US3619184A - Balanced titanium alloy - Google Patents
Balanced titanium alloy Download PDFInfo
- Publication number
- US3619184A US3619184A US713214A US3619184DA US3619184A US 3619184 A US3619184 A US 3619184A US 713214 A US713214 A US 713214A US 3619184D A US3619184D A US 3619184DA US 3619184 A US3619184 A US 3619184A
- Authority
- US
- United States
- Prior art keywords
- percent
- creep
- alloy
- molybdenum
- zirconium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 17
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 24
- 239000011733 molybdenum Substances 0.000 claims abstract description 24
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 24
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 22
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 21
- 239000010703 silicon Substances 0.000 claims abstract description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052718 tin Inorganic materials 0.000 claims abstract description 19
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 17
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 8
- 239000010937 tungsten Substances 0.000 claims abstract description 8
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 8
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 20
- 239000003381 stabilizer Substances 0.000 abstract description 18
- 239000010955 niobium Substances 0.000 abstract description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052715 tantalum Inorganic materials 0.000 abstract description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 abstract description 6
- 229910045601 alloy Inorganic materials 0.000 description 34
- 239000000956 alloy Substances 0.000 description 34
- 239000000203 mixture Substances 0.000 description 16
- 238000007792 addition Methods 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 6
- 230000006872 improvement Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000127464 Paubrasilia echinata Species 0.000 description 1
- 229910008651 TiZr Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
Definitions
- the natural crystallographic grouping of titanium and its alloys involves three categories divided according to the predominant phase or phases in their microstructure. These groups are alpha, beta and mixed alpha and beta phases.
- the alpha phase which is characterized by a hexagonal, close-packed crystallographic structure is stable from room temperature to approximately l,620 F.
- the beta phase of pure titanium has a body-centered cubic structure and is stable from approximately l,620 F. to the melting point of about 3,035 F.-
- the hexagonal, close-packed allotrope of titanium i.e. the alpha phase
- the hexagonal, close-packed allotrope of titanium i.e. the alpha phase
- Solid solution strengthening of the alpha phase by the addition of aluminum, tin and zirconium has resulted in alloys with still better resistance to creep defonnation.
- further improvements by the addition of such alpha stabilizers is restricted due to poor thermal stability of compositions containing too great a quantity of such elements as manifested by lower ductility after creep exposure.
- the present invention provides a balanced titanium alloy composition which possesses improved creep strength without undue sacrifice of thermal stability or ductility after creep exposure.
- a titanium alloy consisting essentially of4.0 to 7.8 percent aluminum, up to I20 percent tin, at least 0.3 percent zirconium, traces to 0.5 percent silicon and at least one stabilizer from the group consisting of molybdenum, columbium, tantalum, vanadium and tungsten, the quantity of aluminum, tin and zirconium complying with the equation:
- a preferred alloy in accordance with the invention contains 4.0 to 7.0 percent aluminum, 0.3 to 7.0 percent zirconium, 2.0 to 8.0 percent tin, 0.1 to 0.35 percent silicon and 0.1 to 1.2 percent of at least one stabilizer from the group consisting of molybdenum, columbium, tantalum, vanadium and tungsten.
- Optimum properties have been found to be associated with a composition within the melting range 4.7 to 5.3 percent aluminum, 5.5 to 6.5 percent tin, 0.5 to 2.5 percent zirconium, 0.4 to 1.1 percent molybdenum, 0.2 to 0.3 percent silicon, more specifically having the nominal composition of 5.0 percent aluminum, 6.0 percent tin, 2.0 percent zirconium, 0.8 percent molybdenum and 0.25 percent silicon.
- alloys in accordance with the invention contain 4.0 to 7.8 percent aluminum. if the upper aluminum limit is exceeded, the alloy becomes thermally unstable; similarly, a minimum of 4.0 percent aluminum is necessary to achieve acceptable mechanical properties. Zirconium has been found to enhance the creepstrengthening efi'ect of silicon and at least 0.3 percent zirconium is necessary for this purpose.
- Zirconium-containing alloys result in the formation of a complex compound of titanium, zirconium and silicon instead of normal titanium silicide which would form in the absence of zirconium. Some silicon is, of course, necessary for creep strengthening. However, amounts in excess of 0.5 percent are avoided to avoid ductility problems. Tin may act as a replacement for aluminum, at least in part, and is desirable, but not absolutely necessary, since it further assists in assuring thermal stability. However, over l2.0 percent tin increases the tendency toward thermal instability.
- a critically controlled quantity of at least one stabilizer from the group consisting of molybdenum, columbium, tantalum, vanadium and tungsten is necessary in balancing the alpha-stabilizing components to assure additional high-temperature strength while imparting thermal stability which is particularly beneficial for alloys processed or heat treated above the beta transus.
- a discovery in accordance with the invention is that the addition of the stabilizers must not exceed the alpha-solubility limit for the particular stabilizer. If the alphasolubility is exceeded, some beta phase may form that would result in a significant less of strength which may be accompanied by a loss of high-temperature stability as well.
- Alloy No. 4 possesses good tensile ductility after creep exposure while Alloy No. 3 is brittle.
- the amounts of molybdenum and silicon added to the alloy are important in optimizing the creep strength with post creep tensile ductility.
- the creep strength of Alloy No. in table 1 compared with Alloy Nos. 2 and 3 indicates that the combination of beta stabilizers plus silicon, e.g. molybdenum plus silicon, even at lower silicon contents, is superior.
- the influence of the stabilizers, in this case molybdenum is shown by comparing Alloy No. 3 with Alloy Nos. 4, 6 and 7 7 in table 1.
- the slight addition of 0.4 percent molybdenum is sufficient to impart improved creep strength. With 0.8 percent molybdenum, the excellent creep strength is still maintained.
- zirconium in the alloy system in accordance with the invention is shown in the examples in table lV. With zirconium, higher creep resistance is obtained. The zirconium addition results in the formation of a complex (TiZr) Si compound which benefits creep resistance. Thus, a complex (TiZr) Si compound which benefits creep resistance.
- optimum creep strength is achieved by beta processing or heat treatment, and in this connection, the balanced composition of the invention is a particular advance over present commercially available materials.
- optimum yield strength in titanium alloys of the type described is developed by processing, e.g. heat treating, in such a manner so as to avoid the formation of a transformed beta structure.
- a typical process to develop optimum yield strength involves (1) working to an end temperature below the beta transus temperature or (2) working to an end temperature below the beta transus temperature plus a heat treatment below that temperature.
- M0 molybdenum content or molybdenum equivalency of other stabilizers, i.e. columbium, tantalum, vanadium and tungsten.
- Molybdenum equivalency is expressed by the equation:
- Creep and stability according to the equations A and B above are determined by testing specimens at 950 F, under with respect to aluminum and tin on creep strength and thermal stability.
- the graph is related to a base composition of Ti- XAl-YSn-2Zr-0.8Mo-0.25Si based upon an instability threshold of less than 8 where the aluminum, tin and zirconium, ie the alpha stabilizers, are related by the equation:
- the sloping line represents the tin content for different aluminum levels at which the loss of ductility is disproportionately greater with increase in creep strength, that is, the point at which the equations discussed above are no longer applicable.
- a titanium-base alloy consisting essentially of about 4.7 to 5.3 percent aluminum, 5.5 to 6.5 percent tin, 0.5 to 2.5 percent zirconium, 0.4 to 1.1 percent molybdenum, 0.2 to 0.3 percent silicon, and the balance titanium and incidental impurities, said alloy being characterized by improved creep strength without undue sacrifice of thermal stability or ductility after creep exposure.
- a titanium alloy In accordance with claim 1 containing 5.0 percent aluminum, 6.0 percent tin, 2.0 percent zirconium, 0.8 percent molybdenum and 0.25 percent silicon.
- a titanium alloy in accordance with claim 1 additionally containing 0.53 to 1.33 percent vanadium.
- a titanium alloy in accordance with claim I additionally containing 0.8 to 2.0 percent tungsten t a a t UNITED STATES PATENT OFFIGE CERTIFICATE OF CORRECTION Patent No. 3,619,184 Dated November 9, 1971 Inventor(s) Howard B. Bomberqer, Jr, et a1 It is certified that error appears in the above-identified patent and that: said Letters Patent are hereby corrected as shown below:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Heat Treatment Of Steel (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71321468A | 1968-03-14 | 1968-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3619184A true US3619184A (en) | 1971-11-09 |
Family
ID=24865241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US713214A Expired - Lifetime US3619184A (en) | 1968-03-14 | 1968-03-14 | Balanced titanium alloy |
Country Status (4)
Country | Link |
---|---|
US (1) | US3619184A (enrdf_load_stackoverflow) |
DE (1) | DE1913142A1 (enrdf_load_stackoverflow) |
FR (1) | FR2003910A1 (enrdf_load_stackoverflow) |
GB (1) | GB1264891A (enrdf_load_stackoverflow) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3833363A (en) * | 1972-04-05 | 1974-09-03 | Rmi Co | Titanium-base alloy and method of improving creep properties |
DE2620311A1 (de) * | 1975-05-07 | 1976-11-18 | Imp Metal Ind Kynoch Ltd | Titanlegierung |
US4229216A (en) * | 1979-02-22 | 1980-10-21 | Rockwell International Corporation | Titanium base alloy |
US4606886A (en) * | 1983-12-10 | 1986-08-19 | Imi Titanium Limited | Titanium-base alloy |
US4738822A (en) * | 1986-10-31 | 1988-04-19 | Titanium Metals Corporation Of America (Timet) | Titanium alloy for elevated temperature applications |
EP0611831A1 (en) * | 1993-02-17 | 1994-08-24 | Warren M. Parris | Titanium alloy for plate applications |
US6531091B2 (en) * | 2000-02-16 | 2003-03-11 | Kobe Steel, Ltd. | Muffler made of a titanium alloy |
US20110097501A1 (en) * | 2004-03-22 | 2011-04-28 | Lanxide Technology Company | Methods for extracting titanium metal and useful alloys from titanium oxides |
CN103014412A (zh) * | 2011-09-27 | 2013-04-03 | 什邡市明日宇航工业股份有限公司 | 一种复合耐热钛合金 |
CN103014413A (zh) * | 2011-09-27 | 2013-04-03 | 什邡市明日宇航工业股份有限公司 | 一种复合强化耐热钛合金 |
JP2014058740A (ja) * | 2012-07-19 | 2014-04-03 | Rti Internat Metals Inc | 高温において良好な耐酸化性と高い強度を有するチタン合金 |
US20140295988A1 (en) * | 2013-04-01 | 2014-10-02 | Acushnet Company | Golf club head with improved striking face |
US10041150B2 (en) | 2015-05-04 | 2018-08-07 | Titanium Metals Corporation | Beta titanium alloy sheet for elevated temperature applications |
US11421303B2 (en) | 2017-10-23 | 2022-08-23 | Howmet Aerospace Inc. | Titanium alloy products and methods of making the same |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2893864A (en) * | 1958-02-04 | 1959-07-07 | Harris Geoffrey Thomas | Titanium base alloys |
US3049425A (en) * | 1958-11-14 | 1962-08-14 | Ici Ltd | Alloys |
US3061427A (en) * | 1960-04-28 | 1962-10-30 | Titanium Metals Corp | Alloy of titanium |
GB944954A (en) * | 1959-10-31 | 1963-12-18 | Jessop William & Sons Ltd | Improvements in or relating to titanium alloys |
GB1049210A (en) * | 1963-10-17 | 1966-11-23 | Continental Titanium Metals Co | Titanium base alloys |
FR1477221A (fr) * | 1966-04-25 | 1967-04-14 | Birmingham Small Arms Co Ltd | Alliages à base de titane |
FR1486765A (fr) * | 1965-07-14 | 1967-06-30 | Imp Metal Ind Kynoch Ltd | Alliage à base de titane |
US3333995A (en) * | 1963-12-05 | 1967-08-01 | Titanium Metals Corp | Processing titanium alloy sheet products |
GB1079416A (en) * | 1965-07-14 | 1967-08-16 | Imp Metal Ind Kynoch Ltd | Titanium-base alloys |
US3343951A (en) * | 1963-10-17 | 1967-09-26 | Titanium Metals Corp | Titanium base alloy |
US3378368A (en) * | 1965-01-04 | 1968-04-16 | Imp Metal Ind Kynoch Ltd | Titanium-base alloys |
-
1968
- 1968-03-14 US US713214A patent/US3619184A/en not_active Expired - Lifetime
-
1969
- 1969-03-14 DE DE19691913142 patent/DE1913142A1/de active Pending
- 1969-03-14 GB GB1264891D patent/GB1264891A/en not_active Expired
- 1969-03-14 FR FR6907275A patent/FR2003910A1/fr not_active Withdrawn
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2893864A (en) * | 1958-02-04 | 1959-07-07 | Harris Geoffrey Thomas | Titanium base alloys |
US3049425A (en) * | 1958-11-14 | 1962-08-14 | Ici Ltd | Alloys |
US3105759A (en) * | 1958-11-14 | 1963-10-01 | Ici Ltd | Titanium-base alloys |
GB944954A (en) * | 1959-10-31 | 1963-12-18 | Jessop William & Sons Ltd | Improvements in or relating to titanium alloys |
US3061427A (en) * | 1960-04-28 | 1962-10-30 | Titanium Metals Corp | Alloy of titanium |
GB1049210A (en) * | 1963-10-17 | 1966-11-23 | Continental Titanium Metals Co | Titanium base alloys |
US3343951A (en) * | 1963-10-17 | 1967-09-26 | Titanium Metals Corp | Titanium base alloy |
US3333995A (en) * | 1963-12-05 | 1967-08-01 | Titanium Metals Corp | Processing titanium alloy sheet products |
US3378368A (en) * | 1965-01-04 | 1968-04-16 | Imp Metal Ind Kynoch Ltd | Titanium-base alloys |
FR1486765A (fr) * | 1965-07-14 | 1967-06-30 | Imp Metal Ind Kynoch Ltd | Alliage à base de titane |
GB1079416A (en) * | 1965-07-14 | 1967-08-16 | Imp Metal Ind Kynoch Ltd | Titanium-base alloys |
FR1477221A (fr) * | 1966-04-25 | 1967-04-14 | Birmingham Small Arms Co Ltd | Alliages à base de titane |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3833363A (en) * | 1972-04-05 | 1974-09-03 | Rmi Co | Titanium-base alloy and method of improving creep properties |
USRE29946E (en) * | 1972-04-05 | 1979-03-27 | Rmi Company | Titanium-base alloy and method of improving creep properties |
DE2620311A1 (de) * | 1975-05-07 | 1976-11-18 | Imp Metal Ind Kynoch Ltd | Titanlegierung |
US4087292A (en) * | 1975-05-07 | 1978-05-02 | Imperial Metal Industries (Kynoch) Limited | Titanium base alloy |
US4229216A (en) * | 1979-02-22 | 1980-10-21 | Rockwell International Corporation | Titanium base alloy |
US4606886A (en) * | 1983-12-10 | 1986-08-19 | Imi Titanium Limited | Titanium-base alloy |
US4738822A (en) * | 1986-10-31 | 1988-04-19 | Titanium Metals Corporation Of America (Timet) | Titanium alloy for elevated temperature applications |
EP0611831A1 (en) * | 1993-02-17 | 1994-08-24 | Warren M. Parris | Titanium alloy for plate applications |
US5358686A (en) * | 1993-02-17 | 1994-10-25 | Parris Warren M | Titanium alloy containing Al, V, Mo, Fe, and oxygen for plate applications |
US6531091B2 (en) * | 2000-02-16 | 2003-03-11 | Kobe Steel, Ltd. | Muffler made of a titanium alloy |
US20110097501A1 (en) * | 2004-03-22 | 2011-04-28 | Lanxide Technology Company | Methods for extracting titanium metal and useful alloys from titanium oxides |
CN103014412A (zh) * | 2011-09-27 | 2013-04-03 | 什邡市明日宇航工业股份有限公司 | 一种复合耐热钛合金 |
CN103014413A (zh) * | 2011-09-27 | 2013-04-03 | 什邡市明日宇航工业股份有限公司 | 一种复合强化耐热钛合金 |
JP2014058740A (ja) * | 2012-07-19 | 2014-04-03 | Rti Internat Metals Inc | 高温において良好な耐酸化性と高い強度を有するチタン合金 |
US20150192031A1 (en) * | 2012-07-19 | 2015-07-09 | Rti International Metals, Inc. | Titanium alloy having good oxidation resistance and high strength at elevated temperatures |
US9957836B2 (en) * | 2012-07-19 | 2018-05-01 | Rti International Metals, Inc. | Titanium alloy having good oxidation resistance and high strength at elevated temperatures |
US20140295988A1 (en) * | 2013-04-01 | 2014-10-02 | Acushnet Company | Golf club head with improved striking face |
US20150360093A1 (en) * | 2013-04-01 | 2015-12-17 | Acushnet Company | Golf club head with improved performance |
US9433835B2 (en) * | 2013-04-01 | 2016-09-06 | Acushnet Company | Golf club head with improved striking face |
US9700766B2 (en) * | 2013-04-01 | 2017-07-11 | Acushnet Company | Golf club head with improved striking face |
US10041150B2 (en) | 2015-05-04 | 2018-08-07 | Titanium Metals Corporation | Beta titanium alloy sheet for elevated temperature applications |
US11421303B2 (en) | 2017-10-23 | 2022-08-23 | Howmet Aerospace Inc. | Titanium alloy products and methods of making the same |
Also Published As
Publication number | Publication date |
---|---|
DE1913142A1 (de) | 1969-10-16 |
GB1264891A (enrdf_load_stackoverflow) | 1972-02-23 |
FR2003910A1 (enrdf_load_stackoverflow) | 1969-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3619184A (en) | Balanced titanium alloy | |
US2754203A (en) | Thermally stable beta alloys of titanium | |
US4229216A (en) | Titanium base alloy | |
US4292077A (en) | Titanium alloys of the Ti3 Al type | |
US2754204A (en) | Titanium base alloys | |
US2554031A (en) | Titanium base alloy | |
US2893864A (en) | Titanium base alloys | |
US4788035A (en) | Tri-titanium aluminide base alloys of improved strength and ductility | |
EP0269196B1 (en) | Titanium - base alloy | |
WO1989001052A1 (en) | Titanium alloys | |
US5167732A (en) | Nickel aluminide base single crystal alloys | |
US3756810A (en) | High temperature titanium alloy | |
US2892705A (en) | Stable, high strength, alpha titanium base alloys | |
US2575962A (en) | Titanium alloy | |
US3049425A (en) | Alloys | |
US3378368A (en) | Titanium-base alloys | |
US3679403A (en) | Method of improving macrostructure of titanium-base alloy products | |
US2596486A (en) | Titanium-base alloys | |
US3061427A (en) | Alloy of titanium | |
US3441407A (en) | Titanium-base alloys | |
US3540946A (en) | Titanium-base alloys | |
Guo et al. | Improving thermal stability of alloy 718 via small modifications in composition | |
US2596489A (en) | Titanium-base alloys | |
US2726954A (en) | Titanium base alloy | |
US3065072A (en) | Alloys with a nickel-chromium base |