New! View global litigation for patent families

US3594514A - Hearing aid with piezoelectric ceramic element - Google Patents

Hearing aid with piezoelectric ceramic element Download PDF

Info

Publication number
US3594514A
US3594514A US3594514DA US3594514A US 3594514 A US3594514 A US 3594514A US 3594514D A US3594514D A US 3594514DA US 3594514 A US3594514 A US 3594514A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
element
means
piezoelectric
hearing
aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Robert C Wingrove
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets providing an auditory perception; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting, assembling or interconnection of hearing aid parts, e.g. inside tips, housing or to ossicles; Apparatus or processes therefor
    • H04R25/604Arrangements for mounting transducers
    • H04R25/606Arrangements for mounting transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window

Abstract

Implantable hearing aid apparatus having a piezoelectric ceramic element mounted adjacent to the auditory conductive system of the middle ear for imparting vibration thereto. The piezoelectric element being electrically connected to electrical circuitry for providing electrical signals representative of sound waves. The electrical circuitry and the piezoelectric element being properly encapsulated for implantation within the body.

Description

United States Patent [72] Inventor Robert C. Wingrove Minneapolis, Minn. [21] Appl. No. 489 [22] Filed Jan. 2,1970 [45] Patented July 20, I971 [73] Assignee Medtronic, Inc. I

Minneapolis, Minn. Continuation of application Ser. No. 625,042, Mar. 22, 1967, now abandoned.

[541 HEARING AID WITH PIEZOELECTRIC CERAMIC ELEMENT 13 Claims, 4 Drawing Figs.

[52] US. Cl 179/107 R, 128/1 R [51] Int. Cl H04r 25/00 [50] Field oISearch 179/107; 128/1 R [56] References Cited UNITED STATES PATENTS 2,339,148 [/1944 Carlisle I79/107 2,995,633 8/1961 Puharich et a1 179/107 3,156,787 11/1964 Puharich et a1 3,170,993 2/1965 Puharich et al.... 179/107 3,209,081 9/ 1 965 Ducote et al. 179/ 107 3,346,704 10/ I 967 Mahoney 179/107 FOREIGN PATENTS 788,099 12/ I 957 England 179/107 OTHER REFERENCES Conservative Tympanoplasty," October 1, 1966, Geze J. Jako MD. and Claus Jensen M.D., A REPORT TO THE AMERICAN ACADEMY OF OPHTALMOLOGY AND OTOLARYNAOLOGY, Page 54 1 Primary Examiner-Kathleen H. Clat'fy Assistant Examiner-Randall P. Myers Attorneyl.'ew Schwartz ABSTRACT: Implantable hearing aid apparatus having a piezoelectric ceramic element mounted adjacent to the auditory conductive system of the middle ear for imparting vibra HEARING AID WITH PIEZOELECTRIC CERAMIC ELEMENT This is a continuation of application, Ser. No. 625,042 filed Mar. 22, I967 andnow abandoned.

BACKGROUND OF THE INVENTION Hearing aids have long been known in the field of medicalelectronics. Generally these known hearing aids are mounted external to the body and apply a vibration from a device mounted adjacent the external portion of the ear drum. While satisfactory for some uses, these known hearing aids are ineffective when the auditory system of the middle ear has become inoperative or highly inefficient. Some prior art attempts have been made to provide an implantable hearing aid by which the inoperative portions of the auditory system can be bypassed. These prior art systems used the technique of converting the vibration into air acoustics, and providing the vibrated air to the inner ear. These systems have the disadvantages of being inefficient and not capable of overcoming many common problems of inoperability of the auditory system, such as when the auditory ossicles are fused as pointed out in the publication Conservative Tympanoplasty," G. .I. .lako, MD. and C. Jansen, M.D., AMERICAN ACADEMY OF OPHTALMOLOGY AND OTOLARYNGOLOGY, IN STRUCTIONS SECTION, 1966.

To overcome these disadvantages the apparatus of this invention provides a piezoelectric ceramic element which is suitable for implantation in the middle ear structure of the body. Thus mechanical vibrations can be applied directly to the auditory system, such as the auditory ossicles or the oval window, or the vibrations can be caused at a predetermined spacing from the desired element of the auditory system.

SUMMARY OF THE INVENTION Briefly described, the apparatus of this invention comprises a piezoelectric ceramic element, described herein in its preferred embodiment as a bimorphic ceramic element, capable of transducing electrical signals to mechanical vibrations. The piezoelectric element is electrically connected to an electrical circuit which provides electrical signals to the piezoelectrical element representing the sound waves desired to be heard. The electrical circuit and the piezoelectric element are encapsulated in a substance inert to body fluids and tissue to avoid harmful effects from implantation in the body. The electrical circuit can be a receiver which receives electric signals from a transmitter located external to the body, or can be a complete unit which receives the sound waves through devices totally implanted, for transmission to the piezoelectric element.

IN THE DRAWINGS FIG. 1 is a view of an embodiment of the apparatus of this invention shown completely encapsulated;

FIG. 2 is a sectional view of a portion of the embodiment of FIG. I showing an encapsulated piezoelectric ceramic element;

FIG. 3 is a schematic drawing of the circuit of the embodiment of FIG. I; and

FIG. 4 is a block diagram of an external transmitter which can be used with the circuitry of FIG. 3.

DESCRIPTION OF FIGURES In FIG. 2 there is shown a sectional view of tall 13 and a portion of stem I2. Within tail 13 there is shown a piezoelectric transducer 15, here shown as a bimorphic ceramic element, similar to bimorphic elements used in phonograph pickup apparatus well known to those skilled in the electrical art. A pair of leads I6 and I7 are each shown connected to piezoelectric element 15, and extending through stem 12. Element I5 is shown encased in an epoxy 18. Element 15 and epoxy coating 18, as well as leads 16 and 17, are shown encapsulated in a substance 19 which is substantially inert to body fluids and tissue, such as silicon rubber. Preferably, the substance 19 around tail portion I3 is sufficiently thin so as to allow efficient translation of vibratory motion from transducer 15 to the auditory system of the middle ear, as more fully described below.

With respect to FIGS. I and 2 it should be understood that for purposes of clarity the drawings are not dimensionally accurate or in scale. For example, in one embodiment of this in vention which has been successfully tested, piezoelectric element 15 was 0.3-0.5 inches long; 0.05 inches wide; and 0.025 inches thick (including both layers of a bimorphic element); epoxy coating 18 around element 15 was approximately 0.01-0.015 inches thick; and substance 19 comprised a coating of about 0.01 inches thickness. The preceding dimensions are approximate.

Referring now to FIG. 3, there is shown a signal receiving coil 20. Connected in parallel with coil 20 is a capacitor 21. A diode 22 and a resistor 23 are connected in series across capacitor 21. Lead 16 connects from piezoelectric element 15 to a point between diode 22 and one side of resistor 23. Lead 17 connects between element 15 and the other side of resistor In FIG. 4 there is shown an exemplary block diagram of a transmitter used to provide signals to coil 20 of FIG. 3. In FIG, 4 there is shown a microphone 24, the output of which enters an audio preamplifier 25. Preamplifier 25 then provides a signal to a modulator 26 which in turn presents the modulated signal to an R-F oscillator 27. The output of oscillator 27 is transmitted through a transmitting coil 28 to coil 20 of FIG. 3.

OPERATION In the preferred embodiment disclosed herein, piezoelectric element 15 is a bimorphic element. That is, it is a ceramic element composed of two layers. When a voltage is applied between the two layers, that is across the bimorphic element, one of the layers tends to lengthen while the other tends to contract. Thus a bending is accomplished. It thus becomes apparent that the application of a varying voltage signal, such as one representing sound waves, will cause element 15 to bend or vibrate in response to the varying voltage signal. Element 15 is chosen to respond, or vibrate, in the audio frequency range, and is thus uniquely adapted to act as an electricalmechanical transducer in an implanted hearing aid.

The mode of vibration or bending is similar to that of a common diving board when the element used is substantially rectangular, as that shown in the preferred embodiment. As mentioned above, an element I5 can be chosen such that the frequency response covers the audio frequency range. The amount of bending or vibration is relatively small and is proportional to the amplitude of the applied signal. The bending force of an element such as element 15 is related to atomic crystal binding forces, and is thus relatively large and can overcome damping effects such as may be caused by epoxy coating 18 and silicon rubber coating 19.

It should be noted that epoxy coating 18 is shown here as part of the preferred embodiment for its function of adding further protection to the implanted device of this invention, such as added moisture protection. The apparatus of this invention will operate without epoxy coating 18. It should further be noted that greater efficiency of operation of the apparatus of this invention occurs when the portion of substance 19 encapsulating element 15 and its coating 18 in tail 13 of the apparatus is relatively thin, to avoid undue damping ef fects.

When mounting the apparatus 10 in a body, it is preferable to firmly mount one end of element (tail 13) in an area that can provide a stable platform, such as the mastoid bone. The other end of element 15 is then placed adjacent one of the elements of the auditory system of the middle ear, such as one of the auditory ossicles or the oval window. The free or vibrating end of element [5 can actually touch, or can be spaced from, the portion of the auditory system, as required. Head 11 can be mounted, for example, in the antrum cell of the mastoid, from which stem 12 can extend to tail 13 in the middle ear.

Referring to FIGS. 3 and 4, it can be seen that microphone 24 will transduce sound waves into electrical signals which will be amplified in preamplifier 25, modulated in modulator 26, and then passed on to R-F oscillator 27 whence it will be transmitted by coil 28. The apparatus of FIG. 4 is in this preferred embodiment intended to be located external to the body. However, as will be described below, it is possible to incorporate this entire hearing aid within an implantable device.

Coil 28 will transmit a modulated RF signal which will be picked up by the circuit comprising receiving coil and capacitor 21. The resulting voltage drop across capacitor 21 will be felt across diode 22 and resistor 23. Leads 16 and 17 connect element 15 across resistor 23. Diode 22 provides rectification or detection of the RF signal, and the combination of resistor 23 with the inherent capacitance of element 15 provides filtering of the RF signal leaving the resultant audio frequency modulation signal applied across element 15. Thus, as the transmitted signal varies in accordance with the varying sound waves picked up by microphone 24, a proportional varying voltage signal will be felt across element 15. This will cause bending or vibration of element 15 which will be mechanically transmitted directly to the auditory ossicle or oval window or other member of the auditory system of the middle ear.

If desired, and completely in keeping with the spirit of this invention, microphone 24 and amplifier 25 can be mounted within head 11 ofdevice 10 so that the entire hearing aid is implanted. This will remove the need for transmission and receiving coils 28 and 20, as well as modulator 26 and oscillator 27 and the associated electronic components described above, as will be obvious to those skilled in the art. Also, because a piezoelectric element such as element 15 can also be used as a microphone, microphone 24 can comprise another piezoelectric element, such as a bimorphic element, which transduces from mechanical to electrical signals.

The apparatus of this invention can also be used when it is necessary to remove completely the auditory ossicles of the middle car. This is a further example of the situation where it may be desirable to place vibrating element 15 adjacent the oval window.

ln summary, the apparatus of this invention provides a new and important hearing aid capable of implantation in the body, for imparting vibrations to one or more members of the auditory system of the middle car by means ofa piezoelectric element.

I claim:

1. In an implantable hearing aid including means for providing electrical signals representative of and derived from sound waves, piezoelectric ceramic means connected to receive the electrical signals, and further means operatively connected to said piezoelectric ceramic means and adapted to be mounted to contact a portion ofa middle ear of an animal.

2. The hearing aid of claim 1 in which said piezoelectric ceramic means comprises a bimorphic element.

3. The hearing aid of claim 1 in which said further means is adapted to be mounted to contact the auditory ossicles.

4. The hearing aid ol'claim l in which said further means is adapted to be mounted to contact the oval window.

5. The hearing aid of claim 1 in which said piezoelectric ceramic means is substantially rectangular and said piezoelectric ceramic means has one end adapted to be mounted to the mastoid bone In an ear of an animal, the other end connected to said further means adapted to extend to contact the portion of the middle ear of an animal for imparting vibrations thereto.

6. An implantable hearing aid comprising: electrical circuit means for providing electrical signals representative of sound waves; piezoelectric ceramic means for converting the electrical signals to mechanical vibrations; electrically conductive means connecting said circuit means to said piezoelectric means; all said means being encapsulated in a substance substantially inert to body fluids and tissue; said encapsulated piezoelectric ceramic means adapted to be mounted to contact a portion of the structure of the ear of an animal for imparting vibrations thereto.

7. The hearing aid of claim 6 in which said encapsulated piezoelectric ceramic means is operatively connected to further means adapted to contact a portion of the structure of the ear of an animal.

8. The hearing aid of claim 6 in which said piezoelectric ceramic means comprises a bimorphic element.

9. The hearing aid of claim 8 in which said bimorphic element is substantially rectangular and said bimorphic element has one end adapted to be mounted to the mastoid bone in an ear of an animal and the other end adapted to extend to contact a portion of the middle ear of an animal.

10. The hearing aid of claim 6 in which said electrical cir cuit means comprises electrical receiver means for receiving electrical signals from a transmitter external to the body in which the hearing aid is implanted.

11. The hearing aid of claim 6 in which said electrical circuit means includes mechanical-electrical transducer means for transforming sound waves into electrical signals.

12. The hearing aid of claim 11 in which said transducer means comprises second piezoelectric ceramic means.

13. The hearing aid of claim 12 in which said second piezoelectric ceramic means comprises a second bimorphic element.

Claims (13)

1. In an implantable hearing aid including means for providing electrical signals representative of and derived from sound waves, piezoelectric ceramic means connected to receive the electrical signals, and further means operatively connected to said piezoelectric ceramic means and adapted to be mounted to contact a portion of a middle ear of an animal.
2. The hearing aid of claim 1 in which said piezoelectric ceramic means comprises a bimorphic element.
3. The hearing aid of claim 1 in which said further means is adapted to be mounted to contact the auditory ossicles.
4. The hearing aid of claim 1 in which said further means is adapted to be mounted to contact the oval window.
5. The hearing aid of claim 1 in which said piezoelectric ceramic means is substantially rectangular and said piezoelectric ceramic means has one end adapted to be mounted to the mastoid bone in an ear of an animal, the other end connected to said further means adapted to extend to contact the portion of the middle ear of an animal for imparting vibrations thereto.
6. An implantable hearing aid comprising: electrical circuit means for providing electrical signals representative of sound waves; piezoelectric ceramic means for converting the electrical signals to mechanical vibrations; electrically conductive means connecting said circuit means to said piezoelectric means; all said means being encapsulated in a substance substantially inert to body fluids and tissue; said encapsulated piezoelectric ceramic means adapted to be mounted to contact a portion of the structure of the ear of an animal for imparting vibrations thereto.
7. The hearing aid of claim 6 in which said encapsulated piezoelectric ceramic means is operatively connected to further means adapted to contact a portion of the structure of the ear of an animal.
8. The hearing aid of claim 6 in which said piezoelectric ceramic means comprises a bimorphic element.
9. The hearing aid of claim 8 in which said bimorphic element is substantially rectangular and said bimorphic element has one end adapted to be mounted to the mastoid bone in an ear of an animal and the other end adapted to extend to contact a portion of the middle ear of an animal.
10. The hearing aid of claim 6 in which said electrical circuit means comprises electrical receiver means for receiving electrical signals from a transmitter external to the body in which the hearing aid is implanted.
11. The hearing aid of claim 6 in which said electrical circuit means includes mechanical-electrical transducer means for transforming sound waves into electrical signals.
12. The hearing aid of claim 11 in which said transducer means comprises second piezoelectric ceramic means.
13. The hearing aid of claim 12 in which said second piezoelectric ceramic means comprises a second bimorphic element.
US3594514A 1970-01-02 1970-01-02 Hearing aid with piezoelectric ceramic element Expired - Lifetime US3594514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US48970 true 1970-01-02 1970-01-02

Publications (1)

Publication Number Publication Date
US3594514A true US3594514A (en) 1971-07-20

Family

ID=21691735

Family Applications (1)

Application Number Title Priority Date Filing Date
US3594514A Expired - Lifetime US3594514A (en) 1970-01-02 1970-01-02 Hearing aid with piezoelectric ceramic element

Country Status (1)

Country Link
US (1) US3594514A (en)

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764748A (en) * 1972-05-19 1973-10-09 J Branch Implanted hearing aids
US4498461A (en) * 1981-12-01 1985-02-12 Bo Hakansson Coupling to a bone-anchored hearing aid
US4606329A (en) * 1985-05-22 1986-08-19 Xomed, Inc. Implantable electromagnetic middle-ear bone-conduction hearing aid device
FR2582216A1 (en) * 1985-05-23 1986-11-28 Bristol Myers Co hearing aid has direct bone conduction
US4628907A (en) * 1984-03-22 1986-12-16 Epley John M Direct contact hearing aid apparatus
US4982434A (en) * 1989-05-30 1991-01-01 Center For Innovative Technology Supersonic bone conduction hearing aid and method
US5277694A (en) * 1991-02-13 1994-01-11 Implex Gmbh Electromechanical transducer for implantable hearing aids
US5360388A (en) * 1992-10-09 1994-11-01 The University Of Virginia Patents Foundation Round window electromagnetic implantable hearing aid
US5411467A (en) * 1989-06-02 1995-05-02 Implex Gmbh Spezialhorgerate Implantable hearing aid
FR2712800A1 (en) * 1993-11-25 1995-06-02 Dumon Thibaud Hearing aid with piezoelectric vibrator implantable in medium ear
US5460593A (en) * 1993-08-25 1995-10-24 Audiodontics, Inc. Method and apparatus for imparting low amplitude vibrations to bone and similar hard tissue
US5498226A (en) * 1990-03-05 1996-03-12 Lenkauskas; Edmundas Totally implanted hearing device
US5554096A (en) * 1993-07-01 1996-09-10 Symphonix Implantable electromagnetic hearing transducer
US5624376A (en) * 1993-07-01 1997-04-29 Symphonix Devices, Inc. Implantable and external hearing systems having a floating mass transducer
WO1998006236A1 (en) * 1996-08-07 1998-02-12 St. Croix Medical, Inc. Middle ear transducer
US5762583A (en) * 1996-08-07 1998-06-09 St. Croix Medical, Inc. Piezoelectric film transducer
US5772575A (en) * 1995-09-22 1998-06-30 S. George Lesinski Implantable hearing aid
US5800336A (en) * 1993-07-01 1998-09-01 Symphonix Devices, Inc. Advanced designs of floating mass transducers
US5836863A (en) * 1996-08-07 1998-11-17 St. Croix Medical, Inc. Hearing aid transducer support
US5842967A (en) * 1996-08-07 1998-12-01 St. Croix Medical, Inc. Contactless transducer stimulation and sensing of ossicular chain
WO1999008480A2 (en) * 1997-08-07 1999-02-18 St. Croix Medical, Inc. Middle ear transducer
US5881158A (en) * 1996-05-24 1999-03-09 United States Surgical Corporation Microphones for an implantable hearing aid
US5879283A (en) * 1996-08-07 1999-03-09 St. Croix Medical, Inc. Implantable hearing system having multiple transducers
US5894651A (en) * 1990-10-29 1999-04-20 Trw Inc. Method for encapsulating a ceramic device for embedding in composite structures
US5897486A (en) * 1993-07-01 1999-04-27 Symphonix Devices, Inc. Dual coil floating mass transducers
US5913815A (en) * 1993-07-01 1999-06-22 Symphonix Devices, Inc. Bone conducting floating mass transducers
US5951601A (en) * 1996-03-25 1999-09-14 Lesinski; S. George Attaching an implantable hearing aid microactuator
US5977689A (en) * 1996-07-19 1999-11-02 Neukermans; Armand P. Biocompatible, implantable hearing aid microactuator
US5984859A (en) * 1993-01-25 1999-11-16 Lesinski; S. George Implantable auditory system components and system
US5997466A (en) * 1996-08-07 1999-12-07 St. Croix Medical, Inc. Implantable hearing system having multiple transducers
US6001129A (en) * 1996-08-07 1999-12-14 St. Croix Medical, Inc. Hearing aid transducer support
US6010532A (en) * 1996-11-25 2000-01-04 St. Croix Medical, Inc. Dual path implantable hearing assistance device
US6137889A (en) * 1998-05-27 2000-10-24 Insonus Medical, Inc. Direct tympanic membrane excitation via vibrationally conductive assembly
US6171229B1 (en) 1996-08-07 2001-01-09 St. Croix Medical, Inc. Ossicular transducer attachment for an implantable hearing device
WO2001050815A1 (en) 1999-12-30 2001-07-12 Insonus Medical, Inc. Direct tympanic drive via a floating filament assembly
US6261224B1 (en) 1996-08-07 2001-07-17 St. Croix Medical, Inc. Piezoelectric film transducer for cochlear prosthetic
US6264603B1 (en) 1997-08-07 2001-07-24 St. Croix Medical, Inc. Middle ear vibration sensor using multiple transducers
US6277148B1 (en) 1999-02-11 2001-08-21 Soundtec, Inc. Middle ear magnet implant, attachment device and method, and test instrument and method
US6315710B1 (en) 1997-07-21 2001-11-13 St. Croix Medical, Inc. Hearing system with middle ear transducer mount
US6436028B1 (en) 1999-12-28 2002-08-20 Soundtec, Inc. Direct drive movement of body constituent
US6540662B2 (en) 1998-06-05 2003-04-01 St. Croix Medical, Inc. Method and apparatus for reduced feedback in implantable hearing assistance systems
US6629922B1 (en) 1999-10-29 2003-10-07 Soundport Corporation Flextensional output actuators for surgically implantable hearing aids
US6643378B2 (en) 2001-03-02 2003-11-04 Daniel R. Schumaier Bone conduction hearing aid
US6676592B2 (en) 1993-07-01 2004-01-13 Symphonix Devices, Inc. Dual coil floating mass transducers
US6689045B2 (en) 1998-09-24 2004-02-10 St. Croix Medical, Inc. Method and apparatus for improving signal quality in implantable hearing systems
US6726618B2 (en) 2001-04-12 2004-04-27 Otologics, Llc Hearing aid with internal acoustic middle ear transducer
US6730015B2 (en) 2001-06-01 2004-05-04 Mike Schugt Flexible transducer supports
US6914994B1 (en) 2001-09-07 2005-07-05 Insound Medical, Inc. Canal hearing device with transparent mode
US6940988B1 (en) 1998-11-25 2005-09-06 Insound Medical, Inc. Semi-permanent canal hearing device
US20050203557A1 (en) * 2001-10-30 2005-09-15 Lesinski S. G. Implantation method for a hearing aid microactuator implanted into the cochlea
US20050259840A1 (en) * 1999-06-08 2005-11-24 Insound Medical, Inc. Precision micro-hole for extended life batteries
US20060050914A1 (en) * 1998-11-25 2006-03-09 Insound Medical, Inc. Sealing retainer for extended wear hearing devices
US20060058573A1 (en) * 2004-09-16 2006-03-16 Neisz Johann J Method and apparatus for vibrational damping of implantable hearing aid components
US7016504B1 (en) 1999-09-21 2006-03-21 Insonus Medical, Inc. Personal hearing evaluator
US20070003087A1 (en) * 2005-06-30 2007-01-04 Insound Medical, Inc. Hearing aid microphone protective barrier
US20070086608A1 (en) * 2005-10-18 2007-04-19 Nec Tokin Corporation Bone-conduction microphone and method of manufacturing the same
US7302071B2 (en) 2004-09-15 2007-11-27 Schumaier Daniel R Bone conduction hearing assistance device
US20090043149A1 (en) * 2005-01-13 2009-02-12 Sentient Medical Limited Hearing implant
US20090074220A1 (en) * 2007-08-14 2009-03-19 Insound Medical, Inc. Combined microphone and receiver assembly for extended wear canal hearing devices
US20090245555A1 (en) * 2008-03-31 2009-10-01 Cochlear Limited Piezoelectric bone conduction device having enhanced transducer stroke
US7668325B2 (en) 2005-05-03 2010-02-23 Earlens Corporation Hearing system having an open chamber for housing components and reducing the occlusion effect
US20100056851A1 (en) * 2008-09-02 2010-03-04 Georgia Tech Research Corporation Piezoelectric Nanowire Vibration Sensors
US20100171095A1 (en) * 2008-07-07 2010-07-08 Georgia Tech Research Corporation Super Sensitive UV Detector Using Polymer Functionalized Nanobelts
US20100179375A1 (en) * 2007-05-24 2010-07-15 Cochlear Limited Vibrator for bone conducting hearing devices
US7771642B2 (en) * 2002-05-20 2010-08-10 Novartis Ag Methods of making an apparatus for providing aerosol for medical treatment
DE102009014770A1 (en) 2009-03-25 2010-09-30 Cochlear Ltd., Lane Cove vibrator
DE102009014772A1 (en) 2009-03-25 2010-09-30 Cochlear Ltd., Lane Cove hearing aid
US20100322452A1 (en) * 2004-02-05 2010-12-23 Insound Medical, Inc. Contamination resistant ports for hearing devices
US7867160B2 (en) 2004-10-12 2011-01-11 Earlens Corporation Systems and methods for photo-mechanical hearing transduction
US20110106254A1 (en) * 2007-03-03 2011-05-05 Sentient Medical Limited Ossicular replacement prosthesis
US20110268303A1 (en) * 2010-04-29 2011-11-03 Cochlear Limited Bone conduction device having limited range of travel
US8295523B2 (en) 2007-10-04 2012-10-23 SoundBeam LLC Energy delivery and microphone placement methods for improved comfort in an open canal hearing aid
US8396239B2 (en) 2008-06-17 2013-03-12 Earlens Corporation Optical electro-mechanical hearing devices with combined power and signal architectures
US8401214B2 (en) 2009-06-18 2013-03-19 Earlens Corporation Eardrum implantable devices for hearing systems and methods
US8401212B2 (en) 2007-10-12 2013-03-19 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US8682016B2 (en) 2011-11-23 2014-03-25 Insound Medical, Inc. Canal hearing devices and batteries for use with same
US8715154B2 (en) 2009-06-24 2014-05-06 Earlens Corporation Optically coupled cochlear actuator systems and methods
US8715152B2 (en) 2008-06-17 2014-05-06 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US8715153B2 (en) 2009-06-22 2014-05-06 Earlens Corporation Optically coupled bone conduction systems and methods
US8761423B2 (en) 2011-11-23 2014-06-24 Insound Medical, Inc. Canal hearing devices and batteries for use with same
US8808906B2 (en) 2011-11-23 2014-08-19 Insound Medical, Inc. Canal hearing devices and batteries for use with same
US8824715B2 (en) 2008-06-17 2014-09-02 Earlens Corporation Optical electro-mechanical hearing devices with combined power and signal architectures
US8845705B2 (en) 2009-06-24 2014-09-30 Earlens Corporation Optical cochlear stimulation devices and methods
US8908891B2 (en) 2011-03-09 2014-12-09 Audiodontics, Llc Hearing aid apparatus and method
WO2015077786A1 (en) * 2013-11-25 2015-05-28 Massachusetts Eye & Ear Infirmary Piezoelectric sensors for hearing aids
US9055379B2 (en) 2009-06-05 2015-06-09 Earlens Corporation Optically coupled acoustic middle ear implant systems and methods
US9107013B2 (en) 2011-04-01 2015-08-11 Cochlear Limited Hearing prosthesis with a piezoelectric actuator
US9282395B1 (en) 2013-10-17 2016-03-08 Google Inc. Flexible transducer for soft-tissue and acoustic audio production
US9392377B2 (en) 2010-12-20 2016-07-12 Earlens Corporation Anatomically customized ear canal hearing apparatus
US9544700B2 (en) 2009-06-15 2017-01-10 Earlens Corporation Optically coupled active ossicular replacement prosthesis
US9604325B2 (en) 2011-11-23 2017-03-28 Phonak, LLC Canal hearing devices and batteries for use with same
US9686623B2 (en) 2007-05-11 2017-06-20 Sentient Medical Limited Middle ear implant
US9749758B2 (en) 2008-09-22 2017-08-29 Earlens Corporation Devices and methods for hearing
US9924276B2 (en) 2014-11-26 2018-03-20 Earlens Corporation Adjustable venting for hearing instruments
US9930458B2 (en) 2014-07-14 2018-03-27 Earlens Corporation Sliding bias and peak limiting for optical hearing devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339148A (en) * 1942-12-29 1944-01-11 Sonotone Corp Bone conduction receiver
GB788099A (en) * 1954-03-18 1957-12-23 Fortiphone Ltd Improvements in and relating to hearing aids
US2995633A (en) * 1958-09-25 1961-08-08 Henry K Puharich Means for aiding hearing
US3156787A (en) * 1962-10-23 1964-11-10 Henry K Puharich Solid state hearing system
US3170993A (en) * 1962-01-08 1965-02-23 Henry K Puharich Means for aiding hearing by electrical stimulation of the facial nerve system
US3209081A (en) * 1961-10-02 1965-09-28 Behrman A Ducote Subcutaneously implanted electronic device
US3346704A (en) * 1963-12-27 1967-10-10 Jack L Mahoney Means for aiding hearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339148A (en) * 1942-12-29 1944-01-11 Sonotone Corp Bone conduction receiver
GB788099A (en) * 1954-03-18 1957-12-23 Fortiphone Ltd Improvements in and relating to hearing aids
US2995633A (en) * 1958-09-25 1961-08-08 Henry K Puharich Means for aiding hearing
US3209081A (en) * 1961-10-02 1965-09-28 Behrman A Ducote Subcutaneously implanted electronic device
US3170993A (en) * 1962-01-08 1965-02-23 Henry K Puharich Means for aiding hearing by electrical stimulation of the facial nerve system
US3156787A (en) * 1962-10-23 1964-11-10 Henry K Puharich Solid state hearing system
US3346704A (en) * 1963-12-27 1967-10-10 Jack L Mahoney Means for aiding hearing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Conservative Tympanoplasty, October 1, 1966, Geze J. Jako M.D. and Claus Jensen M.D., A REPORT TO THE AMERICAN ACADEMY OF OPHTALMOLOGY AND OTOLARYNAOLOGY, Page 54 *

Cited By (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764748A (en) * 1972-05-19 1973-10-09 J Branch Implanted hearing aids
US4498461A (en) * 1981-12-01 1985-02-12 Bo Hakansson Coupling to a bone-anchored hearing aid
US4628907A (en) * 1984-03-22 1986-12-16 Epley John M Direct contact hearing aid apparatus
US4606329A (en) * 1985-05-22 1986-08-19 Xomed, Inc. Implantable electromagnetic middle-ear bone-conduction hearing aid device
FR2582216A1 (en) * 1985-05-23 1986-11-28 Bristol Myers Co hearing aid has direct bone conduction
WO1992012605A1 (en) * 1989-05-30 1992-07-23 Center For Innovative Technology Supersonic bone conduction hearing aid and method
US4982434A (en) * 1989-05-30 1991-01-01 Center For Innovative Technology Supersonic bone conduction hearing aid and method
US5411467A (en) * 1989-06-02 1995-05-02 Implex Gmbh Spezialhorgerate Implantable hearing aid
US5498226A (en) * 1990-03-05 1996-03-12 Lenkauskas; Edmundas Totally implanted hearing device
US5894651A (en) * 1990-10-29 1999-04-20 Trw Inc. Method for encapsulating a ceramic device for embedding in composite structures
US5277694A (en) * 1991-02-13 1994-01-11 Implex Gmbh Electromechanical transducer for implantable hearing aids
US5360388A (en) * 1992-10-09 1994-11-01 The University Of Virginia Patents Foundation Round window electromagnetic implantable hearing aid
US5984859A (en) * 1993-01-25 1999-11-16 Lesinski; S. George Implantable auditory system components and system
US5857958A (en) * 1993-07-01 1999-01-12 Symphonix Devices, Inc. Implantable and external hearing systems having a floating mass transducer
US5624376A (en) * 1993-07-01 1997-04-29 Symphonix Devices, Inc. Implantable and external hearing systems having a floating mass transducer
US5897486A (en) * 1993-07-01 1999-04-27 Symphonix Devices, Inc. Dual coil floating mass transducers
US5800336A (en) * 1993-07-01 1998-09-01 Symphonix Devices, Inc. Advanced designs of floating mass transducers
US5554096A (en) * 1993-07-01 1996-09-10 Symphonix Implantable electromagnetic hearing transducer
US6676592B2 (en) 1993-07-01 2004-01-13 Symphonix Devices, Inc. Dual coil floating mass transducers
US5913815A (en) * 1993-07-01 1999-06-22 Symphonix Devices, Inc. Bone conducting floating mass transducers
US6475134B1 (en) 1993-07-01 2002-11-05 Symphonix Devices, Inc. Dual coil floating mass transducers
US5460593A (en) * 1993-08-25 1995-10-24 Audiodontics, Inc. Method and apparatus for imparting low amplitude vibrations to bone and similar hard tissue
FR2712800A1 (en) * 1993-11-25 1995-06-02 Dumon Thibaud Hearing aid with piezoelectric vibrator implantable in medium ear
US5772575A (en) * 1995-09-22 1998-06-30 S. George Lesinski Implantable hearing aid
US5951601A (en) * 1996-03-25 1999-09-14 Lesinski; S. George Attaching an implantable hearing aid microactuator
US5881158A (en) * 1996-05-24 1999-03-09 United States Surgical Corporation Microphones for an implantable hearing aid
US5977689A (en) * 1996-07-19 1999-11-02 Neukermans; Armand P. Biocompatible, implantable hearing aid microactuator
US6153966A (en) * 1996-07-19 2000-11-28 Neukermans; Armand P. Biocompatible, implantable hearing aid microactuator
WO1998006236A1 (en) * 1996-08-07 1998-02-12 St. Croix Medical, Inc. Middle ear transducer
US5879283A (en) * 1996-08-07 1999-03-09 St. Croix Medical, Inc. Implantable hearing system having multiple transducers
US5836863A (en) * 1996-08-07 1998-11-17 St. Croix Medical, Inc. Hearing aid transducer support
US6261224B1 (en) 1996-08-07 2001-07-17 St. Croix Medical, Inc. Piezoelectric film transducer for cochlear prosthetic
US5997466A (en) * 1996-08-07 1999-12-07 St. Croix Medical, Inc. Implantable hearing system having multiple transducers
US6001129A (en) * 1996-08-07 1999-12-14 St. Croix Medical, Inc. Hearing aid transducer support
US6005955A (en) * 1996-08-07 1999-12-21 St. Croix Medical, Inc. Middle ear transducer
US5762583A (en) * 1996-08-07 1998-06-09 St. Croix Medical, Inc. Piezoelectric film transducer
US6050933A (en) * 1996-08-07 2000-04-18 St. Croix Medical, Inc. Hearing aid transducer support
US20040181117A1 (en) * 1996-08-07 2004-09-16 Adams Theodore P. Piezoelectric film transducer
US6171229B1 (en) 1996-08-07 2001-01-09 St. Croix Medical, Inc. Ossicular transducer attachment for an implantable hearing device
US5842967A (en) * 1996-08-07 1998-12-01 St. Croix Medical, Inc. Contactless transducer stimulation and sensing of ossicular chain
US6488616B1 (en) 1996-08-07 2002-12-03 St. Croix Medical, Inc. Hearing aid transducer support
US6010532A (en) * 1996-11-25 2000-01-04 St. Croix Medical, Inc. Dual path implantable hearing assistance device
US6491722B1 (en) 1996-11-25 2002-12-10 St. Croix Medical, Inc. Dual path implantable hearing assistance device
US6315710B1 (en) 1997-07-21 2001-11-13 St. Croix Medical, Inc. Hearing system with middle ear transducer mount
WO1999008480A2 (en) * 1997-08-07 1999-02-18 St. Croix Medical, Inc. Middle ear transducer
US6264603B1 (en) 1997-08-07 2001-07-24 St. Croix Medical, Inc. Middle ear vibration sensor using multiple transducers
WO1999008480A3 (en) * 1997-08-07 1999-04-29 St Croix Medical Inc Middle ear transducer
US6137889A (en) * 1998-05-27 2000-10-24 Insonus Medical, Inc. Direct tympanic membrane excitation via vibrationally conductive assembly
US6540662B2 (en) 1998-06-05 2003-04-01 St. Croix Medical, Inc. Method and apparatus for reduced feedback in implantable hearing assistance systems
US6755778B2 (en) 1998-06-05 2004-06-29 St. Croix Medical, Inc. Method and apparatus for reduced feedback in implantable hearing assistance systems
US6689045B2 (en) 1998-09-24 2004-02-10 St. Croix Medical, Inc. Method and apparatus for improving signal quality in implantable hearing systems
US6940988B1 (en) 1998-11-25 2005-09-06 Insound Medical, Inc. Semi-permanent canal hearing device
US7664282B2 (en) 1998-11-25 2010-02-16 Insound Medical, Inc. Sealing retainer for extended wear hearing devices
US7424124B2 (en) 1998-11-25 2008-09-09 Insound Medical, Inc. Semi-permanent canal hearing device
US8503707B2 (en) 1998-11-25 2013-08-06 Insound Medical, Inc. Sealing retainer for extended wear hearing devices
US20060050914A1 (en) * 1998-11-25 2006-03-09 Insound Medical, Inc. Sealing retainer for extended wear hearing devices
US20100098281A1 (en) * 1998-11-25 2010-04-22 Insound Medical, Inc. Sealing retainer for extended wear hearing devices
US8538055B2 (en) 1998-11-25 2013-09-17 Insound Medical, Inc. Semi-permanent canal hearing device and insertion method
US20080137892A1 (en) * 1998-11-25 2008-06-12 Insound Medical, Inc. Semi-permanent canal hearing device and insertion method
US6277148B1 (en) 1999-02-11 2001-08-21 Soundtec, Inc. Middle ear magnet implant, attachment device and method, and test instrument and method
US8666101B2 (en) 1999-06-08 2014-03-04 Insound Medical, Inc. Precision micro-hole for extended life batteries
US20050259840A1 (en) * 1999-06-08 2005-11-24 Insound Medical, Inc. Precision micro-hole for extended life batteries
US20080069386A1 (en) * 1999-06-08 2008-03-20 Insound Medical, Inc. Precision micro-hole for extended life batteries
US8068630B2 (en) 1999-06-08 2011-11-29 Insound Medical, Inc. Precision micro-hole for extended life batteries
US20060210090A1 (en) * 1999-09-21 2006-09-21 Insound Medical, Inc. Personal hearing evaluator
US7016504B1 (en) 1999-09-21 2006-03-21 Insonus Medical, Inc. Personal hearing evaluator
US6629922B1 (en) 1999-10-29 2003-10-07 Soundport Corporation Flextensional output actuators for surgically implantable hearing aids
US6436028B1 (en) 1999-12-28 2002-08-20 Soundtec, Inc. Direct drive movement of body constituent
WO2001050815A1 (en) 1999-12-30 2001-07-12 Insonus Medical, Inc. Direct tympanic drive via a floating filament assembly
US6940989B1 (en) * 1999-12-30 2005-09-06 Insound Medical, Inc. Direct tympanic drive via a floating filament assembly
US6643378B2 (en) 2001-03-02 2003-11-04 Daniel R. Schumaier Bone conduction hearing aid
US6726618B2 (en) 2001-04-12 2004-04-27 Otologics, Llc Hearing aid with internal acoustic middle ear transducer
US6730015B2 (en) 2001-06-01 2004-05-04 Mike Schugt Flexible transducer supports
US20060002574A1 (en) * 2001-09-07 2006-01-05 Insound Medical, Inc. Canal hearing device with transparent mode
US6914994B1 (en) 2001-09-07 2005-07-05 Insound Medical, Inc. Canal hearing device with transparent mode
US20050203557A1 (en) * 2001-10-30 2005-09-15 Lesinski S. G. Implantation method for a hearing aid microactuator implanted into the cochlea
US8876689B2 (en) 2001-10-30 2014-11-04 Otokinetics Inc. Hearing aid microactuator
US8147544B2 (en) 2001-10-30 2012-04-03 Otokinetics Inc. Therapeutic appliance for cochlea
US7771642B2 (en) * 2002-05-20 2010-08-10 Novartis Ag Methods of making an apparatus for providing aerosol for medical treatment
US8457336B2 (en) 2004-02-05 2013-06-04 Insound Medical, Inc. Contamination resistant ports for hearing devices
US20100322452A1 (en) * 2004-02-05 2010-12-23 Insound Medical, Inc. Contamination resistant ports for hearing devices
US9226083B2 (en) 2004-07-28 2015-12-29 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US7302071B2 (en) 2004-09-15 2007-11-27 Schumaier Daniel R Bone conduction hearing assistance device
US20060058573A1 (en) * 2004-09-16 2006-03-16 Neisz Johann J Method and apparatus for vibrational damping of implantable hearing aid components
US7867160B2 (en) 2004-10-12 2011-01-11 Earlens Corporation Systems and methods for photo-mechanical hearing transduction
US8696541B2 (en) 2004-10-12 2014-04-15 Earlens Corporation Systems and methods for photo-mechanical hearing transduction
US8864645B2 (en) * 2005-01-13 2014-10-21 Sentient Medical Limited Hearing implant
US20090043149A1 (en) * 2005-01-13 2009-02-12 Sentient Medical Limited Hearing implant
US9154891B2 (en) 2005-05-03 2015-10-06 Earlens Corporation Hearing system having improved high frequency response
US7668325B2 (en) 2005-05-03 2010-02-23 Earlens Corporation Hearing system having an open chamber for housing components and reducing the occlusion effect
US7876919B2 (en) 2005-06-30 2011-01-25 Insound Medical, Inc. Hearing aid microphone protective barrier
US20110085688A1 (en) * 2005-06-30 2011-04-14 Insound Medical, Inc. Hearing aid microphone protective barrier
US8494200B2 (en) 2005-06-30 2013-07-23 Insound Medical, Inc. Hearing aid microphone protective barrier
US20070003087A1 (en) * 2005-06-30 2007-01-04 Insound Medical, Inc. Hearing aid microphone protective barrier
US20070086608A1 (en) * 2005-10-18 2007-04-19 Nec Tokin Corporation Bone-conduction microphone and method of manufacturing the same
US8920496B2 (en) 2007-03-03 2014-12-30 Sentient Medical Limited Ossicular replacement prosthesis
US20110106254A1 (en) * 2007-03-03 2011-05-05 Sentient Medical Limited Ossicular replacement prosthesis
US9686623B2 (en) 2007-05-11 2017-06-20 Sentient Medical Limited Middle ear implant
US8620015B2 (en) 2007-05-24 2013-12-31 Cochlear Limited Vibrator for bone conducting hearing devices
US20100179375A1 (en) * 2007-05-24 2010-07-15 Cochlear Limited Vibrator for bone conducting hearing devices
US9071914B2 (en) 2007-08-14 2015-06-30 Insound Medical, Inc. Combined microphone and receiver assembly for extended wear canal hearing devices
US20090074220A1 (en) * 2007-08-14 2009-03-19 Insound Medical, Inc. Combined microphone and receiver assembly for extended wear canal hearing devices
US8295523B2 (en) 2007-10-04 2012-10-23 SoundBeam LLC Energy delivery and microphone placement methods for improved comfort in an open canal hearing aid
US8401212B2 (en) 2007-10-12 2013-03-19 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US8150083B2 (en) 2008-03-31 2012-04-03 Cochlear Limited Piezoelectric bone conduction device having enhanced transducer stroke
US20090245555A1 (en) * 2008-03-31 2009-10-01 Cochlear Limited Piezoelectric bone conduction device having enhanced transducer stroke
US9049528B2 (en) 2008-06-17 2015-06-02 Earlens Corporation Optical electro-mechanical hearing devices with combined power and signal architectures
US8715152B2 (en) 2008-06-17 2014-05-06 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US8824715B2 (en) 2008-06-17 2014-09-02 Earlens Corporation Optical electro-mechanical hearing devices with combined power and signal architectures
US9591409B2 (en) 2008-06-17 2017-03-07 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US8396239B2 (en) 2008-06-17 2013-03-12 Earlens Corporation Optical electro-mechanical hearing devices with combined power and signal architectures
US20100171095A1 (en) * 2008-07-07 2010-07-08 Georgia Tech Research Corporation Super Sensitive UV Detector Using Polymer Functionalized Nanobelts
US8294141B2 (en) 2008-07-07 2012-10-23 Georgia Tech Research Corporation Super sensitive UV detector using polymer functionalized nanobelts
US20100056851A1 (en) * 2008-09-02 2010-03-04 Georgia Tech Research Corporation Piezoelectric Nanowire Vibration Sensors
US8758217B2 (en) 2008-09-02 2014-06-24 Georgia Tech Research Corporation Piezoelectric nanowire vibration sensors
US9749758B2 (en) 2008-09-22 2017-08-29 Earlens Corporation Devices and methods for hearing
DE102009014770A1 (en) 2009-03-25 2010-09-30 Cochlear Ltd., Lane Cove vibrator
US8837760B2 (en) 2009-03-25 2014-09-16 Cochlear Limited Bone conduction device having a multilayer piezoelectric element
US20100298626A1 (en) * 2009-03-25 2010-11-25 Cochlear Limited Bone conduction device having a multilayer piezoelectric element
DE102009014772A1 (en) 2009-03-25 2010-09-30 Cochlear Ltd., Lane Cove hearing aid
US9055379B2 (en) 2009-06-05 2015-06-09 Earlens Corporation Optically coupled acoustic middle ear implant systems and methods
US9544700B2 (en) 2009-06-15 2017-01-10 Earlens Corporation Optically coupled active ossicular replacement prosthesis
US9277335B2 (en) 2009-06-18 2016-03-01 Earlens Corporation Eardrum implantable devices for hearing systems and methods
US8787609B2 (en) 2009-06-18 2014-07-22 Earlens Corporation Eardrum implantable devices for hearing systems and methods
US8401214B2 (en) 2009-06-18 2013-03-19 Earlens Corporation Eardrum implantable devices for hearing systems and methods
US8715153B2 (en) 2009-06-22 2014-05-06 Earlens Corporation Optically coupled bone conduction systems and methods
US8845705B2 (en) 2009-06-24 2014-09-30 Earlens Corporation Optical cochlear stimulation devices and methods
US8986187B2 (en) 2009-06-24 2015-03-24 Earlens Corporation Optically coupled cochlear actuator systems and methods
US8715154B2 (en) 2009-06-24 2014-05-06 Earlens Corporation Optically coupled cochlear actuator systems and methods
US20110268303A1 (en) * 2010-04-29 2011-11-03 Cochlear Limited Bone conduction device having limited range of travel
US8594356B2 (en) * 2010-04-29 2013-11-26 Cochlear Limited Bone conduction device having limited range of travel
US9392377B2 (en) 2010-12-20 2016-07-12 Earlens Corporation Anatomically customized ear canal hearing apparatus
US8908891B2 (en) 2011-03-09 2014-12-09 Audiodontics, Llc Hearing aid apparatus and method
US9107013B2 (en) 2011-04-01 2015-08-11 Cochlear Limited Hearing prosthesis with a piezoelectric actuator
US9060234B2 (en) 2011-11-23 2015-06-16 Insound Medical, Inc. Canal hearing devices and batteries for use with same
US8808906B2 (en) 2011-11-23 2014-08-19 Insound Medical, Inc. Canal hearing devices and batteries for use with same
US8682016B2 (en) 2011-11-23 2014-03-25 Insound Medical, Inc. Canal hearing devices and batteries for use with same
US9604325B2 (en) 2011-11-23 2017-03-28 Phonak, LLC Canal hearing devices and batteries for use with same
US8761423B2 (en) 2011-11-23 2014-06-24 Insound Medical, Inc. Canal hearing devices and batteries for use with same
US9282395B1 (en) 2013-10-17 2016-03-08 Google Inc. Flexible transducer for soft-tissue and acoustic audio production
US9699540B2 (en) 2013-10-17 2017-07-04 Google Inc. Flexible transducer for soft-tissue and acoustic audio production
US9813795B2 (en) 2013-10-17 2017-11-07 Google Inc. Flexible transducer for soft-tissue and acoustic audio production
WO2015077786A1 (en) * 2013-11-25 2015-05-28 Massachusetts Eye & Ear Infirmary Piezoelectric sensors for hearing aids
US9930458B2 (en) 2014-07-14 2018-03-27 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US9924276B2 (en) 2014-11-26 2018-03-20 Earlens Corporation Adjustable venting for hearing instruments

Similar Documents

Publication Publication Date Title
US3387149A (en) Phonocardiograph transducer
US4638207A (en) Piezoelectric polymeric film balloon speaker
US3548116A (en) Acoustic transducer including piezoelectric wafer solely supported by a diaphragm
US7190803B2 (en) Acoustic transducer having reduced thickness
US2607858A (en) Electromechanical transducer
US6735318B2 (en) Middle ear hearing aid transducer
US7088839B2 (en) Acoustic receiver having improved mechanical suspension
US3764748A (en) Implanted hearing aids
US6592513B1 (en) Method for creating a coupling between a device and an ear structure in an implantable hearing assistance device
US5859916A (en) Two stage implantable microphone
US2938083A (en) Transistor amplifier hearing aid unit with receiver vibration feedback suppression
US2045404A (en) Piezoelectric vibrator device
US6216040B1 (en) Implantable microphone system for use with cochlear implantable hearing aids
US6398717B1 (en) Device for mechanical coupling of an electromechanical hearing aid converter which can be implanted in a mastoid cavity
EP0455203A2 (en) Dual outlet passage hearing aid transducer
US4504703A (en) Electro-acoustic transducer
US4012604A (en) Microphone for the transmission of body sounds
US6001129A (en) Hearing aid transducer support
US6554762B2 (en) Implantable hearing system with means for measuring its coupling quality
US7286680B2 (en) Cylindrical microphone having an electret assembly in the end cover
US4756312A (en) Magnetic attachment device for insertion and removal of hearing aid
US20060107744A1 (en) Optical waveguide vibration sensor for use in hearing aid
US2786899A (en) Piezoelectric transducers
US6648813B2 (en) Hearing aid system including speaker implanted in middle ear
US6537199B1 (en) Arrangement for mechanical coupling of a driver to a coupling site of the ossicular chain