US3627043A - Tubing injection valve - Google Patents

Tubing injection valve Download PDF

Info

Publication number
US3627043A
US3627043A US792061*A US3627043DA US3627043A US 3627043 A US3627043 A US 3627043A US 3627043D A US3627043D A US 3627043DA US 3627043 A US3627043 A US 3627043A
Authority
US
United States
Prior art keywords
tubing
valve means
valve
fluid
annular space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US792061*A
Inventor
William Henry Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3627043A publication Critical patent/US3627043A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/02Equipment or details not covered by groups E21B15/00 - E21B40/00 in situ inhibition of corrosion in boreholes or wells

Definitions

  • An injection valve is provided for admitting inhibiting fluid from the casing annulus. of a gas well into the tubing.
  • the valve consists of a check valve assembly and an elongate, upwardly extending standpipe connecting the valve assembly with a port leading into the tubing.
  • a buffer column of inhibiting fluid is always present [between the valve assembly parts and the corrosive flow within the tubing.
  • a gas well normally includes, as part of its producing equipment, a string of steel pipe or casing" disposed within the well bore and extending up from the producing rock formation to the ground surface.
  • a string of S-VE-inch outside diameter casing may be suspended from a wellhead in a 7-%-inch well bore.
  • the annular space between the casing and the bore wall is normally filled with cement from the bottom of the well to a point several hundreds or thousands of feet above the production zone. This cement sheath prevents the gas from moving upwardly between the casing and bore wall.
  • Suspended within the casing is an open-ended string of tubing.
  • 2inch or Z-Bh-inch tubing may be suspended within S-Vz-inch casing.
  • the annular space defined between the tubing and casing is commonly referred to as “the casing annulus.”
  • the casing and cement sheath are usually perforated at the production zone to enable gas to enter the casing and move into the tubing.
  • the tubing carries a production packer which acts to seal off the casing annulus at a point close to but above the perforations.
  • Packing is provided in the wellhead to seal off the upper end of the casing annulus.
  • a valved inlet is provided in the wellhead to provide access into the casing annulus just below this packing. The gas flow, of course, moves up through the tubing to the ground surface and is exhausted therefrom through a valved outlet.
  • a macaroni string assembly is illustrated, for example, in US. Pat. No. 2,293,442, issued to Montgomery.
  • a second string of tubing which might have an outside diameter of 1 inch, extends down from the wellhead to a port which opens into the tubing.
  • a differential pressure-type check valve is disposed at the port to control the entry of fluid therein. Fluid can be pumped into the tubing from the surface.
  • the retrievable tool assembly involves providing a section of tubing of extra large cross section at the fluid injection point.
  • Parallel nipples extend downwardly from the bottom end of this section.
  • the "main” nipple connects at its bottom end into the remainder of the tubing string.
  • the "side pocket” nipple connects into the main nipple through communicating ports which are located adjacent the bottom ends of the nipples.
  • the side pocket nipple has a slot at its midpoint which communicates with the casing annulus.
  • a retrievable valve tool can be seated, using a wire line, in the side pocket nipple. This tool is provided with packing and valves which act to control the movement of fluid from the casing annulus through the slot and ports into the tubing. Fluid is introduced into the tubing by pumping into the casing annulus and through the tool valves.
  • the string can be periodically replaced before corrosion reaches too advanced a condition.
  • the present invention comprises a normally closed, pressure actuated valve assembly communicating with the casing annulus and connected through a standpipe conduit into the tubing.
  • the valve assembly is adapted to open a permit fluid movement from the casing annulus into the tubing when the annulus is pressured up.
  • At least a segment of the standpipe conduit is substantially vertical and adapted to ensure that an elongate column of inhibiting fluid is always disposed between the tubing flow and the valve assembly. More particularly, the conduit is arranged so that the fluid cannot drain into the tubing with the result that the bufier column is lost.
  • the valve assembly comprises a first valve means, such as a springloaded check valve, and one or more valve means, such as ball check valves, spaced above the first valve means.
  • the valves are connected by conduits, such as nipples, so that a protective column ofliquid extends between them.
  • inhibiting fluid may be introduced into the casing annulus to fill and pressure it up to open the valve assembly. Additional fluid may then be pumped into the annulus to force fluid through the valve assembly into the tubing. When the pressure is released, an elongate enclosed column of fluid will be left standing between the tubing opening and the valve assembly to prevent raw gas or other corrosive agents from attacking the assembly.
  • FIG. I is a schematic side view showing the invention as part of the production equipment of a well
  • FIG. 2 is a longitudinal sectional view of the spring loaded check valve and two ball check valves
  • FIG. 3 is a sectional view showing the tubing opening and the upper end of the standpipe
  • FIG. 4 is a partial sectional side'view of an alternative form of the standpipe conduit
  • FIG. 5 its sectional top view of the tortuous standpipe conduit bore shown in FIG. 4.
  • FIGS. 1 and 2 a string of casing l is shown suspended in a well bore 2.
  • a cement sheath 3 fills the annular space between casing 1 and bore 2.
  • a string of tubing 4 is suspended within casing 1 and a production packer 5 seals off the bottom end of casing annulus 6.
  • Tubing 4 is open ended to permit the flow of gas, emanating from rock formation 7 through perforations 8, to move upwardly.
  • a standpipe 10 is threaded into opening 9 and a valve assembly 1 l is threaded onto the lower end of standpipe 10.
  • Valve assembly 11 is comprised of a spring-loaded check valve 12 at its lower end and a plurality of ball check valves I3 threadably connected in series in spaced relation above it.
  • the inlet of spring-loaded check valve 12 opens into casing annulus 6.
  • the valve itself is conventional in construction and is comprised of the usual housing 13 defining a seat 14 at its bottom end.
  • a ball stem 15 is located within the valve bore 16 and is held against seat 14 by spring 17.
  • Spring 17 is set so that the summation of the pressure within the tubing 4 and the force exerted by the spring 17 is greater than the pressure exerted on bail stem 15 by the hydrostatic head within casing annulus 6. In other words, pressure has to be exerted on the fluid in annulus 6 in order to cause ball stem 15 to lift from seat 14.
  • the ball check valves 13 are also of conventional design. They comprise a bored housing 18 defining a seat 19 in which a ball 20 is normally seated. These valves act to isolate check valve 12 from the content of standpipe 10. A plurality of them are used in case salt water, which may be produced with the gas, gets into the standpipe, drops through the inhibiting fluid and commences to corrode the top valve. Should the top valve fail, there is still protection afforded to check valve 12 by the remaining check valves 13 and the columns of liquid trapped between them.
  • Standpipe conduit I0 is shown extending downwardly from threaded opening 10. It provides a column of inhibiting fluid at all times between the valve assembly 11 and the tubing flow. This column should be long enough to ensure isolation; I have successfully used a length of about 8 feet. By intermittently and frequently pressuring up casing annulus 6 and pumping inhibiting fluid into tubing 4, the fluid in standpipe conduit 10 will be frequently changed. To summarize, standpipe conduit 10 retains at all times an enclosed, elongate column of fresh inhibiting fluid extending at least part way between tubing opening 19 and valve assembly 11. This column prevents raw gas flowing through tubing 4 from having access to valve assembly ll. Standpipe conduit 10 is adapted to prevent drainage of this column by gravity into tubing 4.
  • the standpipe conduit 10 is shown as a single, substantially vertical length.
  • An alternative embodiment comprises a tortuous conduit having a U-shaped segment in it to act as a salt water trap. Such an alternative embodiment is shown in FIGS.
  • a bored block 21 is suitably secured to the exterior surface of tubing 4 (shown in shadow lines).
  • Block 21 defines a conduit having a threaded inlet 24 connected to standpipe 10a.
  • the conduit is formed of upwardly extending leg 26 and a U-shaped section comprised of legs 27 and 28. The legs 26, 27, 28 are connected together and have an outlet 22 opening into tubing 4.
  • Standpipe conduit 10 and valve assembly 11 are constructed of corrosion-resistant metals. The choosing of such metals will not pose serious problems to those skilled in the art of selection of materials for use in sour gas wells.
  • the invention will primarily be used in sour gas wells. However, there is nothing to prevent it being used in oil wells for such operations as hot oil treating and chemical injection.
  • the invention has a number of advantages. It is efiective in protecting the valve assembly from the corrosive agents in the tubing flow. Additionally, in comparison to a macaroni string assembly, it enables one to use larger tubing in casing of a particular size; this results in higher production rates and decreased plugging problems. Finally, it is a simple, cheap structure whose use enables a well operator to make large savings on the well equipment used in conjunction with it.
  • a valve assembly adapted to be used in a well equipped with casing, tubing, and a production packer carried on said tubing adjacent its lower end to seal off the annular space defined between the casing and tubing, said annular space above the packer being filled with fluid, and said tubing defining an opening in its wall at a point above the packer,
  • valve assembly comprising:
  • valve means disposed within the annular space and adapted to open when the pressure within the annular space adjacent the valve means substantially exceeds the pressure within the tubing, said valve means having an inlet communicating the annular space;
  • one or more normally closed valve means disposed in spaced relation above the first valve means and adapted to open and close when the first valve means opens and closes;
  • valve means and conduits combining to provide an assembly, for controlling communication from the annular space into the tubing, wherein the valve parts can be protected from the tubing flow by columns of fluid trapped thereinabove.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Check Valves (AREA)

Abstract

An injection valve is provided for admitting inhibiting fluid from the casing annulus of a gas well into the tubing. The valve consists of a check valve assembly and an elongate, upwardly extending standpipe connecting the valve assembly with a port leading into the tubing. A buffer column of inhibiting fluid is always present between the valve assembly parts and the corrosive flow within the tubing.

Description

United States Patent.
2,144,144 1/1939 Crickmer 166/224 2,293,442 8/1942 Montgomery 166/224 2,773,551 12/1956 Warden et al. 166/75 2,884,067 4/1959 Marken 166/75 3,228,472 H1966 Rhoads, Jr 166/75 Primary Examiner-James A. Leppink Attorney-Ernest Peter Johnson ABSTRACT: An injection valve is provided for admitting inhibiting fluid from the casing annulus. of a gas well into the tubing. The valve consists of a check valve assembly and an elongate, upwardly extending standpipe connecting the valve assembly with a port leading into the tubing. A buffer column of inhibiting fluid is always present [between the valve assembly parts and the corrosive flow within the tubing.
H il
Patentnd Dec. 14, 1971 2 Sheets-Sheet 2 JI/VENTOR MILL/l)!" HENRY 5194a) TTJBIING INJECTION VALVE FIELD OF INVENTION This invention relates to a valve assembly for use oil wells and to a method for the tubing ofsuch a well.
in gas or introducing inhibiting fluid into PRIOR AM A gas well normally includes, as part of its producing equipment, a string of steel pipe or casing" disposed within the well bore and extending up from the producing rock formation to the ground surface. For example, a string of S-VE-inch outside diameter casing may be suspended from a wellhead in a 7-%-inch well bore. The annular space between the casing and the bore wall is normally filled with cement from the bottom of the well to a point several hundreds or thousands of feet above the production zone. This cement sheath prevents the gas from moving upwardly between the casing and bore wall. Suspended within the casing is an open-ended string of tubing. For example, 2inch or Z-Bh-inch tubing may be suspended within S-Vz-inch casing. The annular space defined between the tubing and casing is commonly referred to as "the casing annulus." The casing and cement sheath are usually perforated at the production zone to enable gas to enter the casing and move into the tubing. In most cases, the tubing carries a production packer which acts to seal off the casing annulus at a point close to but above the perforations. Packing is provided in the wellhead to seal off the upper end of the casing annulus. A valved inlet is provided in the wellhead to provide access into the casing annulus just below this packing. The gas flow, of course, moves up through the tubing to the ground surface and is exhausted therefrom through a valved outlet.
in many wells it is desirable to be able to introduce an inhibiting" fluid into the tubing at a pointjust above the production packer. To clarify the foregoing point, let us consider the case of production wells in a sour gas field. The sour gas contains sulfur in elemental or compound form. When in the production reservoir, this sulphur is dissolved in the gas due to the very high temperature and pressure conditions which prevail there. However, when the sour gas begins to move up through the tubing, its temperature and pressure diminish with the result that sulphur may begin to plate out on the inner surface of the tubing wall. This deposited sulphur gradually builds up. Eventually it plugs the tubing. An expensive cleanout operation must then be carried out. Now, various fluids are known to be helpful in alleviating the problem of sulphur deposition when they are introduced into the gas flow at a point close to the bottom of the well. Two such fluids are gas condensate and carbon disulphide solution. In addition to the injection of sulphur deposition additives to the gas flow, it is also often desirable to inject other inhibiting fluids such as will reduce corrosion of the tubing and formation of hydrates therein.
There are two assemblies commonly used in wells for the injection of inhibiting fluids into the tubing. One involves the provision of a second string of small diameter tubing within the casing. This string is commonly referred to as a macaroni" string. The other assembly involves the provision ofa retrievable valve assembly which controls the opening and closing of a port communicating the casing annulus with the interior of the tubing. These two assemblies and their disadvantages when used within sour gas wells will now be discussed in greater detail.
A macaroni string assembly is illustrated, for example, in US. Pat. No. 2,293,442, issued to Montgomery. A second string of tubing, which might have an outside diameter of 1 inch, extends down from the wellhead to a port which opens into the tubing. A differential pressure-type check valve is disposed at the port to control the entry of fluid therein. Fluid can be pumped into the tubing from the surface.
Use of this assembly involves the use of two tubing strings, a dual wellhead and large casing. These items are expensive. Additionally, there are known difficulties involved in servicing a dual string type of assembly. Finally, the corrosive flow within the tubing attacks the exposed check valve and there is a good possibility that the gas may work its way into the casing annulus, which is a serious problem as will be discussed hcreinbelow.
The retrievable tool assembly involves providing a section of tubing of extra large cross section at the fluid injection point. Parallel nipples extend downwardly from the bottom end of this section. The "main" nipple connects at its bottom end into the remainder of the tubing string. The "side pocket" nipple connects into the main nipple through communicating ports which are located adjacent the bottom ends of the nipples. The side pocket nipple has a slot at its midpoint which communicates with the casing annulus. A retrievable valve tool can be seated, using a wire line, in the side pocket nipple. This tool is provided with packing and valves which act to control the movement of fluid from the casing annulus through the slot and ports into the tubing. Fluid is introduced into the tubing by pumping into the casing annulus and through the tool valves.
There are disadvantages to this assembly when it is used in a sour gas well. Sulfur tends to deposit on top of the tool with the result that the wire line overshot cannot grasp the tools upper end to remove it when required. Furthermore, the raw gas has access to the interior of the tool with the result that the valves become corroded and permit the passage of gas into the casing annulus.
it will have been noted that the importance of preventing raw sour gas from entering the casing annulus has been stressed. This gas is usually highly corrosive. Once in the easing annulus, it may eat through the casing. The formation gas, under enormous pressure, will then have a clear path to the ground surface along the outside of the casing. When this occurs, the well operator is faced with a virtual calamity.
If the gas flow is contained with the tubing, the string can be periodically replaced before corrosion reaches too advanced a condition.
SUMMARY It is an object of this invention to provide a controllable assembly for permitting communication between the casing annulus and the interior of the tubing in a well so that inhibiting fluid can be introduced into the tubing flow, such assembly being particularly well protected from corrosion by the flow. it is another object that this assembly be cheap, simple and long lasting.
it is a further object to provide a valve assembly for controlling communication between the casing annulus and tubing, which is always protected from the tubing flow by a buffer column of inhibiting fluid.
it is another object to provide a new method for introducing inhibiting fluid into the tubing of a gas well at a point adjacent the production packer.
These and other objects are accomplished by the present invention which comprises a normally closed, pressure actuated valve assembly communicating with the casing annulus and connected through a standpipe conduit into the tubing. The valve assembly is adapted to open a permit fluid movement from the casing annulus into the tubing when the annulus is pressured up. At least a segment of the standpipe conduit is substantially vertical and adapted to ensure that an elongate column of inhibiting fluid is always disposed between the tubing flow and the valve assembly. More particularly, the conduit is arranged so that the fluid cannot drain into the tubing with the result that the bufier column is lost. The valve assembly comprises a first valve means, such as a springloaded check valve, and one or more valve means, such as ball check valves, spaced above the first valve means. The valves are connected by conduits, such as nipples, so that a protective column ofliquid extends between them.
By virtue of the foregoing structure, inhibiting fluid may be introduced into the casing annulus to fill and pressure it up to open the valve assembly. Additional fluid may then be pumped into the annulus to force fluid through the valve assembly into the tubing. When the pressure is released, an elongate enclosed column of fluid will be left standing between the tubing opening and the valve assembly to prevent raw gas or other corrosive agents from attacking the assembly.
IN THE DRAWINGS FIG. I is a schematic side view showing the invention as part of the production equipment of a well;
FIG. 2 is a longitudinal sectional view of the spring loaded check valve and two ball check valves;
FIG. 3 is a sectional view showing the tubing opening and the upper end of the standpipe;
FIG. 4 is a partial sectional side'view of an alternative form of the standpipe conduit;
FIG. 5 its sectional top view of the tortuous standpipe conduit bore shown in FIG. 4.
PREFERRED EMBODIMENT Turning now to the embodiment of the invention shown in FIGS. 1 and 2, a string of casing l is shown suspended in a well bore 2. A cement sheath 3 fills the annular space between casing 1 and bore 2. A string of tubing 4 is suspended within casing 1 and a production packer 5 seals off the bottom end of casing annulus 6. Tubing 4 is open ended to permit the flow of gas, emanating from rock formation 7 through perforations 8, to move upwardly. As shown in FIGS. 2 and 3, a standpipe 10 is threaded into opening 9 and a valve assembly 1 l is threaded onto the lower end of standpipe 10.
Valve assembly 11 is comprised of a spring-loaded check valve 12 at its lower end and a plurality of ball check valves I3 threadably connected in series in spaced relation above it.
The inlet of spring-loaded check valve 12 opens into casing annulus 6. The valve itself is conventional in construction and is comprised of the usual housing 13 defining a seat 14 at its bottom end. A ball stem 15 is located within the valve bore 16 and is held against seat 14 by spring 17. Spring 17 is set so that the summation of the pressure within the tubing 4 and the force exerted by the spring 17 is greater than the pressure exerted on bail stem 15 by the hydrostatic head within casing annulus 6. In other words, pressure has to be exerted on the fluid in annulus 6 in order to cause ball stem 15 to lift from seat 14.
The ball check valves 13 are also of conventional design. They comprise a bored housing 18 defining a seat 19 in which a ball 20 is normally seated. These valves act to isolate check valve 12 from the content of standpipe 10. A plurality of them are used in case salt water, which may be produced with the gas, gets into the standpipe, drops through the inhibiting fluid and commences to corrode the top valve. Should the top valve fail, there is still protection afforded to check valve 12 by the remaining check valves 13 and the columns of liquid trapped between them.
Standpipe conduit I0 is shown extending downwardly from threaded opening 10. It provides a column of inhibiting fluid at all times between the valve assembly 11 and the tubing flow. This column should be long enough to ensure isolation; I have successfully used a length of about 8 feet. By intermittently and frequently pressuring up casing annulus 6 and pumping inhibiting fluid into tubing 4, the fluid in standpipe conduit 10 will be frequently changed. To summarize, standpipe conduit 10 retains at all times an enclosed, elongate column of fresh inhibiting fluid extending at least part way between tubing opening 19 and valve assembly 11. This column prevents raw gas flowing through tubing 4 from having access to valve assembly ll. Standpipe conduit 10 is adapted to prevent drainage of this column by gravity into tubing 4.
The standpipe conduit 10 is shown as a single, substantially vertical length. An alternative embodiment comprises a tortuous conduit having a U-shaped segment in it to act as a salt water trap. Such an alternative embodiment is shown in FIGS.
4 and 5.
In this case, a bored block 21 is suitably secured to the exterior surface of tubing 4 (shown in shadow lines). Block 21 defines a conduit having a threaded inlet 24 connected to standpipe 10a. The conduit is formed of upwardly extending leg 26 and a U-shaped section comprised of legs 27 and 28. The legs 26, 27, 28 are connected together and have an outlet 22 opening into tubing 4.
Standpipe conduit 10 and valve assembly 11 are constructed of corrosion-resistant metals. The choosing of such metals will not pose serious problems to those skilled in the art of selection of materials for use in sour gas wells.
The invention will primarily be used in sour gas wells. However, there is nothing to prevent it being used in oil wells for such operations as hot oil treating and chemical injection.
The invention has a number of advantages. It is efiective in protecting the valve assembly from the corrosive agents in the tubing flow. Additionally, in comparison to a macaroni string assembly, it enables one to use larger tubing in casing of a particular size; this results in higher production rates and decreased plugging problems. Finally, it is a simple, cheap structure whose use enables a well operator to make large savings on the well equipment used in conjunction with it.
What I claim as my invention is:
l. A valve assembly, adapted to be used in a well equipped with casing, tubing, and a production packer carried on said tubing adjacent its lower end to seal off the annular space defined between the casing and tubing, said annular space above the packer being filled with fluid, and said tubing defining an opening in its wall at a point above the packer,
said valve assembly comprising:
normally closed first valve means-disposed within the annular space and adapted to open when the pressure within the annular space adjacent the valve means substantially exceeds the pressure within the tubing, said valve means having an inlet communicating the annular space;
one or more normally closed valve means disposed in spaced relation above the first valve means and adapted to open and close when the first valve means opens and closes;
a conduit, connecting each pair of adjacent valve means,
wherein a column offluid can extend between them; and an upward extending standpipe conduit defining a tortuous bore having a U-shaped segment, said conduit connecting the upper most valve means with the tubing opening and providing means wherein a column of fluid can extend at least part way between the said valve means and opening; said valve means and conduits combining to provide an assembly, for controlling communication from the annular space into the tubing, wherein the valve parts can be protected from the tubing flow by columns of fluid trapped thereinabove.
I l II l

Claims (1)

1. A valve assembly, adapted to be used in a well equipped with casing, tubing, and a production packer carried on said tubing adjacent its lower end to seal off the annular space defined between the casing and tubing, said annular space above the packer being filled with fluid, and said tubing defining an opening in its wall at a point above the packer, said valve assembly comprising: normally closed first valve means disposed within the annular space and adapted to open when the pressure within the annular space adjacent the valve means substantially exceeds the pressure within the tubing, said valve means having an inlet communicating the annular space; one or more normally closed valve means disposed in spaced relation above the first valve means and adapted to open and close when the first valve means opens and closes; a conduit, connecting each pair of adjacent valve means, wherein a column of fluid can extend between them; and an upward extending standpipe conduit defining a tortuous bore having a U-shaped segment, said conduit connecting the upper most valve means with the tubing opening and providing means wherein a column of fluid can extend at least part way between the said valve means and opening; said valve means and conduits combining to provide an assembly, for controlling communication from the annular space into the tubing, wherein the valve parts can be protected from the tubing flow by columns of fluid trapped thereinabovE.
US792061*A 1969-01-17 1969-01-17 Tubing injection valve Expired - Lifetime US3627043A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79206169A 1969-01-17 1969-01-17

Publications (1)

Publication Number Publication Date
US3627043A true US3627043A (en) 1971-12-14

Family

ID=25155673

Family Applications (1)

Application Number Title Priority Date Filing Date
US792061*A Expired - Lifetime US3627043A (en) 1969-01-17 1969-01-17 Tubing injection valve

Country Status (1)

Country Link
US (1) US3627043A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080139414A1 (en) * 2006-12-12 2008-06-12 Halliburton Energy Services, Inc. Corrosion inhibitor intensifier compositions and associated methods
US20090156432A1 (en) * 2007-12-12 2009-06-18 Halliburton Energy Services, Inc. Corrosion inhibitor intensifier compositions and associated methods
US20090247431A1 (en) * 2008-04-01 2009-10-01 D V Gupta Biodegradable anionic acid corrosion inhibitor comprising sarcosines
EP2920410A4 (en) * 2012-11-15 2016-07-06 Halliburton Energy Services Inc Downhole chemical injection system having a density barrier
EP2697474B1 (en) * 2011-04-12 2023-07-26 Halliburton Energy Services Inc. Pressure equalization apparatus and associated systems and methods

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080139414A1 (en) * 2006-12-12 2008-06-12 Halliburton Energy Services, Inc. Corrosion inhibitor intensifier compositions and associated methods
US7994101B2 (en) * 2006-12-12 2011-08-09 Halliburton Energy Services, Inc. Corrosion inhibitor intensifier compositions and associated methods
US20090156432A1 (en) * 2007-12-12 2009-06-18 Halliburton Energy Services, Inc. Corrosion inhibitor intensifier compositions and associated methods
US8058211B2 (en) 2007-12-12 2011-11-15 Halliburton Energy Services, Inc. Corrosion inhibitor intensifier compositions and associated methods
US20090247431A1 (en) * 2008-04-01 2009-10-01 D V Gupta Biodegradable anionic acid corrosion inhibitor comprising sarcosines
US7994102B2 (en) * 2008-04-01 2011-08-09 Baker Hughes Incorporated Method of treating an alloy surface with an alkyl sarcosinate
US20110224111A1 (en) * 2008-04-01 2011-09-15 D V Satyanarayana Gupta Biodegradable anionic acid corrosion inhibitor comprising sarcosines
US8357640B2 (en) * 2008-04-01 2013-01-22 Baker Hughes Incorporated Method of inhibiting corrosion with an alkyl sarcosinate
EP2697474B1 (en) * 2011-04-12 2023-07-26 Halliburton Energy Services Inc. Pressure equalization apparatus and associated systems and methods
EP2920410A4 (en) * 2012-11-15 2016-07-06 Halliburton Energy Services Inc Downhole chemical injection system having a density barrier
US9617830B2 (en) 2012-11-15 2017-04-11 Halliburton Energy Services, Inc. Downhole chemical injection system having a density barrier

Similar Documents

Publication Publication Date Title
US4429747A (en) Well tool
US3603409A (en) Method and apparatus for balancing subsea internal and external well pressures
US3675720A (en) Well flow control system and method
RU2350738C2 (en) Method and device for injecting process fluid medium into well
US4793417A (en) Apparatus and methods for cleaning well perforations
US2785755A (en) Storm choke for oil wells
US2973039A (en) Multiple zone fluid circulating apparatus
Mukhametshin et al. Geological, technological and technical justification for choosing a design solution for drilling wells under different geological conditions
US3627043A (en) Tubing injection valve
US2911048A (en) Apparatus for working over and servicing wells
US3372753A (en) Method of preventing hydrate formation in petroleum well production strings
US4615387A (en) Annular gas trap
US3322192A (en) Offshore well apparatus
US3486558A (en) Apparatus for setting liners in boreholes of wells
US3777813A (en) Check valve for hydraulic control system
RU2438007C1 (en) Procedure for completion of gas well (versions)
US4132270A (en) Method for protection of well equipment from particles of debris
US11125346B2 (en) Prevention of gas migration through downhole control lines
US2289755A (en) Apparatus for treating wells
RU2685360C1 (en) Mechanical valve
US2162990A (en) Drilling valve
US3272144A (en) Well pump
US2894587A (en) Permanent well completion apparatus
RU2379467C1 (en) Multihole low debit well conservation in abnormal low pressure reservoir conditions
US2309383A (en) Deep well pump