US3638008A - Multiple light transmission from a single light source - Google Patents

Multiple light transmission from a single light source Download PDF

Info

Publication number
US3638008A
US3638008A US858549*A US3638008DA US3638008A US 3638008 A US3638008 A US 3638008A US 3638008D A US3638008D A US 3638008DA US 3638008 A US3638008 A US 3638008A
Authority
US
United States
Prior art keywords
light
reflecting
transmission device
transmitting members
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US858549*A
Inventor
Joseph Richard Keller
James Pritulsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Corp
Original Assignee
AMP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMP Inc filed Critical AMP Inc
Application granted granted Critical
Publication of US3638008A publication Critical patent/US3638008A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers

Definitions

  • ABSTRACT A device for effecting multiple light transmission from a single light Source-
  • the light source is a light bulb located at the focal [58] Fie'ld 8 4 8 point of a reflector which bulb emits light rays which are 2 5 5 6 reflected from the reflector at an oblique angle to its transmission axis, Light-transmitting members are spaced in front of the bulb and arranged concentrically around, and at oblique [56] References Cited angles to the transmission of axis of the reflector. in this UNITED STATES PATENTS manner the light-transmitting member will receive and transmit the maximum amount oflight from the reflector.
  • An object of the invention is to provide a light-transmission device wherein a number of light-transmission members transmits light from a single light source.
  • Another object is the provision of a multiple light-transmission device having a reflection means to utilize in an optimum manner the light from a single light bulb.
  • a further object is to provide a multiple light-transmission "device including a mounting means in which the ends of lighttransmitting members are removably mounted in an optimum angular disposition relative to light-reflecting means to receive the greatest intensity of light emanating from the light bulb.
  • An additional object is the provision of means on the reflecting means or between the light source and the ends of the light-transmitting members to absorb unwanted spectra of the light emanating from the light bulb.
  • a still further object is to provide means on the multiple light-transmitting device to prevent heat buildup by the light bulb.
  • a multiple light-transmission device which comprises a reflecting member having a light-bulb-receiving means for receiving a light bulb therein, mounting means on the reflecting membenand light-transmitting members having ends secured in the mounting means and angularly positioned therein to receive light reflected from the reflecting member.
  • FIG. 1 is an exploded perspective view of a light-transmission device
  • FIG. 2 is a view similar to FIG. 1 in an assembled condition
  • FIG. 3 is a cross-sectional view of a mounting member for mounting ends of light-transmitting members with one of the light-transmittingmembers in position and another one exploded therefrom;
  • FIG. 4 is a cross-sectional view of the light-transmission device of FIG. 2;
  • FIG. 5 is a perspective and exploded view of a terminal member and a light-transmitting member prior to being applied to the end of the light-transmitting member;
  • FIG. 6 is a view similar to FIG. 5 but in an assembled condition.
  • a light-transmission device Bulb socket 1 receives metallic base 8 of light bulb 2 and bayonet openings 9 (only one being shown) receive lugs 10 (only one being shown) in order to maintain light bulb 2 in position within socket 1 and to define an outer electrical contact for light bulb 2.
  • Socket 1 also includes a tab l1 electrically connected to electrical terminall2 crimped onto electrical lead 13. Another electrical lead 14 is crimped onto electrical button terminal 15 secured in insulator 16.
  • a coil spring 17 is disposed between lugs 18 at the end of socket l and insulator 16 to bias terminal 15 into engagement with the center contact of light bulb 2. When light bulb 2 is not disposed in socket 1, insulator 16'rests against inwardly directed projections 20 in socket l.
  • Reflector 3 is made from any suitable material and includes a socket-receiving section 21 in which socket 1 frictionally fits and a reflection surface 22 defining an ellipsoidal reflection surface.
  • the socket- may be so positioned within the reflector that a light source; i.e., light bulb filament 2 held by the socket is substantially at the focal point FP, of the reflector. In such case, as well known, substantially all of the reflected light rays LR would then be directed toward a second focal point FP spaced from the reflector.
  • Reflector 3 also includes a flange 23 having bayonet openings 24 equally spaced therearound.
  • Mounting member 4 comprises an annular member 25 having lugs 26 extending outwardly from one surface thereof which are mateable with bayonet openings 24 and these lugs include lips 27 for engagement with flange 23 of reflector 3 in order to secure reflector 3 and mounting member 4 together.
  • a housing 24 is spaced from annular member 25 and is connected thereto by legs 29. Openings 30 extend through housing 28 and are equally spaced around a longitudinal axis LA of mounting member 4.
  • Each opening30 is angularly disposed with respect to the longitudinal axis of mounting member 4 and includes a round section 31 provided with a locking depression 32.
  • a flat surface 33 extends from the entrance of opening 30 inwardly and intersects with section 31 and continues on the other side of round section 31 to the inner end of opening 30, this surface being substantially parallel with respect to the'longitudinal axis of mounting member 4.
  • the outer part of opening 30 from its entrance to round section 31 is in the shape of an arched window having decreasing dimensions and the same configuration results from the inner end of opening 30 to round section 31.
  • a conically shaped opening 34 extends through housing 28. The open spaces between legs 29 and opening 34 provide ventilation to minimize the heat generated by the light bulb.
  • Terminal member 6 is illustrated in detail in FIGS.,5 and 6 and includes first and second sections 35 and 36, securing sections 37 and 38 and an insulation-engaging section 39.
  • Sections 35, 36 and 39 in their flat positions prior to being formed into their presently U-shaped configurations have a substantially rectangular configuration.
  • Securing section 37 includes lenses 40 and securing section 38 has beveled surfaces 38a.
  • Insulation support section 39 includes openings 41 having inwardly beveled sections 42 located on the inner surface of section 39 which are generally of a frustoconical configuration. Section 42 may, however, be serrated or take any other suitable form to perform the intended function.
  • Termination members 6 are susceptible to mass production by automatic machinery and are conveniently formed by shaping a sheet metal blank or strip of a suitable material such as brass or the like in successive forming steps.
  • the metal is sufficiently hard and resilient and has springlike characteristics
  • Light-transmitting members 5 comprise a covering-member 43 of compressible and resilient plastic surrounding lighttransmitting elements 44 made from any suitable light-transmitting material and the number of light-transmitting elements depends upon the amount of light to be transmitted. Each of the light-transmitting elements is surrounded with a coating of material having reflecting characteristics so as to transmit the light therealong.
  • the light-transmitting members are preferably of the type manufactured by E. I. duPont DeNemours and Company under the trademark Crofon.
  • the light-transmitting members are flexible so that in bending the light-transmitting elements to accommodate a desired situation, the light-transmitting elements move relative to each other, and, if the ends of the light-transmitting members are not properly terminated, the ends of the light-transmitting elements extend outwardly from the ends of the covering member in an irregular manner thereby resulting in an improper alignment for the ends of the light-transmitting elements.
  • the light-transmitting members are therefore most effective when the ends of all of the light-transmitting elements are located in the same or substantially the same plane.
  • the light-transmitting member has been stripped to bear a portion of the ends of the light-transmitting elements and the stripped light-transmitting member is placed within the termination member with the light-transmitting elements disposed within section 35 through 38 while covering member 43 is disposed within section 39.
  • the U-shaped configuration of the terminal member makes it easy for the stripped light-transmitting member to be placed within the terminal member; however, the terminal-member may be formed in any other desirable manner so long as the light-transmitting member can be inserted therewithin.
  • the terminal member With the light-transmitting member in position within the terminal member, the terminal member is subjected to a crimping operation by crimping dies (not shown) to crimp the terminal member onto the light-transmitting member.
  • the terminal member is crimped onto the light-transmitting member in accordance with the disclosure of U.S. Pat. application Ser. No. 557,797, filed June 15, 1966 and now U.S. Pat. No. 3,416,030, so as not to restrict the transmission characteristics of the light-transmitting member.
  • the crimping dies preferably form sections 35 through 37 and 39 into a circular configuration onto the light-transmitting elements and covering member. It is to be understood, however, that these sections can be formed into other geometrical configurations as desired to accommodate a desired purpose. Thus, the light-transmitting elements are collected in a dense and substantially uniform manner of desired geometrical configuration.
  • the crimping dies engage all of sections 35, 36 and 39 and parts 45 of section 37 thereby not engaging section 38 and lances 40.
  • inwardly beveled sections 42 penetrate the covering members so as to securely position the terminal member on the light-transmitting member.
  • section 39 defines a strain relief means for the terminal member.
  • terminal member 7 is of the type disclosed in U.S. Pat. application, Ser. No. 583,372, filed Sept. 30, 1966.
  • terminated terminal members 6 are disposed in openings 30 in accordance with the angular disposition of openings 30 relative to the longitudinal axis LA of mounting member 4.
  • Lances 40 are disposed in locking depressions 32 to prevent the terminal members from being withdrawn from housing 28 and beveled edges 38a engage flat surface 33 in order to limit the inner movement of the terminal members within openings 30 so that the ends of terminal members 6 are disposed at the inner ends of openings 30 to receive reflected light from reflecting surface 22.
  • Beveled edges 38a also maintain the terminal members against the arcuate surfaces of the openings.
  • Lances 40 can be depressed to permit removal of the terminal members from openings 30.
  • the angular disposition of terminal members 6 within openings 30 permits the greatest intensity of light reflected from reflecting surface 22 to be received by the light-transmitting members because the ellipsoidal reflecting surface accomplishes this important feature.
  • the proper angular disposition of the light-transmitting members relative to the major or principal axis PA (which coincides with the longitudinal axis LA of mounting member 4) of the ellipsoidal reflecting surface determines the intensity of the light to be received by the light-transmitting members.
  • a bundle of light rods with their end surfaces normal to the median angle (1,, of the light falling on the apertured plate 28 matches the acceptance angle of the rods to the light source.
  • more than one annular row of light-transmitting members may be provided in housing 28, but for each row of light-transmitting members, a filament is necessary in the light bulb or light source for maximum light intensity; however, a filament of sufficient length along the major axis may be used if maximum light intensity is not essential.
  • Filters may be placed between the light source and the plane of the ends of the light-transmitting members to filter out or absorb an unnecessary part of the light spectrum. ln this respect the glass of the light bulb will filter out infrared light.
  • the reflector may also be used in a slightly defocused manner by adjusting the position of the light source relative to the focal point of the reflector.
  • the reflecting surface may be coated with the light-absorbing substance to absorb the unnecessary part of the light spectrum. Any heat-dissipating means may be applied to the exterior surface of the reflector to dissipate heat therefrom. If desired, means may be provided to adjust the light bulb along the major axis and relative to the reflecting surface.
  • a U-shaped mounting bracket 46 has Y-shaped openings 47 in each leg thereof to receive section 21 of reflector 3 and housing 28 of mounting member 4 to mount the light-transmission device.
  • terminal member has been disclosed as being applied to a stripped end of a light-transmitting member it is obvious that the terminal member can be applied to a nonstripped end of a light-transmitting member with sections 35 and 36 being provided with openings 41 and inwardly beveled sections 42 thereby eliminating section 39.
  • a light-transmission device has been disclosed to transmit via light-transmitting members multiple light transmission from a single light source.
  • a multiple light-transmission device comprising a single unitary light reflecting means reflecting rays at an oblique angle to its principal axis and having a light-bulb-receiving means for receiving a light bulb therein, mounting means on the reflecting means, and light-transmitting members having ends secured in the mounting means and each said transmitting member positioned at the same oblique angle therein relative to the principal axis of said reflecting means to receive the maximum amount of light reflected from the reflecting means.
  • a multiple light-transmission device according to claim 1 wherein means are provided on said reflecting member and said mounting means to removably secure and reflecting member and said mounting means together.
  • a multiple light-transmission device according to claim 1 wherein means are provided on said mounting means and the ends of said light-transmitting members to removably secure the ends of said light-transmitting members in said mounting means.
  • a multiple light-transmission device according to claim 1 wherein said reflecting member has an ellipsoidal reflecting surface.
  • a multiple light-transmission device according to claim 1 wherein said mounting means is provided with openings to prevent high heat.
  • a multiple light-transmission device according to claim 1 wherein light-filtering means is disposed between said light bulb and the ends of said light-transmitting members to filter out unwanted spectra.
  • a light system comprising a socket member for receiving a light bulb therein, a single unitary light-reflecting means extending outwardly from said socket member for reflecting light rays emanating from said light bulb at an acute angle relative to its principal axis, a series of light-transmitting members, mounting means on said light-reflecting means to mount about a principal axis and having a focal point substantially at which a light source may be positioned; said light-reflecting surface being so shaped as to transmit substantially all the light rays to a second focal point, a plurality of light-transmission rods each having an end surface spaced from the second focal point, the respective end surfaces being positioned at such an angle to the light rays which they intercept, as to transmit the maximum amount of light reflected from the reflecting surface.
  • a multiple light-transmission device including a mounting member provided with means for sup porting said rods with their end surfaces in confronting relation to the light rays.
  • a multiple light-transmission device according to claim 9 further including means for supporting the mounting member on the reflector.
  • a multiple light-transmission device according to claim 8 wherein the light-reflecting surface is elliptical in shape.

Abstract

A device for effecting multiple light transmission from a single light source. The light source is a light bulb located at the focal point of a reflector which bulb emits light rays which are reflected from the reflector at an oblique angle to its transmission axis. Light-transmitting members are spaced in front of the bulb and arranged concentrically around, and at oblique angles to the transmission of axis of the reflector. In this manner the light-transmitting member will receive and transmit the maximum amount of light from the reflector.

Description

XR 396389038 I '1" 'i unltefl but [151 3,638,008 Keller et al. 51 Jan. 25, 1972 [54] MULTIPLE LIGHT TRANSMISSION 128;,0 g 4 6/1942 Rowe 240/; El FROM A SINGLE LIGHT SOURCE 2,68 ,8 2 8/1954 Crowther ..248/27 2,884,283 4/1959 Korol et al. .248/27 X [72] Inventors: Joseph Richard Keller; James Prltulsky, 3,278,739 10/1966 Royka et al. .....350/96 X 1 both"ofHarrisburg,Pa. 3,423,581 1/1969 Baer...'. ..240/1 El Assignee: AMP Incorporated, Harrisburg Pa. 3,437,804 4/1969 Schaefer et al. ..350/96 X [22] Filed: Apr. 29, 1969 Primary Examiner-John M. Horan Assistant Examiner-Robert P. Greincr [21] Appl- 858,549 Attorney-Curtis, Morris and Safford, Marshall M. Holcombe, William Hintz, William J. Keating, Frederick W. Raring, John Rela'ed Data R. Hopkins, Adrian J. La Rue and Jay L, Seitchik [63] Continuation-impart of Ser. No. 591,254, Nov. 1,
1966, abandoned. [57] ABSTRACT A device for effecting multiple light transmission from a single light Source- The light source is a light bulb located at the focal [58] Fie'ld 8 4 8 point of a reflector which bulb emits light rays which are 2 5 5 6 reflected from the reflector at an oblique angle to its transmission axis, Light-transmitting members are spaced in front of the bulb and arranged concentrically around, and at oblique [56] References Cited angles to the transmission of axis of the reflector. in this UNITED STATES PATENTS manner the light-transmitting member will receive and transmit the maximum amount oflight from the reflector. 624,392 5/1899 Smith ..350/96 1,949,551 3/1934 Somervell ..240[1 El 11 Claims, 6 Drawing Figures PATENTED JAN25|972 snm a nr 7 ticularly to multiple light transmission from a single light source.
In applications in which light is used as a medium to transmit intelligence, to provide illumination, to provide sensing,
signalling and monitoring, or the like the general practice is to provide complex systems of electric light bulbs, electric wiring, and, in some cases, relay or electronic components to complete the intended function. Such systems are expensive, their reliability is dependent upon all parts functioning properly and their flexibility is limited. 5
An object of the invention is to provide a light-transmission device wherein a number of light-transmission members transmits light from a single light source.
Another object is the provision of a multiple light-transmission device having a reflection means to utilize in an optimum manner the light from a single light bulb. A further object is to provide a multiple light-transmission "device including a mounting means in which the ends of lighttransmitting members are removably mounted in an optimum angular disposition relative to light-reflecting means to receive the greatest intensity of light emanating from the light bulb.
An additional object is the provision of means on the reflecting means or between the light source and the ends of the light-transmitting members to absorb unwanted spectra of the light emanating from the light bulb.
A still further object is to provide means on the multiple light-transmitting device to prevent heat buildup by the light bulb.
Other objects and attainments of the present invention will become apparent to those skilled in the art upon a reading of i the following detailed description when taken in conjunction with the drawings in which therejare shown and described an illustrative embodiment of the invention; it is to be understood, however, that this embodiment is not intended to be exhaustive nor limiting of the invention but is given for purposes of illustration in order that others skilled in the art may fully understand the invention and the principles thereof and the manner of applying it in practical use so that they may modify it in various forms, each as may bebest suited to the conditions of a particular use.
The foregoing and other objects are achieved by a preferred embodiment of a multiple light-transmission device which comprises a reflecting member having a light-bulb-receiving means for receiving a light bulb therein, mounting means on the reflecting membenand light-transmitting members having ends secured in the mounting means and angularly positioned therein to receive light reflected from the reflecting member.
i IN THE DRAWINGS FIG. 1 is an exploded perspective view of a light-transmission device;
FIG. 2 is a view similar to FIG. 1 in an assembled condition;
FIG. 3 is a cross-sectional view of a mounting member for mounting ends of light-transmitting members with one of the light-transmittingmembers in position and another one exploded therefrom;
FIG. 4 is a cross-sectional view of the light-transmission device of FIG. 2;
FIG. 5 is a perspective and exploded view of a terminal member and a light-transmitting member prior to being applied to the end of the light-transmitting member; and
FIG. 6 is a view similar to FIG. 5 but in an assembled condition.
Turning now to the drawings, a light-transmission device Bulb socket 1 receives metallic base 8 of light bulb 2 and bayonet openings 9 (only one being shown) receive lugs 10 (only one being shown) in order to maintain light bulb 2 in position within socket 1 and to define an outer electrical contact for light bulb 2. Socket 1 also includes a tab l1 electrically connected to electrical terminall2 crimped onto electrical lead 13. Another electrical lead 14 is crimped onto electrical button terminal 15 secured in insulator 16. A coil spring 17 is disposed between lugs 18 at the end of socket l and insulator 16 to bias terminal 15 into engagement with the center contact of light bulb 2. When light bulb 2 is not disposed in socket 1, insulator 16'rests against inwardly directed projections 20 in socket l.
Reflector 3 is made from any suitable material and includes a socket-receiving section 21 in which socket 1 frictionally fits and a reflection surface 22 defining an ellipsoidal reflection surface. The socket-may be so positioned within the reflector that a light source; i.e., light bulb filament 2 held by the socket is substantially at the focal point FP, of the reflector. In such case, as well known, substantially all of the reflected light rays LR would then be directed toward a second focal point FP spaced from the reflector. Reflector 3 also includes a flange 23 having bayonet openings 24 equally spaced therearound.
Mounting member 4 comprises an annular member 25 having lugs 26 extending outwardly from one surface thereof which are mateable with bayonet openings 24 and these lugs include lips 27 for engagement with flange 23 of reflector 3 in order to secure reflector 3 and mounting member 4 together. A housing 24 is spaced from annular member 25 and is connected thereto by legs 29. Openings 30 extend through housing 28 and are equally spaced around a longitudinal axis LA of mounting member 4.
7 Each opening30 is angularly disposed with respect to the longitudinal axis of mounting member 4 and includes a round section 31 provided with a locking depression 32. A flat surface 33 extends from the entrance of opening 30 inwardly and intersects with section 31 and continues on the other side of round section 31 to the inner end of opening 30, this surface being substantially parallel with respect to the'longitudinal axis of mounting member 4. Thus, the outer part of opening 30 from its entrance to round section 31 is in the shape of an arched window having decreasing dimensions and the same configuration results from the inner end of opening 30 to round section 31. A conically shaped opening 34 extends through housing 28. The open spaces between legs 29 and opening 34 provide ventilation to minimize the heat generated by the light bulb.
Terminal member 6 is illustrated in detail in FIGS.,5 and 6 and includes first and second sections 35 and 36, securing sections 37 and 38 and an insulation-engaging section 39. Sections 35, 36 and 39 in their flat positions prior to being formed into their presently U-shaped configurations have a substantially rectangular configuration. Securing section 37 includes lenses 40 and securing section 38 has beveled surfaces 38a. Insulation support section 39 includes openings 41 having inwardly beveled sections 42 located on the inner surface of section 39 which are generally of a frustoconical configuration. Section 42 may, however, be serrated or take any other suitable form to perform the intended function.
Termination members 6 are susceptible to mass production by automatic machinery and are conveniently formed by shaping a sheet metal blank or strip of a suitable material such as brass or the like in successive forming steps. The metal is sufficiently hard and resilient and has springlike characteristics,
yet it is sufficiently malleable to permit crimping of the termination members onto light-transmitting members 5 to effect an excellent mechanical connection therewith.
Light-transmitting members 5 comprise a covering-member 43 of compressible and resilient plastic surrounding lighttransmitting elements 44 made from any suitable light-transmitting material and the number of light-transmitting elements depends upon the amount of light to be transmitted. Each of the light-transmitting elements is surrounded with a coating of material having reflecting characteristics so as to transmit the light therealong. The light-transmitting members are preferably of the type manufactured by E. I. duPont DeNemours and Company under the trademark Crofon.
The light-transmitting members are flexible so that in bending the light-transmitting elements to accommodate a desired situation, the light-transmitting elements move relative to each other, and, if the ends of the light-transmitting members are not properly terminated, the ends of the light-transmitting elements extend outwardly from the ends of the covering member in an irregular manner thereby resulting in an improper alignment for the ends of the light-transmitting elements. The light-transmitting members are therefore most effective when the ends of all of the light-transmitting elements are located in the same or substantially the same plane.
As can be discerned from FIG. 5, the light-transmitting member has been stripped to bear a portion of the ends of the light-transmitting elements and the stripped light-transmitting member is placed within the termination member with the light-transmitting elements disposed within section 35 through 38 while covering member 43 is disposed within section 39. The U-shaped configuration of the terminal member makes it easy for the stripped light-transmitting member to be placed within the terminal member; however, the terminal-member may be formed in any other desirable manner so long as the light-transmitting member can be inserted therewithin.
With the light-transmitting member in position within the terminal member, the terminal member is subjected to a crimping operation by crimping dies (not shown) to crimp the terminal member onto the light-transmitting member. The terminal member is crimped onto the light-transmitting member in accordance with the disclosure of U.S. Pat. application Ser. No. 557,797, filed June 15, 1966 and now U.S. Pat. No. 3,416,030, so as not to restrict the transmission characteristics of the light-transmitting member.
The crimping dies preferably form sections 35 through 37 and 39 into a circular configuration onto the light-transmitting elements and covering member. It is to be understood, however, that these sections can be formed into other geometrical configurations as desired to accommodate a desired purpose. Thus, the light-transmitting elements are collected in a dense and substantially uniform manner of desired geometrical configuration. The crimping dies engage all of sections 35, 36 and 39 and parts 45 of section 37 thereby not engaging section 38 and lances 40. As section 39 is being crimped onto covering member 43, inwardly beveled sections 42 penetrate the covering members so as to securely position the terminal member on the light-transmitting member. Thus, section 39 defines a strain relief means for the terminal member. In the event that the light-transmitting member is not to be subjected to undue strains, sections 35 through 37 can be used to terminate the stripped light-transmitting member and section 39 can be eliminated. Terminal member 7 is of the type disclosed in U.S. Pat. application, Ser. No. 583,372, filed Sept. 30, 1966.
As illustrated in FIGS. 3 and 4, terminated terminal members 6 are disposed in openings 30 in accordance with the angular disposition of openings 30 relative to the longitudinal axis LA of mounting member 4. Lances 40 are disposed in locking depressions 32 to prevent the terminal members from being withdrawn from housing 28 and beveled edges 38a engage flat surface 33 in order to limit the inner movement of the terminal members within openings 30 so that the ends of terminal members 6 are disposed at the inner ends of openings 30 to receive reflected light from reflecting surface 22. Beveled edges 38a also maintain the terminal members against the arcuate surfaces of the openings. Lances 40 can be depressed to permit removal of the terminal members from openings 30.
The angular disposition of terminal members 6 within openings 30 permits the greatest intensity of light reflected from reflecting surface 22 to be received by the light-transmitting members because the ellipsoidal reflecting surface accomplishes this important feature. Thus, the proper angular disposition of the light-transmitting members relative to the major or principal axis PA (which coincides with the longitudinal axis LA of mounting member 4) of the ellipsoidal reflecting surface determines the intensity of the light to be received by the light-transmitting members. In effect, a bundle of light rods with their end surfaces normal to the median angle (1,, of the light falling on the apertured plate 28 matches the acceptance angle of the rods to the light source. If desired, more than one annular row of light-transmitting members may be provided in housing 28, but for each row of light-transmitting members, a filament is necessary in the light bulb or light source for maximum light intensity; however, a filament of sufficient length along the major axis may be used if maximum light intensity is not essential.
Filters may be placed between the light source and the plane of the ends of the light-transmitting members to filter out or absorb an unnecessary part of the light spectrum. ln this respect the glass of the light bulb will filter out infrared light. The reflector may also be used in a slightly defocused manner by adjusting the position of the light source relative to the focal point of the reflector. Also, instead of filters, the reflecting surface may be coated with the light-absorbing substance to absorb the unnecessary part of the light spectrum. Any heat-dissipating means may be applied to the exterior surface of the reflector to dissipate heat therefrom. If desired, means may be provided to adjust the light bulb along the major axis and relative to the reflecting surface.
A U-shaped mounting bracket 46 has Y-shaped openings 47 in each leg thereof to receive section 21 of reflector 3 and housing 28 of mounting member 4 to mount the light-transmission device.
While the terminal member has been disclosed as being applied to a stripped end of a light-transmitting member it is obvious that the terminal member can be applied to a nonstripped end of a light-transmitting member with sections 35 and 36 being provided with openings 41 and inwardly beveled sections 42 thereby eliminating section 39.
As can be discerned, a light-transmission device has been disclosed to transmit via light-transmitting members multiple light transmission from a single light source.
It will, therefore, be appreciated that the aforementioned and other desirable objects have been achieved; however, it should be emphasized that the particular embodiment of the invention, which is shown and described herein, is intended as merely illustrative and not as restrictive of the invention.
We claim:
1. A multiple light-transmission device comprising a single unitary light reflecting means reflecting rays at an oblique angle to its principal axis and having a light-bulb-receiving means for receiving a light bulb therein, mounting means on the reflecting means, and light-transmitting members having ends secured in the mounting means and each said transmitting member positioned at the same oblique angle therein relative to the principal axis of said reflecting means to receive the maximum amount of light reflected from the reflecting means.
2. A multiple light-transmission device according to claim 1 wherein means are provided on said reflecting member and said mounting means to removably secure and reflecting member and said mounting means together.
3. A multiple light-transmission device according to claim 1 wherein means are provided on said mounting means and the ends of said light-transmitting members to removably secure the ends of said light-transmitting members in said mounting means.
4. A multiple light-transmission device according to claim 1 wherein said reflecting member has an ellipsoidal reflecting surface.
5. A multiple light-transmission device according to claim 1 wherein said mounting means is provided with openings to prevent high heat.
6. A multiple light-transmission device according to claim 1 wherein light-filtering means is disposed between said light bulb and the ends of said light-transmitting members to filter out unwanted spectra.
7. A light system comprising a socket member for receiving a light bulb therein, a single unitary light-reflecting means extending outwardly from said socket member for reflecting light rays emanating from said light bulb at an acute angle relative to its principal axis, a series of light-transmitting members, mounting means on said light-reflecting means to mount about a principal axis and having a focal point substantially at which a light source may be positioned; said light-reflecting surface being so shaped as to transmit substantially all the light rays to a second focal point, a plurality of light-transmission rods each having an end surface spaced from the second focal point, the respective end surfaces being positioned at such an angle to the light rays which they intercept, as to transmit the maximum amount of light reflected from the reflecting surface.
9. A multiple light-transmission device according to claim 8 including a mounting member provided with means for sup porting said rods with their end surfaces in confronting relation to the light rays.
10. A multiple light-transmission device according to claim 9 further including means for supporting the mounting member on the reflector.
11. A multiple light-transmission device according to claim 8 wherein the light-reflecting surface is elliptical in shape.

Claims (11)

1. A multiple light-transmission device comprising a single unitary light reflecting means reflecting rays at an oblique angle to its principal axis and having a light-bulb-receiving means for receiving a light bulb therein, mounting means on the reflecting means, and light-transmitting members having ends secured in the mounting means and each said transmitting member positioned at the same oblique angle therein relative to the principal axis of said reflecting means to receive the maximum amount of light reflected from the reflecting means.
2. A multiple light-transmission device according to claim 1 wherein means are provided on said reflecting member and said mounting means to removably secure said reflecting member and said mounting means together.
3. A multiple light-transmission device according to claim 1 wherein means are provided on said mounting means and the ends of said light-transmitting members to removably secure the ends of said light-transmitting members in said mounting means.
4. A multiple light-transmission device according to claim 1 wherein said reflecting member has an ellipsoidal reflecting surface.
5. A multiple light-transmission device according to claim 1 wherein said mounting means is provided with openings to prevent high heat.
6. A multiple light-transmission device according to claim 1 wherein light-filtering means is disposed between said light bulb and the ends of said light-transmitting members to filter out unwanted spectra.
7. A light system comprising a socket member for receiving a light bulb therein, a single unitary light-reflecting means extending outwardly from said socket member for reflecting light rays emanating from said light bulb at an acute angle relative to its principal axis, a series of light-transmitting members, mounting means on said light-reflecting means to mount ends of said light-transmitting members to receive the reflected light from said light-reflecting means, means securing ends of the light-transmitting members on said mounting means with ends of said light-transmitting members being disposed to receive a maximum amount of light rays, said light-transmitting members being positioned at the same acute angle with respect to the transmission axis of said light-reflecting means and means mounting other ends of the light-transmitting members adjacent areas to utilize the light therefrom.
8. A multiple light-transmission device comprising a light-reflecting surface in the form of a hollow figure of revolution about a principal axis and having a focal point substantially at which a light source may be positioned; said light-reflecting surface being so shaped as to transmit substantially all the light rays to a second focal point, a plurality of light-transmission rods each having an end surface spaced from the second focal point, the respective end surfaces being positioned at such an angle to the light rays which they intercept, as to transmit the maximum amount of light reflected from the reflecting surface.
9. A multiple light-transmission device according to claim 8 including a mounting member provided with means for supporting said rods with their end surfaces in confronting relation to the light rays.
10. A multiple light-transmission device according to claim 9 further including means for supporting the mounting member on the reflector.
11. A multiple light-transmission device according to claim 8 wherein the light-reflecting surface is elliptical in shape.
US858549*A 1969-04-29 1969-04-29 Multiple light transmission from a single light source Expired - Lifetime US3638008A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US85854969A 1969-04-29 1969-04-29

Publications (1)

Publication Number Publication Date
US3638008A true US3638008A (en) 1972-01-25

Family

ID=25328568

Family Applications (1)

Application Number Title Priority Date Filing Date
US858549*A Expired - Lifetime US3638008A (en) 1969-04-29 1969-04-29 Multiple light transmission from a single light source

Country Status (1)

Country Link
US (1) US3638008A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758189A (en) * 1971-11-09 1973-09-11 G Codrino Metal cable terminal for light guiding cable
US3932023A (en) * 1974-11-18 1976-01-13 E. I. Du Pont De Nemours & Company Optical coupler for transmitting light linearly between a single point and plural points
FR2372448A1 (en) * 1976-09-07 1978-06-23 Sterndent Corp LIGHTING DEVICE FOR OPTICAL MEASURING SYSTEM
US4162119A (en) * 1977-11-18 1979-07-24 International Telephone And Telegraph Corporation Fiber optic position indicator
FR2450489A1 (en) * 1979-03-01 1980-09-26 Feret Didier Illumination display using light conductors - has air gap and thermal barriers in screen provided with synthetic monofilament optical fibres
US4249794A (en) * 1979-03-21 1981-02-10 Fmc Corporation Optically coupled remote control system
US4464705A (en) * 1981-05-07 1984-08-07 Horowitz Ross M Dual light source and fiber optic bundle illuminator
EP0658722A1 (en) * 1993-11-29 1995-06-21 Hughes Aircraft Company Light cube module
US5452186A (en) * 1994-03-30 1995-09-19 Ford Motor Company Light distribution system
EP0675377A2 (en) * 1994-03-30 1995-10-04 Ford Motor Company A light collector
US5615938A (en) * 1992-02-14 1997-04-01 Lemke; Norbert Device for illuminating objects in particular those to be recorded with a video camera
US6125223A (en) * 1998-08-31 2000-09-26 Oriel Corporation Spectrally resolved light
US6370837B1 (en) 1999-08-04 2002-04-16 Anthony B. Mcmahon System for laying masonry blocks
US20030156819A1 (en) * 2002-02-15 2003-08-21 Mark Pruss Optical waveguide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US624392A (en) * 1899-05-02 Seaechroom
US1949551A (en) * 1932-03-21 1934-03-06 Somervell B Somervell Vehicle light
US2286014A (en) * 1941-01-28 1942-06-09 Stanley S Lieberman Airplane angle indicator
US2687862A (en) * 1949-11-12 1954-08-31 Illinois Tool Works Fastener
US2884283A (en) * 1956-05-31 1959-04-28 Gen Electric Shaft support
US3278739A (en) * 1964-01-02 1966-10-11 Bausch & Lomb Illuminator
US3423581A (en) * 1966-10-26 1969-01-21 Gen Motors Corp Remote illumination apparatus
US3437804A (en) * 1964-04-11 1969-04-08 Quarzlampen Gmbh Light transmitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US624392A (en) * 1899-05-02 Seaechroom
US1949551A (en) * 1932-03-21 1934-03-06 Somervell B Somervell Vehicle light
US2286014A (en) * 1941-01-28 1942-06-09 Stanley S Lieberman Airplane angle indicator
US2687862A (en) * 1949-11-12 1954-08-31 Illinois Tool Works Fastener
US2884283A (en) * 1956-05-31 1959-04-28 Gen Electric Shaft support
US3278739A (en) * 1964-01-02 1966-10-11 Bausch & Lomb Illuminator
US3437804A (en) * 1964-04-11 1969-04-08 Quarzlampen Gmbh Light transmitting device
US3423581A (en) * 1966-10-26 1969-01-21 Gen Motors Corp Remote illumination apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758189A (en) * 1971-11-09 1973-09-11 G Codrino Metal cable terminal for light guiding cable
US3932023A (en) * 1974-11-18 1976-01-13 E. I. Du Pont De Nemours & Company Optical coupler for transmitting light linearly between a single point and plural points
FR2372448A1 (en) * 1976-09-07 1978-06-23 Sterndent Corp LIGHTING DEVICE FOR OPTICAL MEASURING SYSTEM
US4162119A (en) * 1977-11-18 1979-07-24 International Telephone And Telegraph Corporation Fiber optic position indicator
FR2450489A1 (en) * 1979-03-01 1980-09-26 Feret Didier Illumination display using light conductors - has air gap and thermal barriers in screen provided with synthetic monofilament optical fibres
US4249794A (en) * 1979-03-21 1981-02-10 Fmc Corporation Optically coupled remote control system
US4464705A (en) * 1981-05-07 1984-08-07 Horowitz Ross M Dual light source and fiber optic bundle illuminator
US5615938A (en) * 1992-02-14 1997-04-01 Lemke; Norbert Device for illuminating objects in particular those to be recorded with a video camera
EP0658722A1 (en) * 1993-11-29 1995-06-21 Hughes Aircraft Company Light cube module
US5676446A (en) * 1993-11-29 1997-10-14 Hughes Aircraft Company Light cube module
US5452186A (en) * 1994-03-30 1995-09-19 Ford Motor Company Light distribution system
EP0675377A2 (en) * 1994-03-30 1995-10-04 Ford Motor Company A light collector
US5475571A (en) * 1994-03-30 1995-12-12 Ford Motor Company Ring Light collector
EP0675377A3 (en) * 1994-03-30 1996-04-24 Ford Motor Co A light collector.
US6125223A (en) * 1998-08-31 2000-09-26 Oriel Corporation Spectrally resolved light
US6370837B1 (en) 1999-08-04 2002-04-16 Anthony B. Mcmahon System for laying masonry blocks
US20030156819A1 (en) * 2002-02-15 2003-08-21 Mark Pruss Optical waveguide

Similar Documents

Publication Publication Date Title
US3538321A (en) Multiple light transmission from a single light source
US3638008A (en) Multiple light transmission from a single light source
US4804343A (en) Lamp socket assembly
US5087213A (en) Lamp socket
US4631651A (en) Replaceable automobile headlight lamp unit and automobile headlight utilizing same
CA1145810A (en) Baseless incandescent lamp assembly
US3569933A (en) Signalling system with indicating means
US4152622A (en) Lamp-base assembly
GB2110839A (en) Strobe lighting units and reflectors for such units
US3705756A (en) Terminal member for light transmitting means
EP3974705A1 (en) Down light
US4482942A (en) Projection unit including glass reflector with insulative cap member
HU221363B1 (en) Electric lamp
US3510641A (en) Light base and light-conducting member attached thereto
GB2066443A (en) Lamp/reflector unit
US3229083A (en) Replaceable miniature lamp assembly
JPS63205001A (en) Head lamp module for automobile or the like
US5568009A (en) Electric lamp having a lamp cap with solder-free connections
US4385257A (en) Lamp base
CA2083013A1 (en) Electric reflector lamp
SU1660594A3 (en) Circular socket
GB2081865A (en) A lampchanger for a light
GB2131937A (en) Headlamp suitable for bicycles etc
AU540405B2 (en) Vehicle lamp
CA1306730C (en) Heat shield for low profile automotive headlight