US3622369A - Process for forming stoichiometric silicon carbide coatings and filaments - Google Patents

Process for forming stoichiometric silicon carbide coatings and filaments Download PDF

Info

Publication number
US3622369A
US3622369A US618512A US3622369DA US3622369A US 3622369 A US3622369 A US 3622369A US 618512 A US618512 A US 618512A US 3622369D A US3622369D A US 3622369DA US 3622369 A US3622369 A US 3622369A
Authority
US
United States
Prior art keywords
silicon carbide
filaments
hydrogen
wire
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US618512A
Inventor
Malcolm Basche
Urban E Kuntz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Aircraft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Aircraft Corp filed Critical United Aircraft Corp
Application granted granted Critical
Publication of US3622369A publication Critical patent/US3622369A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/296Rubber, cellulosic or silicic material in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating

Definitions

  • filamentary materials may be produced by pyrolytic techniques wherein the desired material is deposited on a resistively heated wire which is drawn through a gaseous reactant mixture containing the material to be deposited.
  • Silicon carbide because of its relative inertness and its strength at elevated temperatures, offers excellent potential as the reinforcement material in fiber-reinforced composites utilizing a wide variety of matrix compositions.
  • the strength of these silicon carbide fibers is, however, dependent upon their composition. While it may be desirable in some instances, as is hereinafter discussed in greater detail, to provide a silicon carbide filament or coating which varies from the stoichiometric composition, control of this variation is essential. This is particularly true in those instances wherein the silicon carbide is utilized to form a diffusion barrier on other filaments such as boron. Silicon or silicon-rich silicon carbide does not provide the desired substrate or matrix compatibility to the same degree as does the stoichiometric composition.
  • the silicon carbide filaments may be formed with a silicon rich outer layer which, although it might be advantageous in some instances, is nevertheless detrimental to the compatibility characteristics of the filaments in usage with the metal matrices.
  • the present invention relates in general to a process for depositing stoichiometric silicon carbide on a resistively heated wire and, more particularly, to a process for forming silicon carbide by chemical deposition from a gaseous reactant mixture including methyldichlorosilane to which a carbonizing gas, such as methane has been added. It contemplates not only the production of filaments which are predominantly silicon carbide but also the production of composite filaments wherein the silicon carbide is provided as a thin layer over a variety of substrates, principally boron.
  • FIG. 1 is a simple sketch, taken in elevation, of a reactor used in the pyrolytic deposition of silicon carbide.
  • FIG. 2 is a schematic view of the gas system used to provide the gaseous feed for the reactor of Fig. 1.
  • FIG. 3 is a graph of the pressure-temperature relationship as related to the composition of the deposit.
  • the preferred reactor configuration for producing the silicon carbide coating on a resistively heated wire 2 which is drawn downward through the reactor 4 may be seen to comprise a tubular containment vessel 6, having dual gas inlets 8 and 10 at the upper end of the reactor and a single-exhaust port 12 at the lower end thereof. Cooling hydrogen is fed through the inlet 8, and the inlet 10 is used for introduction of the reactant gas mixture including methyldichlorosilane (CI-I SiHCl and methane, and in some instances, hydrogen.
  • the containment vessel is formed of Pyrex, although Vycor, quartz and a number of other dielectrics are suitable. In a different configuration, various metals are also satisfactory.
  • the gas inlets 8 and 10, and the exhaust l2 penetrate and are electrically connected to the metallic end plugs 14 and 16 which provide convenient means by which poser may be supplied to the wire for resistance heating purposes.
  • end plugs may readily be seen to differ in overall configuration, they both incorporate a number of common features. They are each formed to provide a well 20 and 22, respectively, for containing a suitable conductive sealant 24, such as mercury, which serves the dual purpose of providing a gas seal around the wire where it penetrates the end plugs and further providing electrical contact between the moving wire and the respective end plugs which are in turn electrically connected through the tubes 10 and 12 and the leads 26 and 28 to a suitable DC power source 30.
  • a variable resistance 32 is provided in the external circuit to permit regulation of the power supplied to the wire and, hence, temperature control thereof.
  • the upper end plug 14 is provided with a peripheral groove 34, which communicates with the mercury well 20 through the passageway 36, to provide peripheral sealing around the plug. Sealing between the end plug 16 and the lower end of the containment vessel 6 is provided by mercury contained in an annular well 38.
  • the respective plugs are further each formed with a centrally oriented orifice 40 and 42 which is large enough to accommodate the free passage of the wire therethrough but which, in combination with the wire, is small enough to retain the mercury, through surface tension forces, in the respective wells.
  • the hydrogen admitted through the inlet 8 enters the reactant chamber immediately adjacent the wire inlet and is used primarily for cooling purposes at the end plug 14.
  • the reactant gases enter the reactant chamber in an enlarged chimney portion 50, reverse flow therein, and enter the tubular member 6 at opening 52.
  • a condenser is utilized to yield a gas mixture with a fixed dew point.
  • Such a system is set forth schematically in Fig. 2. It has been found that at pressures of about 4 p.s.i., a dew point of between 12 C. and 15 C. produces filaments of good quality and consistency. At a dew point of 25 C.
  • hydrogen from a suitable source is introduced through conduit 60, through pressure regulator 62, flowmeter 64, and valve 66, to the evaporator 68.
  • Part of the hydrogen is bubbled through the liquid methyldichlorosilane 70 in the evaporator and the hydrogen-methyldichlorosilane mixture is discharged therefrom through conduit 72 to the condenser 74 which is maintained at the appropriate temperature to provide an output having a dew point of the appropriate range, this output from the condenser being introduced into the reactor 4 through inlet 10 as previously described.
  • a portion of the hydrogen may bypass the evaporator and be introduced through line 76 to a three-way control valve 80 for reactor purging purposes or to further regulate the composition of the reactant gas mixture. Cooling hydrogen is admitted to the reactor through inlet 8 from conduit 82 through valve 84 and fiowmeter 86.
  • a carbonaceous gas such as methane permits the formation of stoichiometric silicon carbide without the undesirable high silicon contents.
  • a carbonaceous gas such as methane
  • the desired properties can be achieved by the judicious control of the methane content and the temperature distribution in the reactor. It has been found that satisfactory results obtain with a methyldichlorosilane/hydrogen ratio maintained in the reactor in a range of about l/l:1/3 on a molar basis and with methane comprising 10-60 mol percent of the total gas flow.
  • silicon carbide filaments having tensile strengths as high as 571,000 p.s.i. were produced without difficulty, and microprobe analysis verified the absence of free silicon in any significant amount.
  • a filament can be produced which is basically silicon carbide having a thin outer layer of pure silicon.
  • the resulting fiber after careful oxidation of the silicon, would then actually comprise a composite, silicon carbide with a silica (glass) coating. This would be particularly excellent for use with the resin matrix materials.
  • EXAMPLE 1 In a system of the type described utilizing a 6l-inch long reactor formed from 9 mm. Pyrex tubing, a silicon carbide coating has been produced on boron fiber at a rate of 760 feet/hour.
  • the filamentary boron substrate was of the type produced by chemical deposition on a resistively heated wire.
  • a hydrogen flow rate through the evaporator of 483 cc./min. was maintained with no bypass hydrogen flow around the evaporator.
  • the condenser was maintained at 14.5" C. and a methyldichlorosilane flow rate of 231 cc./min. was effected.
  • Cooling hydrogen was admitted to the reactor at a rate of 114 cc./min. and the methane addition to the reactant gas mixture was made at the rate of cc./min., resulting in a total gas composition in the reactor of 15.3 mol percent methane, 23.4 mol percent methyldichlorosilane and 61.3 mol percent hydrogen.
  • the wire temperature was established at approximately l,l30 C. In this regard, it should be noted that the maximum temperature must be below that temperature at which crystallization of the boron occurs.
  • EXAMPLE II In a test somewhat similar to that described, utilizing a 30 inch long reactor formed from Pyrex tubing having a diameter of 9 mm. silicon carbide filaments have been produced on a tungsten wire at a rate of 200 feet/hour. Gas flow rates and compositions approximated those set forth in the previous example, but the wire temperature peak was maintained in the range of l,2001,400 C. Over 9,000 feet of continuous silicon carbide filament was produced having ultimate tensile strengths as high as 571,000 p.s.i.
  • the silicon carbide filaments were produced in the range of 3-4 mils. As previously indicated, those produced in processes utilizing the methane addition had strengths on the order of 571,000 p.s.i. while those produced without the methane addition were generally limited to ultimate tensile strengths on the order of 345,000 p.s.i.
  • Boron fiber is generally produced with a diameter of 3-4 mils. Tests on 3.8 mil boron fiber with a 0.2 mil coating of stoichiometric silicon carbide indicated that the composite fiber had essentially the same ultimate tensile strength as the basic boron or about 460,000 p.s.i.
  • silicon carbide was deposited on various substrate materials including in addition to tungsten and boron, graphite and tantalum. Further, wire temperatures and gas compositions were varied extensively to optimize the process conditions. Still further, the various filaments were subjected to compatibility testing in various matrix materials, including aluminum, magnesium and titanium. No degradation of the silicon carbide fibers was found after heating them in aluminum at 580 C. for 24 hours, and in titanium at 730 C. for 24 hours. The compatibility of the boron-silicon carbide composite filaments was similarly established in other tests for periods of over 500 hours.
  • a process for continuously depositing silicon carbide on a heated wired as it is drawn through a reactor comprising the steps of:
  • the wire maintaining the wire at a temperature sufficient to effect tion of a coating of essentially stoichiometric silicon cardeposition of silicon carbide on the wire, the peak temi perature of the wire being within the range of'1,200-1 the methyld ichlorosilane/hydrogen ratio in the reactor 400'Q; being maintained within the range of about 1/ 121/3 on a 5 molar basis and the methane comprising lO-6O mol perexposing the wire to a gaseous stream consisting essentially of methyldichlorosilane admixed with hydrogen; and adding methane to the gaseous stream to effect the formacent of the total gas flow.

Abstract

A process whereby stoichiometric silicon carbide is chemically deposited on a resistively heated wire from a reactant gas mixture including methyldichlorosilane and hydrogen together with a carbonizing gas such as methane.

Description

United States Patent inventors Malcolm Basche West Hartford; Urban E. Kuntz, East Hartford, both 01 Conn. Appi. No. 618,512 Filed Feb. 24, 1967 Patented Nov. 23, 1971 Assignee United Aircraft Corporation East Hartford, Conn.
PROCESS FOR FORMING STOICIIIOMETRIC SILICON CARBIDE COATINGS AND FILAMENTS 1 Claim, 3 Drawing Figs.
0.8. CI 117/46 CG,
l17/69,ll7/71R,117/71M,117/106A,117/106 C,117/121,117/l28,117/135.1,117/D1G. 10,
Int. Cl B4lm 5/24 Field oISearch 117/106 C, 106 A, 69,107.1, 46 CG Primary ExaminerA1fred L. Leavitt Assistant Examiner-J. R. Batten, Jr. Attorney-Richard N. James ABSTRACT: A process whereby stoichiometric silicon carbide is chemicaily deposited on a resistively heated wire from a reactant gas mixture including methyldichlorosilane and hydrogen together with a carbonizing gas such as methane.
'ellle PATENTED Nov 2 3 m:
SHEET 2 BF 3 BACKGROUND OF THE INVENTION It is known that filamentary materials may be produced by pyrolytic techniques wherein the desired material is deposited on a resistively heated wire which is drawn through a gaseous reactant mixture containing the material to be deposited.
In a copending application Ser. No. 618,5 l entitled Process for Fonning Filamentary Silicon Carbide by Malcolm Basche and Urban E. Kuntz filed on Feb. 24, 1967 and now abandoned, which shares a common assignee with the instant application, there has been described a process wherein silicon carbide is deposited on a resistively heated wire from a gaseous reactant mixture including methyldichlorosilane and hydrogen. In that copending application, there is taught a method for producing continuous filaments of silicon carbide as well as methods for forming composite filaments such as boron with a thin coating of silicon carbide.
Silicon carbide, because of its relative inertness and its strength at elevated temperatures, offers excellent potential as the reinforcement material in fiber-reinforced composites utilizing a wide variety of matrix compositions. The strength of these silicon carbide fibers is, however, dependent upon their composition. While it may be desirable in some instances, as is hereinafter discussed in greater detail, to provide a silicon carbide filament or coating which varies from the stoichiometric composition, control of this variation is essential. This is particularly true in those instances wherein the silicon carbide is utilized to form a diffusion barrier on other filaments such as boron. Silicon or silicon-rich silicon carbide does not provide the desired substrate or matrix compatibility to the same degree as does the stoichiometric composition.
Using the process described in the previously mentioned copending application, satisfactory silicon carbide filaments have been produced in continuous lengths of 9,000 feet or more. It has been found, however, that without very careful attention to the process details, the silicon carbide filaments may be formed with a silicon rich outer layer which, although it might be advantageous in some instances, is nevertheless detrimental to the compatibility characteristics of the filaments in usage with the metal matrices.
SUMMARY OF THE INVENTION The present invention relates in general to a process for depositing stoichiometric silicon carbide on a resistively heated wire and, more particularly, to a process for forming silicon carbide by chemical deposition from a gaseous reactant mixture including methyldichlorosilane to which a carbonizing gas, such as methane has been added. It contemplates not only the production of filaments which are predominantly silicon carbide but also the production of composite filaments wherein the silicon carbide is provided as a thin layer over a variety of substrates, principally boron.
BRIEF DESCRIPTION OF THE DRAWINGS In the detailed description which follows it will be convenient to make reference from time to time to the drawings in which: FIG. 1 is a simple sketch, taken in elevation, of a reactor used in the pyrolytic deposition of silicon carbide.
FIG. 2 is a schematic view of the gas system used to provide the gaseous feed for the reactor of Fig. 1.
FIG. 3 is a graph of the pressure-temperature relationship as related to the composition of the deposit.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring first to Fig. l, the preferred reactor configuration for producing the silicon carbide coating on a resistively heated wire 2 which is drawn downward through the reactor 4, may be seen to comprise a tubular containment vessel 6, having dual gas inlets 8 and 10 at the upper end of the reactor and a single-exhaust port 12 at the lower end thereof. Cooling hydrogen is fed through the inlet 8, and the inlet 10 is used for introduction of the reactant gas mixture including methyldichlorosilane (CI-I SiHCl and methane, and in some instances, hydrogen. The containment vessel is formed of Pyrex, although Vycor, quartz and a number of other dielectrics are suitable. In a different configuration, various metals are also satisfactory. The gas inlets 8 and 10, and the exhaust l2 penetrate and are electrically connected to the metallic end plugs 14 and 16 which provide convenient means by which poser may be supplied to the wire for resistance heating purposes.
Although the end plugs may readily be seen to differ in overall configuration, they both incorporate a number of common features. They are each formed to provide a well 20 and 22, respectively, for containing a suitable conductive sealant 24, such as mercury, which serves the dual purpose of providing a gas seal around the wire where it penetrates the end plugs and further providing electrical contact between the moving wire and the respective end plugs which are in turn electrically connected through the tubes 10 and 12 and the leads 26 and 28 to a suitable DC power source 30. A variable resistance 32 is provided in the external circuit to permit regulation of the power supplied to the wire and, hence, temperature control thereof. The upper end plug 14 is provided with a peripheral groove 34, which communicates with the mercury well 20 through the passageway 36, to provide peripheral sealing around the plug. Sealing between the end plug 16 and the lower end of the containment vessel 6 is provided by mercury contained in an annular well 38.
The respective plugs are further each formed with a centrally oriented orifice 40 and 42 which is large enough to accommodate the free passage of the wire therethrough but which, in combination with the wire, is small enough to retain the mercury, through surface tension forces, in the respective wells.
The hydrogen admitted through the inlet 8 enters the reactant chamber immediately adjacent the wire inlet and is used primarily for cooling purposes at the end plug 14. The reactant gases enter the reactant chamber in an enlarged chimney portion 50, reverse flow therein, and enter the tubular member 6 at opening 52. In order to maintain the methyldichlorosilane at a fixed and controlled level, a condenser is utilized to yield a gas mixture with a fixed dew point. Such a system is set forth schematically in Fig. 2. It has been found that at pressures of about 4 p.s.i., a dew point of between 12 C. and 15 C. produces filaments of good quality and consistency. At a dew point of 25 C. the concentration of said silane appeared too high and resulted in filaments of reduced strength. At a dew point of 0' C., said silane concentration appeared too low. Experiments were run utilizing both hydrogen and argon as the carrier gases and, in all cases, the hydrogen carrier produced filaments having the higher strength. In subsequent experimentation, tests were run utilizing methane as the carrier gas, dispensing with the hydrogen entirely, except that, in most instances a limited amount of hydrogen was used for cooling purposes at the upper mercury seal. Results were perfectly satisfactory. In general, a methyldichlorosilane molar percentage of from 10-60 percent, based on total flow, will be preferred, regardless of the carrier gas composition. In general, it was found that the peak temperature of the wire must be maintained within the range of l,l00-I ,500 C. and preferably within the range of l,200l,400 C.
In the gas system depicted in Fig. 2, hydrogen from a suitable source is introduced through conduit 60, through pressure regulator 62, flowmeter 64, and valve 66, to the evaporator 68. Part of the hydrogen is bubbled through the liquid methyldichlorosilane 70 in the evaporator and the hydrogen-methyldichlorosilane mixture is discharged therefrom through conduit 72 to the condenser 74 which is maintained at the appropriate temperature to provide an output having a dew point of the appropriate range, this output from the condenser being introduced into the reactor 4 through inlet 10 as previously described.
A portion of the hydrogen may bypass the evaporator and be introduced through line 76 to a three-way control valve 80 for reactor purging purposes or to further regulate the composition of the reactant gas mixture. Cooling hydrogen is admitted to the reactor through inlet 8 from conduit 82 through valve 84 and fiowmeter 86.
A study was made of the pressure-temperature relationship involved in the deposition of silicon carbide. In the formation of filamentary silicon carbide and in the formation of coatings of silicon carbide on reactive filamentary material, such as boron, it is extremely important that at least a substantial portion of the deposited material is approximately stoichiometric silicon carbide rather than silicon or silicon-rich silicon carbide. For this reason, the carbonizing medium such as methane is also introduced into the reactant gas mixture. The methane addition is introduced to the system through conduit 90. valve 92 and flowmeter 94. The reactant gas mixture may, therefore, be seen to preferentially comprise methyldichlorosilane, hydrogen and methane, although as previously indicated, the hydrogen may be omitted if desired.
The curve shown in Fig. 3 shows that to produce silicon carbide without free silicon, one must work above the curve for the desired results because at any point below the curve either silicon or a mixture of silicon carbide and silicon will be produced. The majority of experiments conducted were run at one atmosphere pressure, but the data accumulated was sufficient to demonstrate the problem.
The temperature distribution in the usual reactor operated at one atmosphere pressure is such that only a limited portion of the filament on which deposition is being effected, lies above the curve. Accordingly, there is a tendency to produce a layer on the wire which is rich in silicon. In a 30 inch reactor, a graded fiber has been produced which is stoichiometric silicon carbide at the surface abutting the wire and silicon-rich silicon carbide at the outer surface of the coating. Many of the problems that researchers have associated with silicon carbide fiber, such as reactivity with the metal matrix materials and strength degradation at elevated temperatures, can be ex plained by this high silicon content. Similarly, many of the problems associated with the operation of the reactors producing these fibers can be traced to this silicon formation. The addition of a carbonaceous gas such as methane to the reactant gas mixture, according to the present teaching, permits the formation of stoichiometric silicon carbide without the undesirable high silicon contents. As an obvious corollary, in those instances where a graded coating is desired the desired properties can be achieved by the judicious control of the methane content and the temperature distribution in the reactor. It has been found that satisfactory results obtain with a methyldichlorosilane/hydrogen ratio maintained in the reactor in a range of about l/l:1/3 on a molar basis and with methane comprising 10-60 mol percent of the total gas flow.
In one experiment utilizing approximately 16 mol percent methane in the reactant gas mixture consisting of methyldichlorosilane and hydrogen, silicon carbide filaments having tensile strengths as high as 571,000 p.s.i. were produced without difficulty, and microprobe analysis verified the absence of free silicon in any significant amount.
It should be pointed out that, in some applications, a filament can be produced which is basically silicon carbide having a thin outer layer of pure silicon. The resulting fiber, after careful oxidation of the silicon, would then actually comprise a composite, silicon carbide with a silica (glass) coating. This would be particularly excellent for use with the resin matrix materials.
EXAMPLE 1 In a system of the type described utilizing a 6l-inch long reactor formed from 9 mm. Pyrex tubing, a silicon carbide coating has been produced on boron fiber at a rate of 760 feet/hour. The filamentary boron substrate was of the type produced by chemical deposition on a resistively heated wire.
At an evaporator pressure of 2 p.s.i.g., a hydrogen flow rate through the evaporator of 483 cc./min. was maintained with no bypass hydrogen flow around the evaporator. The condenser was maintained at 14.5" C. and a methyldichlorosilane flow rate of 231 cc./min. was effected. Cooling hydrogen was admitted to the reactor at a rate of 114 cc./min. and the methane addition to the reactant gas mixture was made at the rate of cc./min., resulting in a total gas composition in the reactor of 15.3 mol percent methane, 23.4 mol percent methyldichlorosilane and 61.3 mol percent hydrogen. The wire temperature was established at approximately l,l30 C. In this regard, it should be noted that the maximum temperature must be below that temperature at which crystallization of the boron occurs.
EXAMPLE II In a test somewhat similar to that described, utilizing a 30 inch long reactor formed from Pyrex tubing having a diameter of 9 mm. silicon carbide filaments have been produced on a tungsten wire at a rate of 200 feet/hour. Gas flow rates and compositions approximated those set forth in the previous example, but the wire temperature peak was maintained in the range of l,2001,400 C. Over 9,000 feet of continuous silicon carbide filament was produced having ultimate tensile strengths as high as 571,000 p.s.i.
In general, the silicon carbide filaments were produced in the range of 3-4 mils. As previously indicated, those produced in processes utilizing the methane addition had strengths on the order of 571,000 p.s.i. while those produced without the methane addition were generally limited to ultimate tensile strengths on the order of 345,000 p.s.i.
Boron fiber is generally produced with a diameter of 3-4 mils. Tests on 3.8 mil boron fiber with a 0.2 mil coating of stoichiometric silicon carbide indicated that the composite fiber had essentially the same ultimate tensile strength as the basic boron or about 460,000 p.s.i.
EXAMPLE III In a similar test utilizing a reactor formed from 25 mm. tub ing 8 inches long, a silicon carbide coating of 0.2 mil thickness was produced on 4.4 mil boron fiber. Methane was utilized as the carrier gas and introduced to the evaporator at a rate of 520 cc./min., the evaporator being held at 14 C. This resulted in a methyldichlorosilane flow rate of 193 cc./min. Cooling hydrogen was admitted at a rate of 200 c.c./min. The total composition of the gas in the reactor, on a molar basis, was 57 percent methane, 22 percent hydrogen and 21 percent methyldichlorosilane A subsequent microprobe analysis revealed no excess silicon or carbon in the deposit.
In the course of experimentation, silicon carbide was deposited on various substrate materials including in addition to tungsten and boron, graphite and tantalum. Further, wire temperatures and gas compositions were varied extensively to optimize the process conditions. Still further, the various filaments were subjected to compatibility testing in various matrix materials, including aluminum, magnesium and titanium. No degradation of the silicon carbide fibers was found after heating them in aluminum at 580 C. for 24 hours, and in titanium at 730 C. for 24 hours. The compatibility of the boron-silicon carbide composite filaments was similarly established in other tests for periods of over 500 hours.
It will readily be seen that by this invention there has been provided a process for producing silicon carbide filaments and silicon carbide coatings whereby the character and chemistry of the silicon carbide may be precisely regulated with the resultant improvement in the quality of the filament produced and in the ease by which the filament may be produced.
We claim:
1. A process for continuously depositing silicon carbide on a heated wired as it is drawn through a reactor comprising the steps of:
maintaining the wire at a temperature sufficient to effect tion of a coating of essentially stoichiometric silicon cardeposition of silicon carbide on the wire, the peak temi perature of the wire being within the range of'1,200-1 the methyld ichlorosilane/hydrogen ratio in the reactor 400'Q; being maintained within the range of about 1/ 121/3 on a 5 molar basis and the methane comprising lO-6O mol perexposing the wire to a gaseous stream consisting essentially of methyldichlorosilane admixed with hydrogen; and adding methane to the gaseous stream to effect the formacent of the total gas flow.
US618512A 1967-02-24 1967-02-24 Process for forming stoichiometric silicon carbide coatings and filaments Expired - Lifetime US3622369A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61851267A 1967-02-24 1967-02-24

Publications (1)

Publication Number Publication Date
US3622369A true US3622369A (en) 1971-11-23

Family

ID=24478028

Family Applications (1)

Application Number Title Priority Date Filing Date
US618512A Expired - Lifetime US3622369A (en) 1967-02-24 1967-02-24 Process for forming stoichiometric silicon carbide coatings and filaments

Country Status (5)

Country Link
US (1) US3622369A (en)
JP (1) JPS4939738B1 (en)
DE (1) DE1696621C3 (en)
FR (1) FR1568920A (en)
GB (1) GB1214351A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029844A (en) * 1973-04-24 1977-06-14 Atlantic Research Corporation Rocket nozzle comprising pyrolytic graphite-silicon carbide inserts
US4628002A (en) * 1985-05-28 1986-12-09 Avco Corporation Silicon carbide monofilament for transverse composite properties
US4726319A (en) * 1985-10-31 1988-02-23 M&T Chemicals Inc Apparatus and method for coating optical fibers
US4982068A (en) * 1979-06-14 1991-01-01 United Kingdom Atomic Energy Authority Fluid permeable porous electric heating element
US5041305A (en) * 1989-05-04 1991-08-20 The British Petroleum Company P.L.C. Process for depositing a silicon carbide coating on a filament
US5156883A (en) * 1989-05-04 1992-10-20 The British Petroleum Company P.L.C. Process for depositing a ceramic coating on a filament
US5221353A (en) * 1989-05-04 1993-06-22 The British Petroleum Company Apparatus for depositing a ceramic coating on a filament
US5431965A (en) * 1990-07-19 1995-07-11 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britian And Northern Ireland Coreless refractory fibers
US20100047475A1 (en) * 2008-08-22 2010-02-25 Ray Paul Durman Coated filaments and their manufacture
US20100047574A1 (en) * 2008-08-22 2010-02-25 Ray Paul Durman Coated filaments and their manufacture
US8993172B2 (en) 2011-12-10 2015-03-31 Kalptree Energy, Inc. Li-ion battery and battery active components on metal wire
WO2019133561A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133556A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133560A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133559A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133558A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133557A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU145106A1 (en) * 1961-05-27 1961-11-30 С.Н. Горин Silicon Carbide Coating Method
US3011912A (en) * 1959-12-22 1961-12-05 Union Carbide Corp Process for depositing beta silicon carbide
US3157541A (en) * 1958-10-23 1964-11-17 Siemens Ag Precipitating highly pure compact silicon carbide upon carriers
US3317356A (en) * 1964-03-31 1967-05-02 Texas Instruments Inc Process for applying a protective coat of silicon carbide to refractory metals
US3356618A (en) * 1963-11-25 1967-12-05 Int Research & Dev Co Ltd Coated boron containing material dispersed in a metal matrix
US3409469A (en) * 1964-03-05 1968-11-05 United Aircraft Corp Vapor coating conductive filaments utilizing uniform temperature
US3410715A (en) * 1965-06-28 1968-11-12 Air Force Usa Process for metal finishing boron and tungsten filaments
US3416951A (en) * 1965-07-28 1968-12-17 Air Force Usa Method for the pyrolytic deposition of silicon carbide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3157541A (en) * 1958-10-23 1964-11-17 Siemens Ag Precipitating highly pure compact silicon carbide upon carriers
US3011912A (en) * 1959-12-22 1961-12-05 Union Carbide Corp Process for depositing beta silicon carbide
SU145106A1 (en) * 1961-05-27 1961-11-30 С.Н. Горин Silicon Carbide Coating Method
US3356618A (en) * 1963-11-25 1967-12-05 Int Research & Dev Co Ltd Coated boron containing material dispersed in a metal matrix
US3409469A (en) * 1964-03-05 1968-11-05 United Aircraft Corp Vapor coating conductive filaments utilizing uniform temperature
US3317356A (en) * 1964-03-31 1967-05-02 Texas Instruments Inc Process for applying a protective coat of silicon carbide to refractory metals
US3410715A (en) * 1965-06-28 1968-11-12 Air Force Usa Process for metal finishing boron and tungsten filaments
US3416951A (en) * 1965-07-28 1968-12-17 Air Force Usa Method for the pyrolytic deposition of silicon carbide

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029844A (en) * 1973-04-24 1977-06-14 Atlantic Research Corporation Rocket nozzle comprising pyrolytic graphite-silicon carbide inserts
US4982068A (en) * 1979-06-14 1991-01-01 United Kingdom Atomic Energy Authority Fluid permeable porous electric heating element
US4628002A (en) * 1985-05-28 1986-12-09 Avco Corporation Silicon carbide monofilament for transverse composite properties
US4726319A (en) * 1985-10-31 1988-02-23 M&T Chemicals Inc Apparatus and method for coating optical fibers
US5041305A (en) * 1989-05-04 1991-08-20 The British Petroleum Company P.L.C. Process for depositing a silicon carbide coating on a filament
US5156883A (en) * 1989-05-04 1992-10-20 The British Petroleum Company P.L.C. Process for depositing a ceramic coating on a filament
US5221353A (en) * 1989-05-04 1993-06-22 The British Petroleum Company Apparatus for depositing a ceramic coating on a filament
US5431965A (en) * 1990-07-19 1995-07-11 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britian And Northern Ireland Coreless refractory fibers
US9187828B2 (en) 2008-08-22 2015-11-17 Tisics Limited Coated filaments and their manufacture
US20100047475A1 (en) * 2008-08-22 2010-02-25 Ray Paul Durman Coated filaments and their manufacture
US20100047574A1 (en) * 2008-08-22 2010-02-25 Ray Paul Durman Coated filaments and their manufacture
US9559380B2 (en) 2011-12-10 2017-01-31 Kalptree Energy, Inc. Li-ion battery and battery active components on metal wire
US8993172B2 (en) 2011-12-10 2015-03-31 Kalptree Energy, Inc. Li-ion battery and battery active components on metal wire
WO2019133557A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133556A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133560A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133559A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133558A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133561A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
EP3514259A1 (en) 2018-01-18 2019-07-24 Heraeus GMSI LLC Process for manufacturing a silicon carbide coated body
EP3514129A1 (en) 2018-01-18 2019-07-24 Heraeus GMSI LLC Process for manufacturing a silicon carbide coated body
EP3514127A1 (en) 2018-01-18 2019-07-24 Heraeus GMSI LLC Process for manufacturing a silicon carbide coated body
EP3514257A1 (en) 2018-01-18 2019-07-24 Heraeus GMSI LLC Process for manufacturing a silicon carbide coated body
EP3514128A1 (en) 2018-01-18 2019-07-24 Heraeus GMSI LLC Process for manufacturing a silicon carbide coated body
EP3514130A1 (en) 2018-01-18 2019-07-24 Heraeus GMSI LLC Process for manufacturing a silicon carbide coated body

Also Published As

Publication number Publication date
FR1568920A (en) 1969-05-30
JPS4939738B1 (en) 1974-10-28
DE1696621B2 (en) 1978-01-12
GB1214351A (en) 1970-12-02
DE1696621A1 (en) 1971-11-18
DE1696621C3 (en) 1978-09-14

Similar Documents

Publication Publication Date Title
US3622369A (en) Process for forming stoichiometric silicon carbide coatings and filaments
US3811920A (en) Silicon carbide surfaced filaments with titanium carbide coating
US4472476A (en) Composite silicon carbide/silicon nitride coatings for carbon-carbon materials
DE4317905C2 (en) Reactor for the hydrogenation of chlorosilanes
US3565676A (en) Chemical vapor deposition method
US4425407A (en) CVD SiC pretreatment for carbon-carbon composites
US4127659A (en) Silicon carbide filaments and method
US3900540A (en) Method for making a film of refractory material having bi-directional reinforcing properties
US4487799A (en) Pyrolytic graphite pretreatment for carbon-carbon composites
DE3601711A1 (en) REACTOR FOR GENERATING DEPOSIT GENERATED ON A SUBSTRATE
US3368914A (en) Process for adherently depositing a metal carbide on a metal substrate
US2556711A (en) Method of producing rectifiers and rectifier material
US4610896A (en) Method for repairing a multilayer coating on a carbon-carbon composite
US3464843A (en) Pyrolytic graphite alloys and method of making the same
Kim et al. Effect of partial pressure of the reactant gas on the chemical vapour deposition of Al2O3
EP0222241A1 (en) Deposition of titanium aluminides
US3846224A (en) Boron filaments with a boron carbide antidiffusion coating,and metal matrix made therefrom
US3549424A (en) Method for producing filamentary boron
US3503798A (en) Silicon nitride film deposition method
US3967029A (en) Boron-carbon alloy tape
US3367826A (en) Boron carbide article and method of making
US3811917A (en) Boron deposition on carbon monofilament
US3679475A (en) Method for producing boron-carbon fibers
US3668006A (en) Formation of high-strength high-modulus coated filaments
US4054708A (en) Film of pyrolytic graphite having bi-directional reinforcing properties