US3592748A - Preparation of quinones - Google Patents
Preparation of quinones Download PDFInfo
- Publication number
- US3592748A US3592748A US28093A US3592748DA US3592748A US 3592748 A US3592748 A US 3592748A US 28093 A US28093 A US 28093A US 3592748D A US3592748D A US 3592748DA US 3592748 A US3592748 A US 3592748A
- Authority
- US
- United States
- Prior art keywords
- formula
- phenol
- electrolysis
- naphthol
- hydroxylamine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002360 preparation method Methods 0.000 title abstract description 4
- 150000004053 quinones Chemical class 0.000 title description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 abstract description 29
- 238000005868 electrolysis reaction Methods 0.000 abstract description 25
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 abstract description 22
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 abstract description 22
- 229930192627 Naphthoquinone Natural products 0.000 abstract description 21
- 150000002791 naphthoquinones Chemical class 0.000 abstract description 21
- 239000007864 aqueous solution Substances 0.000 abstract description 12
- 150000002989 phenols Chemical class 0.000 abstract description 5
- 150000004780 naphthols Chemical class 0.000 abstract description 4
- AZQWKYJCGOJGHM-UHFFFAOYSA-N para-benzoquinone Natural products O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 39
- 238000000034 method Methods 0.000 description 38
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 20
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- 229910052784 alkaline earth metal Chemical group 0.000 description 15
- 125000000217 alkyl group Chemical group 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 12
- QQOMQLYQAXGHSU-UHFFFAOYSA-N 2,3,6-Trimethylphenol Chemical compound CC1=CC=C(C)C(O)=C1C QQOMQLYQAXGHSU-UHFFFAOYSA-N 0.000 description 11
- 229910052783 alkali metal Inorganic materials 0.000 description 11
- 150000001340 alkali metals Chemical group 0.000 description 11
- -1 alkyl quinone Chemical compound 0.000 description 11
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 10
- 239000012736 aqueous medium Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 150000003254 radicals Chemical class 0.000 description 10
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 9
- 229910052736 halogen Inorganic materials 0.000 description 9
- 150000002367 halogens Chemical class 0.000 description 9
- 150000002431 hydrogen Chemical class 0.000 description 9
- 125000003545 alkoxy group Chemical group 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 150000001342 alkaline earth metals Chemical group 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000012429 reaction media Substances 0.000 description 7
- OGRAOKJKVGDSFR-UHFFFAOYSA-N 2,3,5-trimethylphenol Chemical compound CC1=CC(C)=C(C)C(O)=C1 OGRAOKJKVGDSFR-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000012431 aqueous reaction media Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- QIXDHVDGPXBRRD-UHFFFAOYSA-N 2,3,5-trimethylcyclohexa-2,5-diene-1,4-dione Chemical compound CC1=CC(=O)C(C)=C(C)C1=O QIXDHVDGPXBRRD-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229930003448 Vitamin K Natural products 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 235000019168 vitamin K Nutrition 0.000 description 3
- 239000011712 vitamin K Substances 0.000 description 3
- 150000003721 vitamin K derivatives Chemical class 0.000 description 3
- 229940046010 vitamin k Drugs 0.000 description 3
- 229940005561 1,4-benzoquinone Drugs 0.000 description 2
- KYFBKHRLIHDKPB-UHFFFAOYSA-N 2,5-Dimethoxyphenol Chemical compound COC1=CC=C(OC)C(O)=C1 KYFBKHRLIHDKPB-UHFFFAOYSA-N 0.000 description 2
- 244000248349 Citrus limon Species 0.000 description 2
- 235000005979 Citrus limon Nutrition 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- MJVAVZPDRWSRRC-UHFFFAOYSA-N Menadione Chemical compound C1=CC=C2C(=O)C(C)=CC(=O)C2=C1 MJVAVZPDRWSRRC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- RMMPZDDLWLALLJ-UHFFFAOYSA-N Thermophillin Chemical compound COC1=CC(=O)C(OC)=CC1=O RMMPZDDLWLALLJ-UHFFFAOYSA-N 0.000 description 2
- 229930003427 Vitamin E Natural products 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 235000019165 vitamin E Nutrition 0.000 description 2
- 229940046009 vitamin E Drugs 0.000 description 2
- 239000011709 vitamin E Substances 0.000 description 2
- XRUGBBIQLIVCSI-UHFFFAOYSA-N 2,3,4-trimethylphenol Chemical compound CC1=CC=C(O)C(C)=C1C XRUGBBIQLIVCSI-UHFFFAOYSA-N 0.000 description 1
- KMBWCXAUPFWDKK-MRIFWDATSA-N 2,3-dimethoxy-5-methyl-6-[(e,7r,11r)-3,7,11,15-tetramethylhexadec-2-enyl]cyclohexa-2,5-diene-1,4-dione Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)=C(C)C1=O KMBWCXAUPFWDKK-MRIFWDATSA-N 0.000 description 1
- SLHNPDOXSIPPRE-UHFFFAOYSA-N 2-(3,7,11-trimethyldodeca-2,6,10-trienyl)phenol Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCC1=CC=CC=C1O SLHNPDOXSIPPRE-UHFFFAOYSA-N 0.000 description 1
- ZJKWJHONFFKJHG-UHFFFAOYSA-N 2-Methoxy-1,4-benzoquinone Chemical compound COC1=CC(=O)C=CC1=O ZJKWJHONFFKJHG-UHFFFAOYSA-N 0.000 description 1
- WOGWYSWDBYCVDY-UHFFFAOYSA-N 2-chlorocyclohexa-2,5-diene-1,4-dione Chemical compound ClC1=CC(=O)C=CC1=O WOGWYSWDBYCVDY-UHFFFAOYSA-N 0.000 description 1
- SRJCJJKWVSSELL-UHFFFAOYSA-N 2-methylnaphthalen-1-ol Chemical compound C1=CC=CC2=C(O)C(C)=CC=C21 SRJCJJKWVSSELL-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 125000004030 farnesyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000002350 geranyl group Chemical group [H]C([*])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000002686 geranylgeranyl group Chemical group [H]C([*])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000002443 hydroxylamines Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- RDOXTESZEPMUJZ-UHFFFAOYSA-N methyl phenyl ether Natural products COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000009935 nitrosation Effects 0.000 description 1
- 238000007034 nitrosation reaction Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- MBWXNTAXLNYFJB-LKUDQCMESA-N phylloquinone Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CCCC(C)CCCC(C)CCCC(C)C)=C(C)C(=O)C2=C1 MBWXNTAXLNYFJB-LKUDQCMESA-N 0.000 description 1
- 125000001189 phytyl group Chemical group [H]C([*])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])C([H])([H])[C@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])C([H])([H])[C@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000011182 sodium carbonates Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/23—Oxidation
Definitions
- R1 I R R a 3,592,748 Patented July 13, 1971 wherein R and R and R are hydrogen, lower alkyl, lower alkoxy and halogen; R is lower alkyl, hydrogen, lower alkoxy, halogen and a radical of the formula:
- n represents an integer from 0 to 9 inclusive;
- R is hydrogen or lower alkyl;
- R is hydrogen, lower alkyl and a radical of the formula:
- n is an integer from 0 to 9; and the double bond shown by the dotted line can optionally be fully hydrogenated; can be produced by electrolytically subjecting a phenol or a naphthol having the formulae:
- R4 II-a wherein R R R and R are as above; with the proviso that the position para to the hydroxy group is unsubstituted;
- a quinone or naphthoquinone is produced in substantially pure form in substantially quantitative yields without any contamination from solid metal oxides.
- only one mole of the hydroxylamine of Formula III per mole of the phenol or the naphthol having the Formulae II-a or II-b is needed to produce the quinone or naphthoquinone of Formulae I-a or Lb in substantially quantitative yields.
- at least two moles of an oxidizing agent per mole of the phenol of Formula II-a or naphthol of Formula II-b had to be utilized for this conversion. Therefore, the process of this invention provides a simple and economic method for producing a quinone or naphthoquinone of high purity from a phenol or from a naphthol.
- lower alkyl as used throughout this application includes both branched and straight chain alkyl groups containing from 1 to 7 carbon atoms such as methyl, ethyl, propyl, isopropyl, etc.
- lower alkoxy as used throughout the specification designates lower alkoxy groups containing from 1 to 7 carbon atoms such as methoxy, ethoxy, propoxy, isopropoxy, etc.
- halogen as used throughout this application includes all four halogens, i.e., fluorine, chlorine, bromine and iodine. The preferred halogens are fluorine and chlonne.
- X can be any conventional alkali metal or alkaline earth metal.
- conventional alkali metals which X can designate are included sodium, potassium, lithium, rubidium, etc.
- alkaline earth metals which are designated by X are included calcium, magnesium, etc.
- R in the compound of Formula II-a above represents the radical wherein the double bond shown by the dotted line can optionally be fully hydrogenated; and n is as above; this radical is preferably substituted at the meta position from the hydroxy group in the compound of Formula II-a above.
- preferred radicals are included phytyl; geranyl; farnesyl; geranyl-geranyl; farnesyl-farnesyl; 3,7,11,15,19 pentamethyl 2,6,10,14,18 eicosapentaenyl; 3,7,11,15,19,23,27,31 octamethyl 2,6,10,14,18,22,26,30- dotriacontaoctaenyl; etc.
- R in the compound of Formula II-b represents the radical CH3 CH3 n wherein n is as above; and the double bond shown by the dotted line can optionally be fully hydrogenated; the preferred radicals are those where m is 3 and the dotted bond is hydrogenated and those where m is 5 and the dotted bond represents unsaturation.
- the reaction of this invention is carried out by electrolytically treating a liquid aqueous reaction medium containing the phenol of Formula II-a above or the naphthol of Formula II-b above and the hydroxylamine of Formula III above. This reaction can take place by any conventional electrolytic process.
- the liquid aqueous reaction medium containing the phenol of Formula IIa above or the naphthol of Formula II-b above and the hydroxylamine of Formula III above is placed in an electrolytic cell, e.g., an electrolysis tank which may or may not be provided with a cell divider or membrane, and which is provided with an anode and cathode.
- an electrolytic cell e.g., an electrolysis tank which may or may not be provided with a cell divider or membrane, and which is provided with an anode and cathode.
- the cathode and the anode can be made of any material commonly employed for making cathodes and anodes in the electro-chemical art, e.g., carbon, Monel, stainless steel, platinum, palladium, nickel, nickel-alloy, etc.
- the electrolytic cell can be provided with a stirrer or mechanical agitator, or the reaction medium can be circulated by means of pumps.
- the electrolysis can be carried out by applying voltages of from 0.5 to 50 Volts t the liquid aqueous reaction medium. Generally, it is preferred to carry out the reaction utilizing from to 25 volts.
- the electric current passed through the solution can be of a current density of up to 50 amperes per square decimeter and can be as low as 0.01 ampere per square decimeter. Generally, it is preferred to utilize a current density of from 0.02 to 25 amperes per square decimeter.
- any conventional electrolyte can, if desired, be added to the aqueous medium.
- conventional electrolytes which can, if desired, be added to the liquid aqueous reaction medium prior to electrolysis are included sodium hydroxide, sodium bicarbonate, acetic acid, sodium carbonate, sodium acetate, sodium phosphate, sodium chloride, ammonium hydroxide, etc.
- the pH of the reaction medium is maintained at 4 or above.
- this reaction is carried out at a pH of from 4 to 13.
- the aforementioned electrolytes can be utilized to obtain the desired pH.
- the liquid aqueous medium that is subjected to electrolysis in accordance with this invention contains an inert liquid organic solvent in which the phenol is dissolved.
- Any conventional inert organic solvent can be utilized in accordance with this invention.
- the conventional inert organic solvents are included xylene, toluene, hexane, heptane, benzene, halogenated aliphatic hydrocarbons such as chlorobenzene, methylene chloride, carbon tetrachloride, etc.
- from about 1 mole of the hydroxylamine of Formula III above is present per mole of the phenol of Formula IIa above or the naphthol of Formula IIb above.
- conversion of the phenol of Formula 11-11 or naphthol of Formula IIb in yields of approximately percent can be carried out by utilizing only 1 mole of the hydroxylamine of Formula III per mole of the phenol or naphthol.
- approximately 0.5 mole of the hydroxylamine of Formula III per mole of the phenol or naphthol can be utilized.
- large excesses of this hydroxylamine can, if desired, be utilized. No additional beneficial results are achieved by utilizing large excesses of hydroxylamine.
- the hydroxylamine of Formula III can be present in an amount of about 10 moles per mole of the phenol of Formula II-a or the naphthol of Formula II-b or greater.
- the electrolysis reaction can be carried out at any temperature of from 15 C. to 50 C. Generally, it is preferred to carry out this reaction at a temperature of 10 C. to +10 C.
- the reaction medium that is subjected to electrolysis consists of two phases, i.e., an aqueous phase and an organic phase.
- the aqueous phase contains the hydroxylamine of Formula III and the organic solvent phase contains the phenol of the Formula II-a above or naphthol of Formula 11-! above.
- the electrolysis reaction can be carried out for a period of at least /2 hour or longer. Generally, it is preferred to carry out the electrolysis for a period of from 1 to 10 hours. If desired, electrolysis can be carried out for periods longer than 10 hours. However, since the use of electrolysis times of greater than 10 hours produce no additional beneficial results, these prolonged reaction times are seldom employed.
- the quinone or naphthoquinone that is formed in accordance with this invention can be easily recovered in pure form from the two-phase reaction medium since it is present in the organic solvent phase, and the other constituents of the reaction medium are in the aqueous phase.
- the quinone or naphthoquinone is obtained in the organic phase free of contaminants.
- the quinone or naphthoquinone can be easily obtained from the organic phase by evaporation of the organic solvent. Therefore, there is no need to subject the quinone or naphthoquinone obtained by the process of this invention to purification techniques such as distillation which may cause decomposition and deterioration of the quinone or naphthoquinone product.
- the hydroxylamine of Formula III above can be prepared by reacting ammonium, an alkali metal or alkaline earth metal nitrite with sulfur dioxide in an aqueous medium.
- the sulfur dioxide can be bubbled in as a gas into the aqueous reaction medium.
- the reaction medium can contain any source capable of liberating sulfur dioxide such as a mixture of an organic acid such as acetic acid and an alkali metal, ammonium or alkaline earth metal sulfite or bisulfite.
- the nitrite salt and S0 or S0 liberating source are reacted together at a temperature of from 10 C. to 50 C. to produce the hydroxylamine of Formula III above.
- This reaction is carried out by reacting 1 mole of the nitrite salt with 2 moles of the sulfur dioxide which can be either bubbled or liberated from the sulfur dioxide liberating source in water. Furthermore, this reaction is carried out at a pH of at least 2, preferably from 2 to 4. This pH is obtained by the addition of acetic acid or other lower alkanoic acids to the reaction medium when the acids are utilized as a component of the sulfur dioxide liberating material. However, this pH can be obtained by the addition of weakly basic inorganic salts such as sodium phosphates, sodium carbonates, sodium bicarbonates, etc.
- This aqueous reaction medium containing the hydroxylamine disulfonate of Formula III can be utilized to convert the phenol of Formula II-a or the naphthol of Formula II-b above to the quinone or naphthoquinone of Formula I-a or Formula I-b above without isolating the hydroxylamine disulfonate.
- the organic solvent and phenol or naphthol of Formula II-a or Formula ll-b are added.
- the pH can be adjusted to 4 or above, if necessary, by the addition of the electrolyte.
- the resulting twophase mixture can then be subjected under agitation to electrolysis in the aforementioned manner to produce the quinone or naphthoquinone of Formulae I-a or 1 b.
- EXAMPLE 1 Preparation of trimethyl-para-benzoquinone from 2,3,6-trimethylphenol 15.0 g. (0.217 m.) of sodium nitrite, 250 g. of ice and 41.6 g. (0.4 m.) of sodium bisulfite were weighed into an ice cooled 1 liter resin flask. Under manual stirring 22.5 cc. (23.6 g.) (0.4 m.) of acetic acid was added at once. Most of the ice dissolved and the temperature dropped to --3 C. The clear solution was kept at this temperature and stirred mechanically for 90 minutes to produce an aqueous solution containing hydroxyaminedisodium sulfonate. At the end of the stirring period, 250 cc.
- a stainless steel anode (ca. 16 mesh/cm.) was immersed into the heterogeneous system.
- the cathode in the form of a stainless steel coil was placed into a porous pot, filled with water plus 2 cc. of a saturated sodium carbonate aqueous solution, and immersed to about of its length into the reaction mixture.
- the cold system was now stirred mechanically and electrolyzed for five hours at 7 to 8 v./ 3 a. at 0-5 C, The current density was 0.05 ampere per square decimeter.
- the trimethylphenol slowly dissolved and the hexane layer changed color to yellow, then to orange and again to lemon yellow at the end. The course of the reaction was conveniently followed by thin layer chromatography.
- R R and R are hydrogen, lower alkyl, lower alkoxy and halogen and R is hydrogen, lower alkoxy, halogen, lower alkyl and a radical of the formula wherein the double bond shown by the dotted line can optionally be fully hydrogenated and n is an integer from O to 9, inclusive, with the proviso that the position para to the hydroxy group is unsubstituted to quinone of the formula wherein R R R and R are as above comprising reacting an alkali metal or alkaline earth metal nitrite with sulfur dioxide in an aqueous medium to produce an aqueous solution containing a hydroxylamine of the formula HON (S0 X wherein X is an ammonium ion, alkali metal or alkaline earth metal and m is 1 or 2, with the proviso that when X is an ammonium ion or monovalent metal, m is 2, and when X is a divalent metal, m is 1 adding said phenol to said aqueous solution and subjecting
- R is lower alkyl or hydrogen; R is hydrogen, lower alkyl and a radical of the formula:
- n is an integer from O to 9 inclusive;
- R and R are as above; comprising subjecting an aqueous medium containing said phenol to electrolysis, in an electrolytic cell having an anode and a cathode, in the presence of a hydroxylamine disulfonate of the formula:
- X is an ammonium ion, alkali metal or alkaline earth metal and m is 1 or 2 with the proviso that when X is an ammonium ion or monovalent metal, m is 2, and when X is a divalent metal, In is 1 to form said naphthoquinone at said anode.
- R is lower alkyl or hydrogen, R is hydrogen
- n is an integer from r O to 9 inclusive; to naphthoquinone of the formula:
- R and R are as above; comprising reacting an alkali metal or alkaline earth metal nitrite with sulfur dioxide in an aqueous medium to produce an aqueous solution containing a hydroxylamine of the formula:
- HON S0 X wherein X is an ammonium ion, alkali metal or alkaline earth metal and m is 1 or 2, with the proviso that when X is an ammonium ion or monovalent metal, In is 2, and when X is a divalent metal, m is 1 adding said naphthol to said aqueous solution and subjecting said aqueous solu- 10 tion containing said naphthol to electrolysis, in an elec- References Cited trolytic cell having an anode and a cathode, to produce UNITED STATES PATENTS said naphthoquinone at said anode.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
PREPARATION OF QUINONES AND NAPHTHOQUINONES FROM PHENOLS OR NAPHTHOLS BY SUBJECTING AN AQUEOUS SOLUTION CONTAINING THE PHENOL OR THE NAPHTHOL AND A HYDROXYLAMINE DISULFONATE TO ELECTROLYSIS.
Description
United States Patent O1 ice U.S. Cl. 20478 16 Claims ABSTRACT OF THE DISCLOSURE Preparation of quinones and naphthoquinones from phenols or naphthols by subjecting an aqueous solution containing the phenol or the naphthol and a hydroxylamine disulfonate to electrolysis.
CROSS REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part application of US. patent application Ser. No. 841,130, filed July 11, 1969.
BACKGROUND OF THE INVENTION In the past, quinones such as tri-lower alkyl quinone, an important intermediate for vitamin E and related compounds, as well as naphthoquinones which are important intermediates for vitamin K, have been commercially synthesized from phenols or naphthols through the utilization of oxidizing agents such as potassium permanganate and lead dioxide. This has proven extremely disadvantageous since these oxidizing agents in this reaction form solid metallic oxides such as lead oxides and manganese oxides which become entrained in the quinone product and consequently contaminated the quinone or naphthoquinone product. It is very important in the syntheses of vitamin E, vitamin K and related products that any product or intermediate utilized have a high degree of purity. It is with considerable difficulty and expense that the entrained solid metallic oxides are removed from the quinone or naphthoquinone. Therefore, a method whereby quinones or naphthoquinones of high purity can be produced by oxidation of phenols or naphthols has long been desired in the art.
Another method whereby phenols have been converted into quinones has been by nitrosation of the phenol and subsequent saponification to the quinone. This method also has suffered from various drawbacks since formation of tars and other byproducts occurs during this process. These tars have produced a contaminated product which has only been purified by costly and time-consuming procedures.
SUMMARY OF THE INVENTION In accordance with this invention, it has been found that quinones and naphthoquinones having the following formulae:
R1 I R R a 3,592,748 Patented July 13, 1971 wherein R and R and R are hydrogen, lower alkyl, lower alkoxy and halogen; R is lower alkyl, hydrogen, lower alkoxy, halogen and a radical of the formula:
CI-I CH=(!J[OH2OII -OH:(f]n-CH:;
wherein the double bond shown by the dotted line can optionally be fully hydrogenated; n represents an integer from 0 to 9 inclusive; R is hydrogen or lower alkyl; R is hydrogen, lower alkyl and a radical of the formula:
n is an integer from 0 to 9; and the double bond shown by the dotted line can optionally be fully hydrogenated; can be produced by electrolytically subjecting a phenol or a naphthol having the formulae:
R4 II-a wherein R R R and R are as above; with the proviso that the position para to the hydroxy group is unsubstituted; and
R II-b wherein R and R are as above; to electrolysis in the presence of a hydroxylamine of the formula:
HO-N (S0 X III wherein X is an ammonium ion, alkali metal or alkaline earth metal; and m is 1 or 2, with the proviso that when X is an ammonium ion or monovalent metal, m is 2, and when X is a divalent metal, m is 1.
By this process, a quinone or naphthoquinone is produced in substantially pure form in substantially quantitative yields without any contamination from solid metal oxides. In this process only one mole of the hydroxylamine of Formula III per mole of the phenol or the naphthol having the Formulae II-a or II-b is needed to produce the quinone or naphthoquinone of Formulae I-a or Lb in substantially quantitative yields. In the past, at least two moles of an oxidizing agent per mole of the phenol of Formula II-a or naphthol of Formula II-b had to be utilized for this conversion. Therefore, the process of this invention provides a simple and economic method for producing a quinone or naphthoquinone of high purity from a phenol or from a naphthol.
DETAILED DESCRIPTION OF THE INVENTION The term lower alkyl as used throughout this application includes both branched and straight chain alkyl groups containing from 1 to 7 carbon atoms such as methyl, ethyl, propyl, isopropyl, etc. The term lower alkoxy as used throughout the specification designates lower alkoxy groups containing from 1 to 7 carbon atoms such as methoxy, ethoxy, propoxy, isopropoxy, etc. The term halogen as used throughout this application includes all four halogens, i.e., fluorine, chlorine, bromine and iodine. The preferred halogens are fluorine and chlonne.
In the hydroxylamine of Formula III, X can be any conventional alkali metal or alkaline earth metal. Among the conventional alkali metals which X can designate are included sodium, potassium, lithium, rubidium, etc.
Among the alkaline earth metals which are designated by X are included calcium, magnesium, etc.
When R in the compound of Formula II-a above represents the radical wherein the double bond shown by the dotted line can optionally be fully hydrogenated; and n is as above; this radical is preferably substituted at the meta position from the hydroxy group in the compound of Formula II-a above. Among the preferred radicals are included phytyl; geranyl; farnesyl; geranyl-geranyl; farnesyl-farnesyl; 3,7,11,15,19 pentamethyl 2,6,10,14,18 eicosapentaenyl; 3,7,11,15,19,23,27,31 octamethyl 2,6,10,14,18,22,26,30- dotriacontaoctaenyl; etc.
When R in the compound of Formula II-b represents the radical CH3 CH3 n wherein n is as above; and the double bond shown by the dotted line can optionally be fully hydrogenated; the preferred radicals are those where m is 3 and the dotted bond is hydrogenated and those where m is 5 and the dotted bond represents unsaturation.
The reaction of this invention is carried out by electrolytically treating a liquid aqueous reaction medium containing the phenol of Formula II-a above or the naphthol of Formula II-b above and the hydroxylamine of Formula III above. This reaction can take place by any conventional electrolytic process.
This process is carried out in a conventional electrolytic cell. In accordance with the present invention, the liquid aqueous reaction medium containing the phenol of Formula IIa above or the naphthol of Formula II-b above and the hydroxylamine of Formula III above is placed in an electrolytic cell, e.g., an electrolysis tank which may or may not be provided with a cell divider or membrane, and which is provided with an anode and cathode. The cathode and the anode can be made of any material commonly employed for making cathodes and anodes in the electro-chemical art, e.g., carbon, Monel, stainless steel, platinum, palladium, nickel, nickel-alloy, etc. The electrolytic cell can be provided with a stirrer or mechanical agitator, or the reaction medium can be circulated by means of pumps. The electrolysis can be carried out by applying voltages of from 0.5 to 50 Volts t the liquid aqueous reaction medium. Generally, it is preferred to carry out the reaction utilizing from to 25 volts. The electric current passed through the solution can be of a current density of up to 50 amperes per square decimeter and can be as low as 0.01 ampere per square decimeter. Generally, it is preferred to utilize a current density of from 0.02 to 25 amperes per square decimeter.
In carrying out the electrolysis reaction more efficaciously, any conventional electrolyte can, if desired, be added to the aqueous medium. Among the conventional electrolytes which can, if desired, be added to the liquid aqueous reaction medium prior to electrolysis are included sodium hydroxide, sodium bicarbonate, acetic acid, sodium carbonate, sodium acetate, sodium phosphate, sodium chloride, ammonium hydroxide, etc. Generally, it is preferred to add the electrolyte to the liquid aqueous medium in an amount of from 0.1 percent to percent by weight of the liquid medium. During the electrolysis reaction, the pH of the reaction medium is maintained at 4 or above. Optionally, this reaction is carried out at a pH of from 4 to 13. The aforementioned electrolytes can be utilized to obtain the desired pH.
The liquid aqueous medium that is subjected to electrolysis in accordance with this invention contains an inert liquid organic solvent in which the phenol is dissolved. Any conventional inert organic solvent can be utilized in accordance with this invention. Among the conventional inert organic solvents are included xylene, toluene, hexane, heptane, benzene, halogenated aliphatic hydrocarbons such as chlorobenzene, methylene chloride, carbon tetrachloride, etc. Generally, from about 1 mole of the hydroxylamine of Formula III above is present per mole of the phenol of Formula IIa above or the naphthol of Formula IIb above. In accordance with this invention, conversion of the phenol of Formula 11-11 or naphthol of Formula IIb in yields of approximately percent can be carried out by utilizing only 1 mole of the hydroxylamine of Formula III per mole of the phenol or naphthol. However, if lower yields are desired, approximately 0.5 mole of the hydroxylamine of Formula III per mole of the phenol or naphthol can be utilized. On the other hand, large excesses of this hydroxylamine can, if desired, be utilized. No additional beneficial results are achieved by utilizing large excesses of hydroxylamine. However, if desired, the hydroxylamine of Formula III can be present in an amount of about 10 moles per mole of the phenol of Formula II-a or the naphthol of Formula II-b or greater. The electrolysis reaction can be carried out at any temperature of from 15 C. to 50 C. Generally, it is preferred to carry out this reaction at a temperature of 10 C. to +10 C.
The reaction medium that is subjected to electrolysis consists of two phases, i.e., an aqueous phase and an organic phase. The aqueous phase contains the hydroxylamine of Formula III and the organic solvent phase contains the phenol of the Formula II-a above or naphthol of Formula 11-!) above. The electrolysis reaction can be carried out for a period of at least /2 hour or longer. Generally, it is preferred to carry out the electrolysis for a period of from 1 to 10 hours. If desired, electrolysis can be carried out for periods longer than 10 hours. However, since the use of electrolysis times of greater than 10 hours produce no additional beneficial results, these prolonged reaction times are seldom employed.
The quinone or naphthoquinone that is formed in accordance with this invention can be easily recovered in pure form from the two-phase reaction medium since it is present in the organic solvent phase, and the other constituents of the reaction medium are in the aqueous phase. By means of phase separation, the quinone or naphthoquinone is obtained in the organic phase free of contaminants. The quinone or naphthoquinone can be easily obtained from the organic phase by evaporation of the organic solvent. Therefore, there is no need to subject the quinone or naphthoquinone obtained by the process of this invention to purification techniques such as distillation which may cause decomposition and deterioration of the quinone or naphthoquinone product.
In accordance with an embodiment of this invention, the hydroxylamine of Formula III above can be prepared by reacting ammonium, an alkali metal or alkaline earth metal nitrite with sulfur dioxide in an aqueous medium. In carrying out this reaction, the sulfur dioxide can be bubbled in as a gas into the aqueous reaction medium. Alternatively, the reaction medium can contain any source capable of liberating sulfur dioxide such as a mixture of an organic acid such as acetic acid and an alkali metal, ammonium or alkaline earth metal sulfite or bisulfite. The nitrite salt and S0 or S0 liberating source are reacted together at a temperature of from 10 C. to 50 C. to produce the hydroxylamine of Formula III above. This reaction is carried out by reacting 1 mole of the nitrite salt with 2 moles of the sulfur dioxide which can be either bubbled or liberated from the sulfur dioxide liberating source in water. Furthermore, this reaction is carried out at a pH of at least 2, preferably from 2 to 4. This pH is obtained by the addition of acetic acid or other lower alkanoic acids to the reaction medium when the acids are utilized as a component of the sulfur dioxide liberating material. However, this pH can be obtained by the addition of weakly basic inorganic salts such as sodium phosphates, sodium carbonates, sodium bicarbonates, etc.
This aqueous reaction medium containing the hydroxylamine disulfonate of Formula III can be utilized to convert the phenol of Formula II-a or the naphthol of Formula II-b above to the quinone or naphthoquinone of Formula I-a or Formula I-b above without isolating the hydroxylamine disulfonate. After forming the hydroxylamine in the aqueous solution, the organic solvent and phenol or naphthol of Formula II-a or Formula ll-b are added. The pH can be adjusted to 4 or above, if necessary, by the addition of the electrolyte. The resulting twophase mixture can then be subjected under agitation to electrolysis in the aforementioned manner to produce the quinone or naphthoquinone of Formulae I-a or 1 b.
The invention will be more fully understood from the specific examples which follow. These examples are intended to illustrate the invention and are not to be construed as limitative thereof. The temperatures utilized in these examples are in degrees centigrade.
EXAMPLE 1 Preparation of trimethyl-para-benzoquinone from 2,3,6-trimethylphenol 15.0 g. (0.217 m.) of sodium nitrite, 250 g. of ice and 41.6 g. (0.4 m.) of sodium bisulfite were weighed into an ice cooled 1 liter resin flask. Under manual stirring 22.5 cc. (23.6 g.) (0.4 m.) of acetic acid was added at once. Most of the ice dissolved and the temperature dropped to --3 C. The clear solution was kept at this temperature and stirred mechanically for 90 minutes to produce an aqueous solution containing hydroxyaminedisodium sulfonate. At the end of the stirring period, 250 cc. of a saturated aqueous solution of sodium carbonate Was added to this solution of hydroxylaminedisodium sulfonate. After the addition of sodium carbonate, 20.0 g. (0.147 m.) of 2,3,6-trimethylphenol (M.P. 63.4") and 100 cc. of heptane were added to this aqueous solution forming a heterogeneous system.
A stainless steel anode (ca. 16 mesh/cm.) was immersed into the heterogeneous system. The cathode in the form of a stainless steel coil, was placed into a porous pot, filled with water plus 2 cc. of a saturated sodium carbonate aqueous solution, and immersed to about of its length into the reaction mixture. The cold system was now stirred mechanically and electrolyzed for five hours at 7 to 8 v./ 3 a. at 0-5 C, The current density was 0.05 ampere per square decimeter. The trimethylphenol slowly dissolved and the hexane layer changed color to yellow, then to orange and again to lemon yellow at the end. The course of the reaction was conveniently followed by thin layer chromatography. Only trace amounts of phenol could be detected at the end of the electrolysis. The water layer was violet in color and some inorganic material crystallized. The whole mixture was transferred into a l liter separatory funnel. The yellow heptane layer was separated and Washed three times with 50 cc. of 4 N sodium hydroxide and with saturated sodium chloride solution until the washes were neutral. The water layers were twice washed with heptane. The heptane extracts were combined, dried over magnesium sulfate, filtered and evaporated to dryness (rotavap, 40 C. bath temperature). The residue, a lemon yellow oil, crystallized under running cold water. The last traces of solvent were subsequently removed under high vacuum. This procedure gave 20.8 g. (94 percent) of crystalline, yellow trimethylpara-benzoquinone, M.P. 29.6-31 C. Examination of this material by thin layer chromatography revealed only one spot which indicated that no contaminants were present in this product.
EXAMPLE 2 Utilizing the procedure of Example 1, 2,3,5-trimethylphenol was converted to trimethyl-para-benzoquinone in approximately the same yield and purity as in Example 1.
6 EXAMPLE 3 Utilizing the procedure of Example 1, phenol was converted to 1,4-benzoquinone.
EXAMPLE 4 Utilizing the procedure of Example 1, o-cresol was converted to Z-methyl-l,4-benzoquinonc.
EXAMPLE 5 Utilizing the procedure of Example 1, l-hydroxy-2- methoxybenzene was converted to 2-methoxy-1,4-benzoquinone.
EXAMPLE 6 Utilizing the procedure of Example 1, l-hydroxy-Z- chlorobenzene was converted to 2-chloro-1,4benzoquinone.
EXAMPLE 7 Utilizing the procedure of Example 1, 2,5-dimethoxyphenol was converted to 2,5-dimethoxy-1,4-benzoquinone.
EXAMPLE 8 Utilizing the procedure of Example 1, 2-methyl-1-hydroxy-naphthalene was converted to 2-methyl-1,4-naphthoquinone.
EXAMPLE 9 Utilizing the procedure of Example 1, 2-methyl-3-difarnesyl-l-hydroxy-naphthalene is converted to Z-methyl- 3-difarnesyl-1,4-naphthoquinone (vitamin K EXAMPLE 10 By the procedure of Example 1, 2-methyl-3-phyty1-1- hydroxy-naphthalene is converted to 2-methyl-3-phytyl- 1,4-naphthoquinone.
EXAMPLE 11 By the procedure of Example 1, 2,3-dimethoxy-5- methyl 6 all trans farnesyl-phenol is converted to 2,3-dimethoxy-S-methyl 6 all trans farnesyl-farnesyl-1,4-benzoquinone.
EXAMPLE 12 By the procedure of Example 1, 2,3-dimethoxy-5- methyl-6-phytyl phenol is converted to 2,3-dimethoxy-5- methyl-6-phytyl-1,4-benzoquinone.
wherein R R and R are hydrogen, lower alkyl, lower alkoxy and halogen and R is hydrogen, lower alkoxy, halogen, lower alkyl and a radical of the formula -CHZGH=(II CHgCHz-CH=-C- CH3 CH3 CH3 n wherein the double bond shown by the dotted line can optionally be fully hydrogenated and n is an integer from 0 to 9 inclusive, with the proviso that the position para to the hydroxy group is unsubstituted to a quinone of the formula wherein R R R and R are as above comprising subjecting an aqueous medium containing said phenol to electrolysis, in an electrolytic cell having an anode and a cathode, in the presence of a hydroxylamine disulfonate of the formula HON S X wherein X is an ammonium ion, alkali metal or alkaline earth metal and m is 1 or 2 with the proviso that when X is an ammonium ion or monovalent metal, m is 2, and when X is a divalent metal, In is 1 to form said quinone at said anode.
2. The process of claim 1 wherein said phenol is 2,3,6- trimethylphenol.
3. The process of claim 1 wherein said phenol is 2,3,5- trimethylphenol.
4. The process of claim 1 wherein said electrolysis is carried out at a voltage of from 0.5 to 50 volts.
5. A process for converting a phenol of the formula OH R! R:
wherein R R and R are hydrogen, lower alkyl, lower alkoxy and halogen and R is hydrogen, lower alkoxy, halogen, lower alkyl and a radical of the formula wherein the double bond shown by the dotted line can optionally be fully hydrogenated and n is an integer from O to 9, inclusive, with the proviso that the position para to the hydroxy group is unsubstituted to quinone of the formula wherein R R R and R are as above comprising reacting an alkali metal or alkaline earth metal nitrite with sulfur dioxide in an aqueous medium to produce an aqueous solution containing a hydroxylamine of the formula HON (S0 X wherein X is an ammonium ion, alkali metal or alkaline earth metal and m is 1 or 2, with the proviso that when X is an ammonium ion or monovalent metal, m is 2, and when X is a divalent metal, m is 1 adding said phenol to said aqueous solution and subjecting said aqueous solution containing said phenol to electrolysis, in an electrolytic cell having an anode and a cathode, to produce said quinone at said anode.
6. The process of claim 5 wherein said sulfur dioxide is produced in said aqueous medium by the reaction of alkali or alkaline earth metal sulfite or bisulfite and acetic acid.
7. The process of claim 5 wherein said phenol is 2,3,5- trimethylphenol.
7. The process of claim 5 wherein said phenol is 2,3,6- trimethylphenol.
9. The process of claim 6 wherein said electrolysis is carried out at a voltage of from 0.5 to 50 volts.
10. A process for converting a naphthol of the formula:
wherein R is lower alkyl or hydrogen; R is hydrogen, lower alkyl and a radical of the formula:
CH3 CH3 CH; 11
wherein the double bond shown by the dotted line can optionally be fully hydrogenated; and n is an integer from O to 9 inclusive; to a naphthoquinone of the formula:
wherein R and R are as above; comprising subjecting an aqueous medium containing said phenol to electrolysis, in an electrolytic cell having an anode and a cathode, in the presence of a hydroxylamine disulfonate of the formula:
wherein X is an ammonium ion, alkali metal or alkaline earth metal and m is 1 or 2 with the proviso that when X is an ammonium ion or monovalent metal, m is 2, and when X is a divalent metal, In is 1 to form said naphthoquinone at said anode.
11. The process of claim 10 wherein said naphthol is 2-methyl-3-difarnesyl-hydroxynaphthalene.
12. The process of claim 10 wherein said naphthol is 2-methyl-3-phytyl-hydroxynaphthalene.
13. The process of claim 10 wherein said electrolysis is carried out at a voltage of from 0.5 to 50 volts.
14. A process for converting a naphthol of the formula:
)YRS
" wherein R is lower alkyl or hydrogen, R is hydrogen,
lower alkyl and a radical of the formula:
wherein the double bond shown by the dotted line can optionally be fully hydrogenated; and n is an integer from r O to 9 inclusive; to naphthoquinone of the formula:
wherein R and R are as above; comprising reacting an alkali metal or alkaline earth metal nitrite with sulfur dioxide in an aqueous medium to produce an aqueous solution containing a hydroxylamine of the formula:
HON (S0 X wherein X is an ammonium ion, alkali metal or alkaline earth metal and m is 1 or 2, with the proviso that when X is an ammonium ion or monovalent metal, In is 2, and when X is a divalent metal, m is 1 adding said naphthol to said aqueous solution and subjecting said aqueous solu- 10 tion containing said naphthol to electrolysis, in an elec- References Cited trolytic cell having an anode and a cathode, to produce UNITED STATES PATENTS said naphthoquinone at said anode.
15. The process of claim 14 wherein said sulfur dioxide $509,031 4/1970 CfWitZ 204 78 is produced in said aqueous medium by the reaction of 5 1,322,580 11/1919 Kltchen 204 78 alkali or alkaline earth metal sulfite or bisulfite and acetic 803,095 12/1905 Lang 204Q78 acid.
16. The process of claim 14 wherein said electrolysis is JOHN MACK Primary Examiner carried out at a voltage of from 0.5 to 50 volts. R. L. ANDREWS, Assistant Examiner
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US2809370A | 1970-04-13 | 1970-04-13 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3592748A true US3592748A (en) | 1971-07-13 |
Family
ID=21841542
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US28093A Expired - Lifetime US3592748A (en) | 1970-04-13 | 1970-04-13 | Preparation of quinones |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3592748A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4046652A (en) * | 1974-12-21 | 1977-09-06 | Hoechst Aktiengesellschaft | Process for preparing p-benzoquinone diketals |
| US4464236A (en) * | 1982-05-10 | 1984-08-07 | The Dow Chemical Company | Selective electrochemical oxidation of organic compounds |
| US4624757A (en) * | 1986-01-06 | 1986-11-25 | The Dow Chemical Company | Electrocatalytic method for producing quinone methides |
| US4624758A (en) * | 1986-01-06 | 1986-11-25 | The Dow Chemical Company | Electrocatalytic method for producing dihydroxybenzophenones |
| US4624759A (en) * | 1986-01-06 | 1986-11-25 | The Dow Chemical Company | Electrolytic method for producing quinone methides |
| EP0231053A1 (en) * | 1986-01-06 | 1987-08-05 | The Dow Chemical Company | Electrocatalytic method for producing quinone methides and dihydroxybenzophenones |
| US4689124A (en) * | 1985-09-13 | 1987-08-25 | The Dow Chemical Company | Flow-through electrolytic cell |
| US4705564A (en) * | 1985-09-13 | 1987-11-10 | The Dow Chemical Company | Flow-through electrolytic cell |
-
1970
- 1970-04-13 US US28093A patent/US3592748A/en not_active Expired - Lifetime
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4046652A (en) * | 1974-12-21 | 1977-09-06 | Hoechst Aktiengesellschaft | Process for preparing p-benzoquinone diketals |
| US4464236A (en) * | 1982-05-10 | 1984-08-07 | The Dow Chemical Company | Selective electrochemical oxidation of organic compounds |
| US4689124A (en) * | 1985-09-13 | 1987-08-25 | The Dow Chemical Company | Flow-through electrolytic cell |
| US4705564A (en) * | 1985-09-13 | 1987-11-10 | The Dow Chemical Company | Flow-through electrolytic cell |
| US4624757A (en) * | 1986-01-06 | 1986-11-25 | The Dow Chemical Company | Electrocatalytic method for producing quinone methides |
| US4624758A (en) * | 1986-01-06 | 1986-11-25 | The Dow Chemical Company | Electrocatalytic method for producing dihydroxybenzophenones |
| US4624759A (en) * | 1986-01-06 | 1986-11-25 | The Dow Chemical Company | Electrolytic method for producing quinone methides |
| EP0231053A1 (en) * | 1986-01-06 | 1987-08-05 | The Dow Chemical Company | Electrocatalytic method for producing quinone methides and dihydroxybenzophenones |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Henton et al. | Anodic oxidation of 1, 4-dimethoxy aromatic compounds. A facile route to functionalized quinone bisketals | |
| US3592748A (en) | Preparation of quinones | |
| US4078006A (en) | Process for preparing dihydric phenol derivatives | |
| FI80256C (en) | FOERFARANDE FOER OXIDERING AV EN ORGANISK FOERENING. | |
| SU1768029A3 (en) | For synthesis of 6-hydroxyalkyl-2,3- dimethoxy-5-methyl-1,4-benzoquinone | |
| US3252876A (en) | Electrochemical preparation of acyloxy derivatives of alkyl-substituted condensed ring aromatic compounds | |
| US4235683A (en) | Electrolytic preparation of benzaldehydes | |
| US3909376A (en) | Electrolytic manufacture of alkyl-substituted hydroquinones | |
| US3509031A (en) | Electrochemical oxidation of phenol | |
| US4101392A (en) | Process for electrolytic oxidative methyl-methyl coupling of cresol salts | |
| US4298438A (en) | Preparation of 4-tert.-butylbenzaldehyde | |
| CA1056763A (en) | Electrochemical manufacture of aromatic esters | |
| US2130151A (en) | Production of quinone and hydroquinone | |
| US3928432A (en) | Process for preparation of 2-methoxy-3,6-dichloro-benzoic acid | |
| US3984294A (en) | Electrochemical manufacture of pinacol | |
| DE2032081A1 (en) | ||
| Sakurai et al. | Reduction of Acetophenone by an Electrolytic Method Using Raney Nickel as Catalyst | |
| FR2582320A1 (en) | ELECTROCHEMICAL PROCESS FOR PREPARING TRIFLUORO (OR CHLORODIFLUORO OR DICHLOROFLUORO) METHYL ORGANIC DERIVATIVES | |
| US3677915A (en) | Production of octadiene and dodecatrienes | |
| EP0337175B1 (en) | Electrochemical synthesis of 2-aryl-hydroquinones | |
| US2786022A (en) | Electrolytic production of acetylene carboxylic acid | |
| US4624759A (en) | Electrolytic method for producing quinone methides | |
| US4845267A (en) | Alkyl 2-fluoro-1-methoxyethylcarbamates | |
| US3352768A (en) | Acetylene dicarboxylic acid process | |
| US3674830A (en) | Production of alpha-naphthyl methanesulfonate esters |