US3614819A - Apparatus for bonding flat sheets - Google Patents

Apparatus for bonding flat sheets Download PDF

Info

Publication number
US3614819A
US3614819A US819139A US3614819DA US3614819A US 3614819 A US3614819 A US 3614819A US 819139 A US819139 A US 819139A US 3614819D A US3614819D A US 3614819DA US 3614819 A US3614819 A US 3614819A
Authority
US
United States
Prior art keywords
deformed
die
sheets
portions
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US819139A
Inventor
Walter D Behlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Behlen Manufacturing Co Inc
Original Assignee
Behlen Manufacturing Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behlen Manufacturing Co Inc filed Critical Behlen Manufacturing Co Inc
Application granted granted Critical
Publication of US3614819A publication Critical patent/US3614819A/en
Assigned to BEHLEN MFG. CO. A CORP OF reassignment BEHLEN MFG. CO. A CORP OF ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: WICKES CORPORATION THE
Assigned to GLENFIELD FINANCIAL CORPORATION, 104 CARNEGIE CENTER, PRINCETON, NJ., 08540, A CORP OF CA. reassignment GLENFIELD FINANCIAL CORPORATION, 104 CARNEGIE CENTER, PRINCETON, NJ., 08540, A CORP OF CA. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEHLEN MFG. CO., A CORP OF NE.
Anticipated expiration legal-status Critical
Assigned to WASHINGTON SQUARE CAPITAL, INC., A CORP. OF MN reassignment WASHINGTON SQUARE CAPITAL, INC., A CORP. OF MN SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEHLEN MFG. CO., A CORP. OF NE, BMC TRANSPORTATION COMPANY
Assigned to BEHLEN MFG. CO. reassignment BEHLEN MFG. CO. RELEASE OF SECURITY INTEREST, EFFECTIVE SEPT. 4, 1992. Assignors: GLENFED FINANCIAL CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/34Means for forming clench-tongue [eg, for tieband]

Definitions

  • a mechanical splice for rolls of metal in continuous metal fabrication wherein each splice includes a portion deformed from adjacent sheets of metal thereby limiting relative movement therebetween.
  • the portion of material deformed is spread after it is deformed to prevent it from returning to its original condition.
  • a die for performing the deformation and spreading includes a flat die surface with oppositely outwardly flaring end surfaces which press superimposed portions of the sheets of metal into a depression in a second die against a yieldable pin which spreads at least one of the portions by at least the time the movable die has bottomed out but after the one portion is deformed out of its sheet of material.
  • the method of forming the mechanical spilcing involves the deforming of the elongated portion thereby forming an opening in the sheet of material and then the spreading of the deformed portion such that it cannot pass back into the opening.
  • the spreading may begin at the same time as the deforming step begins but is not completed until the deforming step has been completely finished.
  • a second embodiment of the splicing includes semi elliptical portions the miror image of each other on opposite sides of a perpendicular plane to the sheets of material being deformed on opposite sides of a parallel plane to the sheets of material to lock the sheets against relative movement.
  • the dies for forming the semi elliptical deformations are the miror image of each other and have convex outer surfaces whereby they register with each other.
  • a die assembly may have a plurality of die elements for forming a plurality of splices between sheets in mating engagement with each other.
  • elongated portions of material are deformed from their respective sheets thereby forming openings in the sheets and at least one of the elongated portions is then spread such that it cannot pass back into its opening in its sheet.
  • the second embodiment of the mechanical splice involves superimposed sheets each having side by side semi elliptical deformed portions which are the mirror image of each other deformed in opposite directions perpendicular to the plane of the sheets such that each side of the bonded sheets will include side by side concave and convex portions semi elliptical in shape meeting along with minor axis.
  • FIG. 1 is a fragmentary perspective plan view of a pair of rolls of sheet material having portions fastened together with a plurality of splices;
  • FIG. 2 is a fragmentary enlarged perspective view of the male die head
  • FIG. 3 is a plan view of the female die head
  • FIG. 4 is a fragmentary cross-sectional view of the die in its open condition
  • FIG. 5 is a fragmentary cross-sectional view similar to FIG. 4 but showing the die and the material after the splice has been formed and the die has been returned to its open position;
  • FIG. 6 is a cross-sectional View taken along line 6-6 in FIG. 5;
  • FIG. 7 is a fragmentary bottom plan view of the splice deformed by the die
  • FIG. 8 is a top plan view of a pair of rolls of sheets material including a plurality of alternate mechanical splices
  • FIG. 9 is a fragmentary perspective view of the two die halves for forming the alternate mechanical splice.
  • FIG. 10 is a cross-sectional view of the dies and splice material with the die halves in their open condition.
  • FIG. 1 two sheets of material 10 and 12 are shown being dispensed from a pair of rolls 14 and 16 respectively.
  • a plurality of splices 20 have been formed between the two sheets of material 10 and 12.
  • a die press 24 includes a movable upper die half 26 and a stationary lower die half 27.
  • the upper die half includes an elongated male element 28 having a center horizontal surface 30 with oppositely extending outwardly flaring flat surfaces 32 and 34.
  • the bottom die half includes a cavity 36 substantially the same width and length as the male die element 28.
  • a cylindrical plunger 38 larger in diameter than the width of cavity 36 (FIG. 3) is mounted in the center of the cavity 36 and includes a truncated conical pin 40 in the center thereof.
  • the cylindrical element 38 is movable within cavity 36 of the die half head 28 and is seated upon a plate member 46 which in turn is seated upon a block of urethane material 50 resting on a stationary base 52.
  • FIGS. 4 and 5 The splicing operation is seen performed particularly in FIGS. 4 and 5 wherein the sheets of material 10 and 12 are placed between the die halves 26 and 28 and the bottom sheet 12 rests upon the pin 40.
  • the upper die 26 is lowered pressing the sheets downwardly and the cylindrical member 38 also downwardly to its position of FIG. 5 against the resilient and yieldable resistance of the urethane material 50.
  • the die halves When the die halves are closed the sheets of material are sheared and deformed to provide elongated mating portions and 62 having the general shape, including parallel straight opposite side edges, of the male die element 28.
  • the pin 40 has penetrated the center area of the lower elongated portion 62 and has spread the material laterally to form below sheet 12 areuate shoulders 64- which prevent the elongated portion 62 from moving back into the openings 66 and 68 in the sheets of material 10 and 12 left by the shearing, deforming and spreading steps. It is seen that the initial impact of the upper male die half 26 against the pin 40 is not damaging thereto since the pin is yieldable by the presence of the supporting urethane base. However, the urethane base is of such a quality that it becomes solid after it has been compressed by the movement of the pin 40 and cylindrical portion 38 downwardly to approximately the position shown in FIG. 5 wherein only the pin 40 remains above the bottom surface of the cavity 36 in the lower female die half 27.
  • FIG. 8 an alternate series of splices 70* are shown interconnecting the sheets of material 10 and 12 fed from the rolls 14 and 16.
  • a pair of die halves 72 and 74 are shown having semi-elliptical male die portions 76 and 78 which matingly engage concave semi-elliptical die cavities 80 and 82 respectively. Since the die elements 76 and 7 8 are semi-elliptical in shape they each include perpendicular end surfaces 84 and 86 which are perpendicular to the faces of the die halves 72 and 74 and move in close registering relationship as seen in FIG.
  • the male die elements 76 and 78 are mirror images of each other as are the female cavities 80 and 82.
  • a machine for bonding together a pair of sheets of fiat material comprising,
  • a pair of die members one of said die members being movable towards and away from said other die member between open and closed positions, a first punch on said one die member and an elongated recess on the other die member to receive said first punch when said die members are closed,
  • said die members having cooperating shearing edges defined by the cooperating edges of said first punch and said elongated recess for shearing and deforming portions out of the sheets,
  • said second punch and said elongated recess laterally of said second punch having a width greater than the width of said elongated recess along its substantial length
  • said second punch comprising an upstanding conical pin in the center of said recess and having a substantially smaller punch area than said first punch, said second punch and said pin being sufficiently recessed in said recess for spreading material laterally from the portion engaging said pin which has been sheared and deformed from the sheet of material adjacent said other die member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

A MECHANICAL SPLICE FOR ROLLS OF METAL IN CONTINUOUS METAL FABRICATION WHEREIN EACH SPLICE INCLUDES A PORTION DEFORMED FROM ADJACENT SHEETS OF METAL THEREBY LIMITING RELATIVE MOVEMENT THEREBETWEEN. IN ONE EMBODIMENT, THE PORTION OF MATERIAL DEFORMED IS SPREAD AFTER IT IS DEFORMED TO PREVENT IT FROM RETURNING TO ITS ORIGINAL CONDITION. A DIE FOR PERFORMING THE DEFORMATION AND SPREAD INCLUDES A FLAT DIE SURFACE WITH OPPOSITELY OUTWARDLY FLARING END SURFACES WHICH PRESS SUPERIMPOSED PORTIONS OF THE SHEETS OF METAL INTO A DEPRESSION IN A SECOND DIE AGAINST A YIELDABLE PIN WHICH SPREADS AT LEAST ONE OF THE PORTIONS BY AT LEAST THE TIME THE MOVABLE DIE HAS BOTTOMED OUT BUT AFTER THE ONE PORTION IS DEFORMED OUT OF ITS SHEET OF MATERIAL. THE METHOD OF FORMING THE MECHANICAL SPILCING INVOLVES THE DEFORMING OF THE ELONGATED PORTION THEREBY FORMING AN OPENING IN THE SHEET OF MATERIAL AND THEN THE SPREADING OF THE DEFORMED PORTION SUCH THAT IT CANNOT PASS BACK INTO THE OPENING. THE SPREADING MAY BEGIN AT THE SAME TIME AS THE DEFORMING STEP BEGINS BUT IS NOT COMPLETED UNTIL THE DEFORMING STEP HAS BEEN COMPLETELY FINISHED. A SECOND EMBODIMENT OF THE APLICING INCLUDES SEMI ELIPTICAL PORTIONS THE MIROR IMAGE OF EACH OTHER ON OPPOSITE SIDE OF A PERPENDICULAR PLANE TO THE SHEETS OF MATERIAL BEING DEFORMED ON OPPOSITE SIDES OF A PARALLEL PLANE TO THE SHEETS OF MATERIAL TO LACK THE SHEEETS AGAINST RELATIVE MOVEMENT. THE DIES OF FOR FORMING THE SEMI ELIPTICAL DEFORMATIONS ARE THE MIROR IMAGE OF EACH OTHER AND HAVE CONVEX OUTER SURFACES WHEREBY THEY REGISTER WITH EACH OTHER.

Description

Oct. 26, 1971 w. D. BEHLEN 3,614,819
APPARATUS FOR BONDING FLAT SHEETS Original Filed April 10, 1967 H MK -za /o l///////// /////A l;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\k I 34,
United States 3 Claims ABSTRACT UF THE DlfiCLUSURE A mechanical splice for rolls of metal in continuous metal fabrication wherein each splice includes a portion deformed from adjacent sheets of metal thereby limiting relative movement therebetween. In one embodiment, the portion of material deformed is spread after it is deformed to prevent it from returning to its original condition. A die for performing the deformation and spreading includes a flat die surface with oppositely outwardly flaring end surfaces which press superimposed portions of the sheets of metal into a depression in a second die against a yieldable pin which spreads at least one of the portions by at least the time the movable die has bottomed out but after the one portion is deformed out of its sheet of material. The method of forming the mechanical spilcing involves the deforming of the elongated portion thereby forming an opening in the sheet of material and then the spreading of the deformed portion such that it cannot pass back into the opening. The spreading may begin at the same time as the deforming step begins but is not completed until the deforming step has been completely finished. A second embodiment of the splicing includes semi elliptical portions the miror image of each other on opposite sides of a perpendicular plane to the sheets of material being deformed on opposite sides of a parallel plane to the sheets of material to lock the sheets against relative movement. The dies for forming the semi elliptical deformations are the miror image of each other and have convex outer surfaces whereby they register with each other.
This is a divisional application of co-pending application Ser. No. 629,505 filed Apr. 10, 1967, now abandoned.
In working with rolls of metal sheets or the like it is necessary from time to time to secure adjacent sheets together and thus the mechanical splices of this invention have been provided to accomplish this fastening by the use of a simplified machine and method. A die assembly may have a plurality of die elements for forming a plurality of splices between sheets in mating engagement with each other. In the one embodiment of the mechanical splice, elongated portions of material are deformed from their respective sheets thereby forming openings in the sheets and at least one of the elongated portions is then spread such that it cannot pass back into its opening in its sheet. These steps are performed in the method of making the splice of this invention by use of as for example the die machine of this invention. The second embodiment of the mechanical splice involves superimposed sheets each having side by side semi elliptical deformed portions which are the mirror image of each other deformed in opposite directions perpendicular to the plane of the sheets such that each side of the bonded sheets will include side by side concave and convex portions semi elliptical in shape meeting along with minor axis.
These and other features and advantages of this invention will become readily apparent to those skilled in the art upon reference to the following description when taken into consideration with the accompanying drawings, wherein:
FIG. 1 is a fragmentary perspective plan view of a pair of rolls of sheet material having portions fastened together with a plurality of splices;
FIG. 2 is a fragmentary enlarged perspective view of the male die head;
FIG. 3 is a plan view of the female die head;
FIG. 4 is a fragmentary cross-sectional view of the die in its open condition;
FIG. 5 is a fragmentary cross-sectional view similar to FIG. 4 but showing the die and the material after the splice has been formed and the die has been returned to its open position;
FIG. 6 is a cross-sectional View taken along line 6-6 in FIG. 5;
FIG. 7 is a fragmentary bottom plan view of the splice deformed by the die;
FIG. 8 is a top plan view of a pair of rolls of sheets material including a plurality of alternate mechanical splices;
FIG. 9 is a fragmentary perspective view of the two die halves for forming the alternate mechanical splice; and
FIG. 10 is a cross-sectional view of the dies and splice material with the die halves in their open condition.
In FIG. 1 two sheets of material 10 and 12 are shown being dispensed from a pair of rolls 14 and 16 respectively. A plurality of splices 20 have been formed between the two sheets of material 10 and 12.
A die press 24 includes a movable upper die half 26 and a stationary lower die half 27. The upper die half includes an elongated male element 28 having a center horizontal surface 30 with oppositely extending outwardly flaring flat surfaces 32 and 34. The bottom die half includes a cavity 36 substantially the same width and length as the male die element 28. A cylindrical plunger 38 larger in diameter than the width of cavity 36 (FIG. 3) is mounted in the center of the cavity 36 and includes a truncated conical pin 40 in the center thereof. The cylindrical element 38 is movable within cavity 36 of the die half head 28 and is seated upon a plate member 46 which in turn is seated upon a block of urethane material 50 resting on a stationary base 52.
The splicing operation is seen performed particularly in FIGS. 4 and 5 wherein the sheets of material 10 and 12 are placed between the die halves 26 and 28 and the bottom sheet 12 rests upon the pin 40. The upper die 26 is lowered pressing the sheets downwardly and the cylindrical member 38 also downwardly to its position of FIG. 5 against the resilient and yieldable resistance of the urethane material 50. When the die halves are closed the sheets of material are sheared and deformed to provide elongated mating portions and 62 having the general shape, including parallel straight opposite side edges, of the male die element 28. The pin 40 has penetrated the center area of the lower elongated portion 62 and has spread the material laterally to form below sheet 12 areuate shoulders 64- which prevent the elongated portion 62 from moving back into the openings 66 and 68 in the sheets of material 10 and 12 left by the shearing, deforming and spreading steps. It is seen that the initial impact of the upper male die half 26 against the pin 40 is not damaging thereto since the pin is yieldable by the presence of the supporting urethane base. However, the urethane base is of such a quality that it becomes solid after it has been compressed by the movement of the pin 40 and cylindrical portion 38 downwardly to approximately the position shown in FIG. 5 wherein only the pin 40 remains above the bottom surface of the cavity 36 in the lower female die half 27.
In FIG. 8 an alternate series of splices 70* are shown interconnecting the sheets of material 10 and 12 fed from the rolls 14 and 16. A pair of die halves 72 and 74 are shown having semi-elliptical male die portions 76 and 78 which matingly engage concave semi-elliptical die cavities 80 and 82 respectively. Since the die elements 76 and 7 8 are semi-elliptical in shape they each include perpendicular end surfaces 84 and 86 which are perpendicular to the faces of the die halves 72 and 74 and move in close registering relationship as seen in FIG. 10 and thereby cut the sheets of material 10 and 12 to form deformed poritions 90 and 92 on one side and portions 94 and 96 on the opposite side of a plane extending along the line of separation of the pairs of deformed portions. It is seen that the deformed portion 90 on top has been deformed portions 90 and 92 on one side and portions portion 96 on the opposite side which has been deformed upwardly an equal distance. The male die elements 76 and 78 are mirror images of each other as are the female cavities 80 and 82.
Thus it is seen that the mechanical splices of FIGS. 5, 7 and 10 are simple to make and extremely effective in securing together a plurality of superimposed sheets of metal or other material.
I claim:
1. A machine for bonding together a pair of sheets of fiat material, comprising,
a pair of die members, one of said die members being movable towards and away from said other die member between open and closed positions, a first punch on said one die member and an elongated recess on the other die member to receive said first punch when said die members are closed,
said die members having cooperating shearing edges defined by the cooperating edges of said first punch and said elongated recess for shearing and deforming portions out of the sheets,
and a second punch in said elongated recess, said second punch and said elongated recess laterally of said second punch having a width greater than the width of said elongated recess along its substantial length, said second punch comprising an upstanding conical pin in the center of said recess and having a substantially smaller punch area than said first punch, said second punch and said pin being sufficiently recessed in said recess for spreading material laterally from the portion engaging said pin which has been sheared and deformed from the sheet of material adjacent said other die member.
2. The structure of claim 1 wherein said conical pin is truncated.
3. The structure of claim 1 wherein a yieldable means engages said second punch and normally holds said second punch in an upstanding position in said recess, and stop means for limiting the retraction of said second punch to a plane above the bottom of said recess.
References Cited UNITED STATES PATENTS 977,178 11/1910 Ferguson l131 2,288,308 6/ 1942 Williams.
2,626,687 1/1953 Williams 113-116 X 2,671,361 3/1954 Sandberg.
2,688,890 9/1954 Williams 1l3--116 X CHARLIE T. MOON, Primary Examiner US. Cl. X.R.
US819139A 1969-04-25 1969-04-25 Apparatus for bonding flat sheets Expired - Lifetime US3614819A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81913969A 1969-04-25 1969-04-25

Publications (1)

Publication Number Publication Date
US3614819A true US3614819A (en) 1971-10-26

Family

ID=25227307

Family Applications (1)

Application Number Title Priority Date Filing Date
US819139A Expired - Lifetime US3614819A (en) 1969-04-25 1969-04-25 Apparatus for bonding flat sheets

Country Status (1)

Country Link
US (1) US3614819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847959A (en) * 1985-12-28 1989-07-18 Kane-M Industrial Co., Ltd. Female unit of a snap fastener
DE4400185B4 (en) * 1993-01-08 2004-11-04 Worthington Armstrong Venture Method and device for producing a rail for suspended ceilings with two flanges and a web

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847959A (en) * 1985-12-28 1989-07-18 Kane-M Industrial Co., Ltd. Female unit of a snap fastener
DE4400185B4 (en) * 1993-01-08 2004-11-04 Worthington Armstrong Venture Method and device for producing a rail for suspended ceilings with two flanges and a web

Similar Documents

Publication Publication Date Title
US3599318A (en) Method of bonding sheets
JP3258470B2 (en) Method of joining laminated metal sheets and joining tool set
JPH0469493B2 (en)
US6052887A (en) Apparatus and method for joining sheet metal layers
US3614819A (en) Apparatus for bonding flat sheets
JPH02155524A (en) Set of tool for combining sheet-shaped metal piece
JPH11290940A (en) Manufacture of square pipe
GB2027626A (en) Process for closed extrusion shaping of a metal rod material and an apparatus therefor
GB2072057A (en) Method for manufacture of electric contact
JPH01278925A (en) Tool set for binding superposed sheet-shaped metallic workpiece
US6412765B1 (en) Mandrel mechanism for tin box manufacturing apparatus
US2312494A (en) Manufacture of separable fastener elements
US3715906A (en) Method and apparatus for forming a shadow mask frame
JPS5877722A (en) Press machine
US4510780A (en) Rotating punch die system
US1950005A (en) Reflector and method of making the same
US4483170A (en) Press machine structure
KR950011348B1 (en) Frame working devices for us tv brown tube and monitor
JPS59220227A (en) Forming method of thin plate
JP3545024B2 (en) Bending method and apparatus
US2256796A (en) Manufacture of separable fastener elements
JP2532898B2 (en) Method for manufacturing metal parts having arcuate portions at corners
JP2941144B2 (en) Caulking method
US592836A (en) smith
JP2500675B2 (en) METHOD FOR MOLDING HAT-TYPE PRODUCT HAVING EAR FLANGE AND FORMING MOLD

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEHLEN MFG. CO. A CORP OF NE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WICKES CORPORATION THE;REEL/FRAME:004272/0252

Effective date: 19840427

AS Assignment

Owner name: GLENFIELD FINANCIAL CORPORATION, 104 CARNEGIE CENT

Free format text: SECURITY INTEREST;ASSIGNOR:BEHLEN MFG. CO., A CORP OF NE.;REEL/FRAME:004610/0417

Effective date: 19860911

AS Assignment

Owner name: WASHINGTON SQUARE CAPITAL, INC., A CORP. OF MN, MI

Free format text: SECURITY INTEREST;ASSIGNORS:BEHLEN MFG. CO., A CORP. OF NE;BMC TRANSPORTATION COMPANY;REEL/FRAME:005016/0036

Effective date: 19880511

AS Assignment

Owner name: BEHLEN MFG. CO., NEBRASKA

Free format text: RELEASE OF SECURITY INTEREST, EFFECTIVE SEPT. 4, 1992.;ASSIGNOR:GLENFED FINANCIAL CORPORATION;REEL/FRAME:006209/0558

Effective date: 19920817