US20170211818A1 (en) * 2014-03-12 2017-07-27 Faber S.P.A. Kitchen extractor hood with thermal energy recovery
US9897336B2 (en) 2009-10-30 2018-02-20 Gilbert S. Staffend High efficiency air delivery system and method
US10322203B2 (en) * 2015-06-26 2019-06-18 Intel Corporation Air flow generation for scent output
US10612800B2 (en) 2015-08-19 2020-04-07 Gilbert S. Staffend High efficiency heating and/or cooling system and methods
US10834855B2 (en) * 2016-01-08 2020-11-10 Nortek Air Solutions Canada, Inc. Integrated make-up air system in 100% air recirculation system
US11150032B2 (en) * 2017-01-18 2021-10-19 Bigz Tech Inc. Transient heat absorption and delayed dissipation by high heat capacity material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1725906A (en) * 1927-07-05 1929-08-27 Frazer W Gay Heat transfer means
US2206858A (en) * 1937-08-14 1940-07-02 Garnet W Mckee Ventilating apparatus
US2212356A (en) * 1939-07-24 1940-08-20 Samuel J Shure Air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1725906A (en) * 1927-07-05 1929-08-27 Frazer W Gay Heat transfer means
US2206858A (en) * 1937-08-14 1940-07-02 Garnet W Mckee Ventilating apparatus
US2212356A (en) * 1939-07-24 1940-08-20 Samuel J Shure Air conditioning system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Article entitled The Heat Pipe in Mechanical Engineering Feb. 1967, pp. 30 32, Authors Feldman and Whiting. *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807493A (en) * 1971-09-28 1974-04-30 Kooltronic Fan Co Heat exchanger using u-tube heat pipes
JPS4983252A (en) * 1972-12-18 1974-08-10
JPS5427067B2 (en) * 1972-12-18 1979-09-07
US4100963A (en) * 1974-11-18 1978-07-18 Dillenbeck Warren H Heat exchange system
FR2309805A1 (en) * 1974-12-20 1976-11-26 Chausson Usines Sa Space heating system using heat pump - circulates heat:transmitting fluid through condenser supplementing heat from evaporator
FR2299605A1 (en) * 1975-01-31 1976-08-27 Bernier Jean Paul Contraflow heat exchange system - has several heat pumps with heat exchangers adjacent and connected together in series
US4175403A (en) * 1976-06-07 1979-11-27 Jon Lunde Heat recovery system
US4040477A (en) * 1976-06-17 1977-08-09 Garberick Thayne K Heat recovery apparatus
FR2357828A1 (en) * 1976-07-08 1978-02-03 Daikin Ind Ltd HEAT AND HUMIDITY EXCHANGE SYSTEM
FR2380521A1 (en) * 1977-02-14 1978-09-08 Hughes Aircraft Co HEAT EXCHANGER WITH HEAT TUBES
US4296796A (en) * 1978-09-21 1981-10-27 Daimler-Benz Aktiengesellschaft Heat transfer system
FR2479435A1 (en) * 1980-04-01 1981-10-02 Bernier Jacques Heat exchanger circuit for opposed gas flows - has circuits in series and adjacent to one another working in conjunction with heat pumps
US5826443A (en) * 1997-12-06 1998-10-27 Ares; Roland Heat pump with heat-pipe enhancement and with primary system reheat
US5924479A (en) * 1998-11-03 1999-07-20 Egbert; Mark A. Heat exchanger with heat-pipe amplifier
DE10126475A1 (en) * 2001-05-31 2003-03-20 Juergen Loose Room air conditioning unit replaces window ventilation with combined unit having air intake, filtration, heating and cooling units with automatically operated control flaps
US20100212334A1 (en) * 2005-11-16 2010-08-26 Technologies Holdings Corp. Enhanced Performance Dehumidification Apparatus, System and Method
US20100275630A1 (en) * 2005-11-16 2010-11-04 Technologies Holdings Corp. Defrost Bypass Dehumidifier
US8316660B2 (en) 2005-11-16 2012-11-27 Technologies Holdings Corp. Defrost bypass dehumidifier
US8347640B2 (en) 2005-11-16 2013-01-08 Technologies Holdings Corp. Enhanced performance dehumidification apparatus, system and method
US8769969B2 (en) 2005-11-16 2014-07-08 Technologies Holdings Corp. Defrost bypass dehumidifier
US20070221360A1 (en) * 2006-03-27 2007-09-27 Honda Motor Co., Ltd. Temperature control apparatus for vehicle
US8443871B2 (en) * 2006-03-27 2013-05-21 Honda Motor Co., Ltd. Temperature control apparatus for heating a side door of a vehicle
US9897336B2 (en) 2009-10-30 2018-02-20 Gilbert S. Staffend High efficiency air delivery system and method
US20120285663A1 (en) * 2011-05-10 2012-11-15 Chun-Ming Wu Condensing device and thermal module using same
US8985195B2 (en) * 2011-05-10 2015-03-24 Asia Vital Components Co., Ltd. Condensing device and thermal module using same
US20170211818A1 (en) * 2014-03-12 2017-07-27 Faber S.P.A. Kitchen extractor hood with thermal energy recovery
US10322203B2 (en) * 2015-06-26 2019-06-18 Intel Corporation Air flow generation for scent output
US10612800B2 (en) 2015-08-19 2020-04-07 Gilbert S. Staffend High efficiency heating and/or cooling system and methods
US10834855B2 (en) * 2016-01-08 2020-11-10 Nortek Air Solutions Canada, Inc. Integrated make-up air system in 100% air recirculation system
US11150032B2 (en) * 2017-01-18 2021-10-19 Bigz Tech Inc. Transient heat absorption and delayed dissipation by high heat capacity material

Similar Documents

Publication Publication Date Title
US3640090A (en) Cold-heat recovery for air conditioning
US6321460B1 (en) Drying apparatus
US6442951B1 (en) Heat exchanger, heat pump, dehumidifier, and dehumidifying method
US4444024A (en) Dual open cycle heat pump and engine
US5442931A (en) Simplified adsorption heat pump using passive heat recuperation
WO2009022778A1 (en) Air-conditioner comprised thermoelectric module and heat pipe
US3269137A (en) Dense gas helium refrigerator
GB2085571A (en) De-humidifier for Compressed Gas
Batukray Advances in liquid desiccant integrated dehumidification and cooling systems
US5092135A (en) Air conditioning system
US4326388A (en) Dual open cycle heat pump and engine
US3621666A (en) Cooling apparatus and process
CN201897275U (en) Energy-saving cabinet air conditioner
US4901919A (en) Air conditioning indirect heating and recuperative ventilation system
US3580003A (en) Cooling apparatus and process for heat-actuated compressors
CN115507466A (en) Dehumidification heat pump system and humidity control device
US3313117A (en) Dense gas helium refrigerator
US3690113A (en) Gas cooling process and apparatus
CN103476220A (en) Energy-saving cabinet air-conditioner
CN202719701U (en) Energy-saving cabinet air-conditioner
KR102101185B1 (en) Cold reserving high temperature dehumidifier
US4289197A (en) Heat exchanger
CN2069992U (en) Hot pump dehumidifier
CN104848421A (en) Direct expansion heat recovery energy saving method and device
CN117213033B (en) Solar fresh air heat recovery device

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCANTILE TEXAS CREDIT CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYNDER GENERAL CORPORATION;REEL/FRAME:003985/0168

Effective date: 19820401

Owner name: MERCANTILE TEXAS CREDIT CORPORATION; MERCANTILE CO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SYNDER GENERAL CORPORATION;REEL/FRAME:003985/0168

Effective date: 19820401

AS Assignment

Owner name: SNYDER GENERAL CORPORATION

Free format text: ASSIGNS THE ENTIRE INTEREST, AS OF APRIL 2, 1982 SUBJECT TO LICENSES AND CONDITIONS RECITED, SEE DOCUMENT FOR DETAILS;ASSIGNOR:SINGER COMPANY, THE;REEL/FRAME:004051/0894

Effective date: 19820402

Owner name: SNYDER GENERAL CORPORATION, A CORP. OF TEX.

Free format text: ASSIGNS THE ENTIRE INTEREST, AS OF APRIL 2, 1982 SUBJECT TO LICENSES AND CONDITIONS RECITED;ASSIGNOR:SINGER COMPANY, THE;REEL/FRAME:004051/0894

Effective date: 19820402

AS Assignment

Owner name: CITICORP INDUSTRIAL CREDIT, INC., 717 NORTH HARWOO

Free format text: SECURITY INTEREST;ASSIGNOR:SYNDER GENERAL CORPORATION A TX CORP;REEL/FRAME:004307/0351

Effective date: 19840726

AS Assignment

Owner name: MCQUAY INC., A CORP. OF MINNESOTA, STATELESS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SNYDER GENERAL CORPORATION, A TX CORP.;REEL/FRAME:004607/0038

Effective date: 19860327

Owner name: MCQUAY INC., A CORP. OF MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SNYDER GENERAL CORPORATION, A TX CORP.;REEL/FRAME:004607/0038

Effective date: 19860327

Owner name: SNYDER GENERAL CORPORATION, STATELESS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCQUAY INC.;REEL/FRAME:004607/0047

Effective date: 19860327

Owner name: SNYDER GENERAL CORPORATION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MCQUAY INC.;REEL/FRAME:004607/0047

Effective date: 19860327

AS Assignment

Owner name: CITICORP INDUSTRIAL CREDIT INC.,TEXAS

Free format text: SECURITY INTEREST;ASSIGNOR:SNYDERGENERAL CORPORATION;REEL/FRAME:004765/0735

Effective date: 19870630

Owner name: CITICORP INDUSTRIAL CREDIT INC., 2700 DIAMOND SHAM

Free format text: SECURITY INTEREST;ASSIGNOR:SNYDERGENERAL CORPORATION;REEL/FRAME:004765/0735

Effective date: 19870630

AS Assignment

Owner name: CITICORP NORTH AMERICA, INC., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:SNYDERGENERAL CORPORATION, A MN CORP.;REEL/FRAME:005013/0592

Effective date: 19881117

AS Assignment

Owner name: SNYDERGENERAL CORPORATION, A MN CORP., TEXAS

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MCREDIT;REEL/FRAME:005003/0183

Effective date: 19881115

AS Assignment

Owner name: MCQUAY INC., A CORP. OF MINNESOTA, MINNESOTA

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP NORTH AMERICA, INC.;REEL/FRAME:005278/0013

Effective date: 19881117

Owner name: SNYDERGENERAL CORPORATION, A CORP. OF MINNESOTA, T

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP NORTH AMERICA, INC.;REEL/FRAME:005278/0013

Effective date: 19881117

AS Assignment

Owner name: SNYDERGENERAL CORPORATION A CORP. OF DELAWARE

Free format text: RELEASE BY SECOND PARTY OF A SECURITY AGREEMENT RECORDED AT REEL 5013 FRAME 592.;ASSIGNOR:CITICORP NORTH AMERICA, INC. A CORP. OF DELAWARE;REEL/FRAME:006104/0270

Effective date: 19920326