US3636544A - Alarm - Google Patents

Alarm Download PDF

Info

Publication number
US3636544A
US3636544A US3940A US3636544DA US3636544A US 3636544 A US3636544 A US 3636544A US 3940 A US3940 A US 3940A US 3636544D A US3636544D A US 3636544DA US 3636544 A US3636544 A US 3636544A
Authority
US
United States
Prior art keywords
transmitter
float
closed
source
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US3940A
Inventor
Jorge G Codina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3636544A publication Critical patent/US3636544A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/08Alarms for ensuring the safety of persons responsive to the presence of persons in a body of water, e.g. a swimming pool; responsive to an abnormal condition of a body of water
    • G08B21/084Alarms for ensuring the safety of persons responsive to the presence of persons in a body of water, e.g. a swimming pool; responsive to an abnormal condition of a body of water by monitoring physical movement characteristics of the water

Definitions

  • ABSTRACT [52] US. Cl ..340/26l, ZOO/6
  • the system [51] Int. Cl. ..G08b 5/22 mploys a float containing a battery powered transmitter [58] Field of Search ..340/224, 261, 244C; 325/! I6 tuned to a Selected fixed q y- The transmitter is energized when the person or object enters the water whereby a I 56] Reerences Cited signal at said frequency is transmitted.
  • a receiver tuned to the same signal acts as a monitor by receiving the signal and UNITED STATES PATENTS reproducing same in fonn suitable for sounding the alarm.
  • My invention is a system for sounding an alarm when an unauthorized person or object enters a swimming pool, as for example when a child too young to swim falls accidentally into the water, whereby appropriate corrective action can be taken, for example, to prevent the child from drowning.
  • a radio transmitter is energized at the time the child falls in the water to transmit an alarm signal of fixed frequency.
  • a receiver tuned to this frequency receives the signal so transmitted whereby an alarm can be sounded as for example by reproducing the signal as an audio wave in a loudspeaker.
  • the transmitter which is battery powered, is disposed with its battery into a float resting in the water.
  • the transmitter is connected to the battery via normally open switching means in the float which is closed when and only when a wave is produced in the water. In the absence of a wave, the transmitter is inoperative.
  • the means is turned on, actuating the transmitter which then produces the alarm signal as previously indicated.
  • the switching means can take the form of two electrical contacts disposed in spaced relationship on the surface of the float, one contact being disposed below the waterline, the other being disposed at a preselected level above the waterline. As soon as the water level ceases to be smooth whereby small waves are formed, the wave will break upon the float whereby both contacts are momentarily below the waterline. The water establishes an electrical connection between the contacts whereby the circuit is completed and the transmitter turned on. Additional means in the transmitter prevents the circuit, once completed, from being broken once the waves subside and the electrical connection between the contacts is broken.
  • the transmitter can employ a multivibrator of low repetition rate together with a high-frequency oscillator, both elements being operative in a time sharing mode, resulting in onoff transmission at an audio rate.
  • FIG. 1 is a perspective view of my float; and FIG. 2 is a circuit diagram of my invention.
  • the transmitter uses transistors l and 2 together with the interconnecting components to form a combination of a multivibrator having a low repetition rate and a high-frequency oscillator, both multivibrator and oscillator having a time sharing mode which results in on-off transmission at an audio repetition rate.
  • the audiofrequency transmitter section includes transistor 1, circuit 3, resistors 4, 5 and 6, crystal l6 and antenna 24.
  • Transistor 1 provides the necessary amplification for sustained oscillations and radiation.
  • Crystal 116 detennines the frequency at which positive feedback and hence oscillation occurs.
  • Coil 3 functions as a loading circuit at radiofrequency (the distributed capacitance causes the coil to be resonant at the desired radiofrequency), thus determining the conditions for developing oscillation, and also couples the signal to the antenna 24 for transmission.
  • Resistors 4, 5, 6 and 9 determine the direct current operating conditions of transistor 1, while resistors 7, 8 and 10 determine the direct current operating condition of transistor 2.
  • Capacitor lli has a value at which the radiofrequencies are bypassed without changing the audio repetition rate.
  • Coil 12 has a value at which radiofrequency feedback to transistor 2 is inhibited, but audiofrequency feedback continues.
  • the output signal from transistor 2 is supplied as a positive feedback signal to transistor ll via capacitor 115.
  • Transistor ll then oscillates at a radiofrequency determined by crystal 16. After a time interval determined primarily by resistors 5 and 6 and capacitor 15, transistor 1 is cut off and radiofrequency oscillations cease. At the same time, however, a signal developed across resistor 9 is fed back to transistor 2 via capacitor 14 whereby the multivibrator (audio rate) oscillations continue.
  • the multivibrator which operates as long as the transmitter in operation, first turns transistor l on and transistor 2 oh", then reverses these conductive and nonconductive states, then again reverses these states and so on. Radiofrequency transmission occurs only when transistor ll conducts. The net result is to produce a radiofrequency signal modulated or interrupted at an audio rate.
  • the transmitter is disposed in float 26. As long as the water level is essentially undisturbed and quiescent, contacts 18 and 19 are electrically isolated and no power is consumed. The transmitter is inoperative. When the water level is disturbed, as for example by a child falling into the water, wave 29 impinges upon the float and completes a circuit between the contacts l8 and 19. (The equivalent circuit is shown at 17. Water, even distilled water, is sufficiently conductive for this purpose.)
  • Rectifier 20 is normally nonconductive, but is switched into full conduction as soon as circuit 117 is established. Thereafter, rectifier 20 will remain conductive even after circuit 17 is broken so as to maintain the transmitter in operation. Resistor 21 limits current flow in the gate of rectifier 20. Once rectifier 20 is conductive, it can be turned off by momentarily interrupting power flow by manually opening switch 23.
  • Adjustment 25 permits the vertical separation between contacts l3 and 19 to be varied as necessary to prevent spurious alarms, as, for example, when pebbles are tossed in the pool. Adjustment 25 can fonn a protective cap over contact 18 which prevents rain from establishing conduction and activating the transmitter.
  • the signals transmitted via antenna 24 are intercepted by antenna 31 and reproduced in receiver 30 suitably tuned to the frequency of the transmitted signal.
  • Apparatus for transmitting an alarm signal in the form of an electromagnetic wave upon the occurrence of a selected condition comprising:
  • first switch means having first and second spaced contacts, said first means being normally open and being closed when said condition occurs;
  • a float supporting said first means and adapted to float on the surface of a body of water with one contact above the waterline and the other contact below the waterline, said condition being produced when waves of water are generated on said surface and both contacts are interconnected by a continuous liquid path;
  • second switch means in the float which is normally open and coupled to the first means, said second means being adapted to close when the first means is closed and, once closed, remaining closed until manually reset or until the source is drained of power;
  • Apparatus as set forth in claim 1 including fourth manually controlled means for varying the separation between said contacts.

Abstract

A system for sounding an alarm when an unauthorized person or unidentified object enters a swimming pool. The system employs a float containing a battery powered transmitter tuned to a selected fixed frequency. The transmitter is energized when the person or object enters the water whereby a signal at said frequency is transmitted. A receiver tuned to the same signal acts as a monitor by receiving the signal and reproducing same in form suitable for sounding the alarm.

Description

sm/woe W P w 5 HA) KR =3QE13'HP-5 v [1s] 3 636 544 l 0 s it; i J Qodina 51 Jan. 18, 1972 [54] ALARM 3,206,615 9/1965 Pointe ..340/244 c x ,4 [72] Inventor: Jorge G. Codina, 223 Secor Road, Hart- 3 75 746 10/1969 Nelson at al 340/261 sdale 105 30 Primary Examiner-John W. Caldwell 22 Filed; Jam 19 1970 Assistant Examiner-David L. Trafton Attorney-Theodore Jay, Jr. [21] Appl. No.: 3,940
[57] ABSTRACT [52] US. Cl ..340/26l, ZOO/6| .04, 325/1 16, A system for sounding an alarm when an unauthorized person 340/224 or unidentified objectenters a swimming pool. The system [51] Int. Cl. ..G08b 5/22 mploys a float containing a battery powered transmitter [58] Field of Search ..340/224, 261, 244C; 325/! I6 tuned to a Selected fixed q y- The transmitter is energized when the person or object enters the water whereby a I 56] Reerences Cited signal at said frequency is transmitted. A receiver tuned to the same signal acts as a monitor by receiving the signal and UNITED STATES PATENTS reproducing same in fonn suitable for sounding the alarm. 2,768,368 10/1956 Crane et al ..340/224 X 2 Claims, 2 Drawing Figures PATENTEI] JAN 1 8 I972 FIG. Z
1N VENTOR. JOHGFGEEUD/NA ALARM SUMMARY OF THE INVENTION My invention is a system for sounding an alarm when an unauthorized person or object enters a swimming pool, as for example when a child too young to swim falls accidentally into the water, whereby appropriate corrective action can be taken, for example, to prevent the child from drowning.
To this end, a radio transmitter is energized at the time the child falls in the water to transmit an alarm signal of fixed frequency. A receiver tuned to this frequency receives the signal so transmitted whereby an alarm can be sounded as for example by reproducing the signal as an audio wave in a loudspeaker.
The transmitter, which is battery powered, is disposed with its battery into a float resting in the water. The transmitter is connected to the battery via normally open switching means in the float which is closed when and only when a wave is produced in the water. In the absence of a wave, the transmitter is inoperative. When a wave is produced, for example by the child falling into the water, the means is turned on, actuating the transmitter which then produces the alarm signal as previously indicated.
The switching means can take the form of two electrical contacts disposed in spaced relationship on the surface of the float, one contact being disposed below the waterline, the other being disposed at a preselected level above the waterline. As soon as the water level ceases to be smooth whereby small waves are formed, the wave will break upon the float whereby both contacts are momentarily below the waterline. The water establishes an electrical connection between the contacts whereby the circuit is completed and the transmitter turned on. Additional means in the transmitter prevents the circuit, once completed, from being broken once the waves subside and the electrical connection between the contacts is broken.
The transmitter can employ a multivibrator of low repetition rate together with a high-frequency oscillator, both elements being operative in a time sharing mode, resulting in onoff transmission at an audio rate.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings: FIG. 1 is a perspective view of my float; and FIG. 2 is a circuit diagram of my invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Referring now to FIGS. 1 and 2, the following parts have the following numbers:
radio frequency oscillator transistor l audio frequency oscillator transistor 2 resonant load coil 3 radio frequency oscillator bias resistors 4, 5 and 6 audio frequency oscillator bias resistors 7 and 8 load resistors for modulation 9 and II) radio frequency decoupling capacitor ll radio frequency choke l2 bypass capacitor 13 coupling capacitors l4 and I5 resonant crystal [6 equivalent resistance or conductance path of water wave 17 switch contact above waterline III switch contact below waterline l9 silicon controlled rectifier 20 current limiting resistor ZI water 22 on-off switch 23 transmitter antenna 24 adjustment for contact [8 25 float 26 transmitter housing 27 battery 28 water wave 29 receiver 30 receiver antenna 3| The transmitter uses transistors l and 2 together with the interconnecting components to form a combination of a multivibrator having a low repetition rate and a high-frequency oscillator, both multivibrator and oscillator having a time sharing mode which results in on-off transmission at an audio repetition rate.
The audiofrequency transmitter section includes transistor 1, circuit 3, resistors 4, 5 and 6, crystal l6 and antenna 24. Transistor 1 provides the necessary amplification for sustained oscillations and radiation. Crystal 116 detennines the frequency at which positive feedback and hence oscillation occurs. Coil 3 functions as a loading circuit at radiofrequency (the distributed capacitance causes the coil to be resonant at the desired radiofrequency), thus determining the conditions for developing oscillation, and also couples the signal to the antenna 24 for transmission.
Resistors 4, 5, 6 and 9 determine the direct current operating conditions of transistor 1, while resistors 7, 8 and 10 determine the direct current operating condition of transistor 2. Capacitor lli has a value at which the radiofrequencies are bypassed without changing the audio repetition rate. Coil 12 has a value at which radiofrequency feedback to transistor 2 is inhibited, but audiofrequency feedback continues.
When oscillations occur, the output signal from transistor 2 is supplied as a positive feedback signal to transistor ll via capacitor 115. Transistor ll then oscillates at a radiofrequency determined by crystal 16. After a time interval determined primarily by resistors 5 and 6 and capacitor 15, transistor 1 is cut off and radiofrequency oscillations cease. At the same time, however, a signal developed across resistor 9 is fed back to transistor 2 via capacitor 14 whereby the multivibrator (audio rate) oscillations continue. The multivibrator, which operates as long as the transmitter in operation, first turns transistor l on and transistor 2 oh", then reverses these conductive and nonconductive states, then again reverses these states and so on. Radiofrequency transmission occurs only when transistor ll conducts. The net result is to produce a radiofrequency signal modulated or interrupted at an audio rate.
The transmitter is disposed in float 26. As long as the water level is essentially undisturbed and quiescent, contacts 18 and 19 are electrically isolated and no power is consumed. The transmitter is inoperative. When the water level is disturbed, as for example by a child falling into the water, wave 29 impinges upon the float and completes a circuit between the contacts l8 and 19. (The equivalent circuit is shown at 17. Water, even distilled water, is sufficiently conductive for this purpose.)
Rectifier 20 is normally nonconductive, but is switched into full conduction as soon as circuit 117 is established. Thereafter, rectifier 20 will remain conductive even after circuit 17 is broken so as to maintain the transmitter in operation. Resistor 21 limits current flow in the gate of rectifier 20. Once rectifier 20 is conductive, it can be turned off by momentarily interrupting power flow by manually opening switch 23.
Adjustment 25 permits the vertical separation between contacts l3 and 19 to be varied as necessary to prevent spurious alarms, as, for example, when pebbles are tossed in the pool. Adjustment 25 can fonn a protective cap over contact 18 which prevents rain from establishing conduction and activating the transmitter.
The signals transmitted via antenna 24 are intercepted by antenna 31 and reproduced in receiver 30 suitably tuned to the frequency of the transmitted signal.
It will be obvious to those skilled in the art that the same principles of my alarm system can be used in different environments by replacing contacts 18 and 19 by any other type of switching device responsive to a desired condition to actuate the transmitter.
What is claimed is:
1. Apparatus for transmitting an alarm signal in the form of an electromagnetic wave upon the occurrence of a selected condition, said apparatus comprising:
first switch means having first and second spaced contacts, said first means being normally open and being closed when said condition occurs;
a float supporting said first means and adapted to float on the surface of a body of water with one contact above the waterline and the other contact below the waterline, said condition being produced when waves of water are generated on said surface and both contacts are interconnected by a continuous liquid path;
a shield at said first means for preventing rain from establishing said path;
a transmitter in said float which, when actuated, produces said signal;
a power source in said float, said transmitter being actuated when coupled to said source;
second switch means in the float which is normally open and coupled to the first means, said second means being adapted to close when the first means is closed and, once closed, remaining closed until manually reset or until the source is drained of power; and
third means in the float connecting said first means, second means, source and transmitter to couple the source to the transmitter when the second means is closed.
2. Apparatus as set forth in claim 1 including fourth manually controlled means for varying the separation between said contacts.

Claims (2)

1. Apparatus for transmitting an alarm signal in the form of an electromagnetic wave upon the occurrence of a selected condition, said apparatus comprising: first switch means having first and second spaced contacts, said first means being normally open and being closed when said condition occurs; a float supporting said first means and adapted to float on the surface of a body of water with one contact above the waterline and the other contact below the waterline, said condition being produced when waves of water are generated on said surface and both contacts are interconnected by a continuous liquid path; a shield at said first means for preventing rain from establishing said path; a transmitter in said float which, when actuated, produces said signal; a power source in said float, said transmitter being actuated when coupled to said source; second switch means in the float which is normally open and coupled to the first means, said second means being adapted to close when the first means is closed and, once closed, remaining closed until manually reset or until the source is drained of power; and third means in the float connecting said first means, second means, source and transmitter to couple the source to the transmitter when the second means is closed.
2. Apparatus as set forth in claim 1 including fourth manually controlled means for varying the separation between said contacts.
US3940A 1970-01-19 1970-01-19 Alarm Expired - Lifetime US3636544A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US394070A 1970-01-19 1970-01-19

Publications (1)

Publication Number Publication Date
US3636544A true US3636544A (en) 1972-01-18

Family

ID=21708325

Family Applications (1)

Application Number Title Priority Date Filing Date
US3940A Expired - Lifetime US3636544A (en) 1970-01-19 1970-01-19 Alarm

Country Status (1)

Country Link
US (1) US3636544A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732556A (en) * 1971-06-25 1973-05-08 N Caprillo Swimming pool alarm system
US3778803A (en) * 1971-09-27 1973-12-11 D Jahn Swimming pool guard alarm unit
US3786469A (en) * 1972-01-04 1974-01-15 In Speck Corp Warning device for swimming pools or the like
FR2211700A1 (en) * 1972-12-21 1974-07-19 Voll Elektronik Ing Walter Vol
US3953843A (en) * 1974-05-09 1976-04-27 General Scanning Devices, Inc. Swimming pool alarm
US4187502A (en) * 1977-12-12 1980-02-05 Beverly Frank O Swimming pool alarm system
US4203097A (en) * 1978-10-31 1980-05-13 Rmr Systems, Inc. Pool alarm device
EP0067055A2 (en) * 1981-06-04 1982-12-15 Georgian Manufacturing Ltd. Specified condition sensing device
US4594582A (en) * 1983-07-18 1986-06-10 Thompson Stanley C Floating alarm unit for pool or spa
US4825207A (en) * 1984-09-15 1989-04-25 E.D.A. Research & Development Limited Monitoring of fluids
US5406256A (en) * 1992-09-29 1995-04-11 Jeffrey W. Ledel Remote sensor and motion alarm system
US6583724B1 (en) 2001-05-04 2003-06-24 Raul Rodriguez Pool alarm system
US20050035866A1 (en) * 2001-06-13 2005-02-17 Hatherell Robin Christopher Safety device
US20090040022A1 (en) * 2004-06-28 2009-02-12 Klaus Finkenzeller Transponder Unit
US20130224668A1 (en) * 2012-02-28 2013-08-29 Michel Ghosn In-Situ Burning Fire Area Monitoring System and Methods of Use
US11270567B2 (en) 2020-01-14 2022-03-08 Daniel Thomas Pool entry warning assembly

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732556A (en) * 1971-06-25 1973-05-08 N Caprillo Swimming pool alarm system
US3778803A (en) * 1971-09-27 1973-12-11 D Jahn Swimming pool guard alarm unit
US3786469A (en) * 1972-01-04 1974-01-15 In Speck Corp Warning device for swimming pools or the like
FR2211700A1 (en) * 1972-12-21 1974-07-19 Voll Elektronik Ing Walter Vol
US3889247A (en) * 1972-12-21 1975-06-10 Walter Voll Device for detecting the presence of liquids
US3953843A (en) * 1974-05-09 1976-04-27 General Scanning Devices, Inc. Swimming pool alarm
US4187502A (en) * 1977-12-12 1980-02-05 Beverly Frank O Swimming pool alarm system
US4203097A (en) * 1978-10-31 1980-05-13 Rmr Systems, Inc. Pool alarm device
EP0067055A3 (en) * 1981-06-04 1983-11-30 Georgian Manufacturing Ltd. Specified condition sensing device
US4408193A (en) * 1981-06-04 1983-10-04 Georgian Manufacturing Ltd. Wave responsive swimming pool alarm
EP0067055A2 (en) * 1981-06-04 1982-12-15 Georgian Manufacturing Ltd. Specified condition sensing device
US4594582A (en) * 1983-07-18 1986-06-10 Thompson Stanley C Floating alarm unit for pool or spa
US4825207A (en) * 1984-09-15 1989-04-25 E.D.A. Research & Development Limited Monitoring of fluids
US5406256A (en) * 1992-09-29 1995-04-11 Jeffrey W. Ledel Remote sensor and motion alarm system
US6583724B1 (en) 2001-05-04 2003-06-24 Raul Rodriguez Pool alarm system
US20050035866A1 (en) * 2001-06-13 2005-02-17 Hatherell Robin Christopher Safety device
US20090040022A1 (en) * 2004-06-28 2009-02-12 Klaus Finkenzeller Transponder Unit
US8797163B2 (en) * 2004-06-28 2014-08-05 Giesecke & Devrient Gmbh Transponder unit
US20130224668A1 (en) * 2012-02-28 2013-08-29 Michel Ghosn In-Situ Burning Fire Area Monitoring System and Methods of Use
US9512584B2 (en) * 2012-02-28 2016-12-06 Michel Ghosn In-situ burning fire area monitoring system and methods of use
US11270567B2 (en) 2020-01-14 2022-03-08 Daniel Thomas Pool entry warning assembly

Similar Documents

Publication Publication Date Title
US3636544A (en) Alarm
US4714915A (en) Portable electrostatic field safety monitor
US4994787A (en) Remote intrusion alarm condition advisory system
US3778803A (en) Swimming pool guard alarm unit
EP0073681A2 (en) Improvements relating to position detection devices
US4885572A (en) Anti-theft alarm device for vehicle
US3056951A (en) Safe alarm system
US4303908A (en) Electronic sounder
GB2179480A (en) Security systems
US4173755A (en) Battery-operated body capacitance intrusion alarm apparatus
US3041592A (en) Protective alarm system
US5321390A (en) Sensor switch
US4531115A (en) Remote alarm system
US3697971A (en) Alarm system
US4278967A (en) Wireless detection and warning system
US3623063A (en) Alarm
US4163968A (en) Supervised loop alarm radio transmitter system
US3160877A (en) High-pitched horn
US4328485A (en) Binary alarm
US3038070A (en) Radio receiver apparatus
GB2108301A (en) Intruder alarm device
JPS6012234Y2 (en) sound device
US3473152A (en) Physical shock false inhibitor circuit for simultaneous tone decoder
GB1242404A (en) Improved alarm device
GB1006362A (en) An improved ultra-sonic detector