US3589388A - Injector nozzle retriever and insertion apparatus - Google Patents

Injector nozzle retriever and insertion apparatus Download PDF

Info

Publication number
US3589388A
US3589388A US23545A US3589388DA US3589388A US 3589388 A US3589388 A US 3589388A US 23545 A US23545 A US 23545A US 3589388D A US3589388D A US 3589388DA US 3589388 A US3589388 A US 3589388A
Authority
US
United States
Prior art keywords
nozzle assembly
valve
piston
chamber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US23545A
Inventor
Bryan L Haneline Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3589388A publication Critical patent/US3589388A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/007Cleaning
    • F02M65/008Cleaning of injectors only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/093Cleaning containers, e.g. tanks by the force of jets or sprays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/598With repair, tapping, assembly, or disassembly means
    • Y10T137/6109Tool for applying or removing valve or valve member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/598With repair, tapping, assembly, or disassembly means
    • Y10T137/612Tapping a pipe, keg, or apertured tank under pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53552Valve applying or removing

Definitions

  • the injector nozzle As will be understood, it is difficult to remove the injector nozzle from its point of mounting in the pressurized vessel because of the action of the pressures. For instance, if the nozzle has a cross-sectional area of 2 square inches and is found in a chamber with 300 p.s.i. internal pressure, the force acting on the nozzle is 600 pounds. Such a force cannot be handled through hand techniques. Moreover, once the injector nozzle is removed from the opening, great difficulties are encountered working against a force of 600 pounds in attempting to plug the opening. This process must a be repeated on replacing the repaired or serviced injector nozzle. The problems noted herein are readily apparent.
  • the present invention which meets these problems is summarized broadly as incorporating a means for controlled removal of an injector nozzle assembly from its secured position in the wall of a process vessel.
  • the present invention is particularly cooperative with an injector nozzle mounted on a bayonet which protrudes within the pressure vessel from a fitting found at the wall of the pressure vessel.
  • the fitting routinely incorporates a nippled connection for a glycol line for a source of material to be sprayed in the chamber.
  • the fitting includes the nipple connection for the glycol line, and a rearwardly facing access opening which is normally closed by a protective plug.
  • the present apparatus includes a plug or ball valve which has a full bore opening which is adapted to be placed at the rear of the flanged fitting attached to the housing.
  • an elongate cylindrical chamber closed at its rear end is connected to the ball valve.
  • This forms a long, tubular opening extending from the rear of the bayonet by a length greater than the length of the bayonet to receive it on removal.
  • Suitable valve and line connections are incorporated and in communication with the elongate cylindrical chamber to pressurize a slidable piston which carries a grappling means for engagement with the rear end of the bayonet to lock the bayonet and pull it back from its position, once the plug valve or ball valve is opened to permit passage.
  • the availability of pressure fluid on both sides of the retriever apparatus permits the retriever and the attached bayonet to be retrieved smoothly and slowly.
  • the plug valve After retrieval, the plug valve is closed and the flanged fitting attached to the pressure vessel is thusly closed to prevent leakage'lt will be noted that the foregoing process achieves removal, or can be reversed for insertion without any leakage and without any danger or harm arising from opening ofthe high pressure vessel.
  • FIG. I is a sectional view taken along the longitudinal axis of the installed bayonet and flanged fitting in the pressure vessel;
  • FIG. 2 is a view of a portion of the structure shown in FIG. 1 showing the relationship of a guide pin and shoulders formed on the bayonet to insure that the installed bayonet is oriented properly and not at some random angle;
  • FIG. 3 is an assembled view, omitting the wall of the pressure vessel, showing the bayonet, its flanged fitting, the plug valve, and the retrieval means of the present invention
  • FIG. 4 is an enlarged view of the retriever means shown in FIG. 3 with portions thereof cut away to show internal details I of construction and the retriever plunger;
  • FIG. 5 shows the retriever tool cooperative with an installed bayonet in a position to retrieve the bayonet from its flanged fitting after opening the plug valve
  • FIG. 6 is a view similar to FIG. 5 showing the bayonet fully withdrawn past the plug valve and further permitting closure of the opening left vacant in the pressure vessel housing.
  • FIG. I of the drawings illustrates a pressure vessel in dotted line at 10 having secured thereto a flanged receptacle 11 for receiving a nozzle assembly 12.
  • a glycol conduit 13, or some other suitable source of liquid supplies the liquid to be sprayed through the nozzle assembly 12,
  • the flanged receptacle 11 is joined to the side wall of the pressure vessel 10 to hold the nozzle assembly 12 in position.
  • the nozzle assembly 12 in conjunction with the flanged receptacle 11 will be first described in its normal or quiescent condition wherein the spray is injected into the pressure vessel 10. Thereafter, the apparatus of the present invention will be described cooperative with the spray nozzle and the entire system will be developed for the purpose of describing the manner in which the nozzles are removed and returned to the illustrated position.
  • the line 13 supplies a flow of glycol or some other spray material. It is connected through a fitting 17 which is welded into a cylindrical housing 18.
  • the housing 18 has a flange 19 which abuts the wall of the pressure vessel 10, the flange 19 beingwelded, bolted, or otherwise joined to the pressure vessel 10.
  • the cylindrical member 18 has an internal bore 20 which is smooth and cylindrical and of a suitable diameter to receive the nozzle assembly therethrough in sliding movement as will be described. More particularly, the cylindrical bore 20 extends rearwardly to a shoulder 21 which is somewhat larger in diameter and which is rearwardly facing for providing a stop position for the nozzle assembly as will be described.
  • the rear end of the cylindrical member 18 is threaded at 22 to receive an assembly generally indicated at 24 as will be described.
  • the assembly 24 includes multiple components but is in the main a connector assembly which is closed by incorporating a plug 25 which is threadedly received within a tubular coupling 26 which is locked in position by a knockoff clamp 27.
  • the clamp 27 draws the cylindrical coupling 26 sealing contact with an adapter 28.
  • the whole assembly 24 provides a sealed internal chamber permitting access to the rear of the nozzle assembly as will be described.
  • a perpendicular cylindrical chamber 32 which is immediately opposite of the glycol inlet 17 previously mentioned.
  • the chamber 32 is internally threaded and receives a lock ring 33 which secures in position an Allen wrench removable threaded lock pin 34 which secures the nozzle assembly 12 in fixed position with respect to the flanged receptacle 11. It will be noted that the lock pin 32 protrudes into the nozzle assembly 12 to prevent its removal except after the pin 34 has been withdrawn. A seal prevents leakage.
  • FIG. 2 shows a pair of shoulders 37 and 38 which wrap fully around the nozzle assembly 12, each in the form of about onehalf of a helix, and which terminate in a semicircular recess 39 which mates with the protruding pin 36 to position the nozzle assembly 12 with the correct orientation.
  • the pin 36 will strike either the shoulder 37 or the shoulder 38, and as the nozzle assembly is driven home, it is rotated by the pin 36 bearing against one of the two shoulders until the pin comes to rest in the receptacle 39 which is dished out at the end of the two shoulders 37 and 38. This locates the nozzle assembly in the correctly oriented posture. This also positions it so that the pin 34 which locks it in position can be inserted.
  • the numerals 40 and 41 indicate a pair of O-rings which fully encircle the nozzle assembly 12 in appropriate slots formed for the O-rings.
  • the O-rings seal against liquid flow therepast.
  • the glycol line I3 and its connective receptacle 17 are in communication with an opening 42 in the flanged receptacle II which communicates to a point amid the pair of O-rings 40 and 41.
  • a passage 43 provides an opening for the lock pin 34.
  • the nozzle assembly is drilled with an axial opening 44 for directing the glycol from the passage 42 along the length of the hollow nozzle assembly as will be described.
  • the opening 44 is formed in the forward end of a member 46 which is essentially a solid member except for the passages 42, 43 and 44.
  • the member 46 comprises the solid body portion of the nozzle assembly 12. At its forward end, it has a neck portion which is of reduced diameter for seating a thinwalled pipelike member 48 which comprises the great length of the nozzle assembly 12.
  • the hollow member 48 is plugged at its forward end by a streamlined plug 49 and a number of nozzle assemblies represented by the numerals 50 are located at strategic locations along the length of the member 48.
  • the member 48 is preferably brazed or welded to the solid portion 46.
  • the member 46 likewise provides support for the shoulder 38 which is a contour, or half-helix, as mentioned above, wrapping around the pipelike member 48.
  • the numeral 52 identifies an undercut rearwardly facing opening for use with a grapple as will be described. It should be particularly noted that the opening 52 is undercut or has an internal shoulder which protrudes inwardly and which overlays a portion of increased diameter.
  • the nozzle assembly I2 has been described as it fits within the flanged receptacle 11. It will be noted that the nozzle assembly I2 is movable to the rear as viewed in FIG. I on removal of the lock pin 34. On forward motion, it achieves the desired relative rotational angle or position with respect to the flange 11 through operation of the guide pin 36. IN sum and substance, the nozzle assembly 12 has been described to this juncture, and now the remainder of the equipment will be described for removing and returning the nozzle assembly 12 without forming a leak or opening in the pressure vessel [0.
  • FIG. 3 illustrates the connection of additional equipment for removing the nozzle assembly 12.
  • threaded connections are achieved by removing the plug 25 shown in FIG. I from the connector means 24 and threading it to a plug or ball valve 54.
  • the plug or ball valve 54 is likewise connected with an additional connective means 56 which is similar to the means 24.
  • the means 56 is threaded to an elongate cylindrical member 58 which is closed at its back end by an additional connector means 60 which is similar to the means 24 and 56 previously noted.
  • the rear end is closed by a plug 61 which is similar to the plug 25 shown in FIG. I.
  • An axial passage is formed from the flanged receptacle 1] through the means 24, 54, 56, and into the cylindrical member 58.
  • the passage is of sufficient length to receive the nozzle assembly 12 when it is fully withdrawn.
  • the diameter is sufficiently large to receive it with adequate clearance.
  • the clearance should be something on the order of that provided at the shoulder 21 shown in FIG. I, it being noted that the relatively narrow bore at in the flanged receptacle II must provide a sealing surface cooperative with the O-ring seal members 40 and 41.
  • the means 24 in FIG. 3 is hollow and incorporates suitable threads for connection with the ball or plug valve 54.
  • the plug valve 54 is of conventional construction and includes either a plug or ball which is opened by rotating the stem which protrudes from the valve 54. Moreover, the opening in the ball or plug within the valve 54 is of sufficient diameter to permit the nozzle assembly to be withdrawn through the valve 54.
  • the means 56 serves the same function as the means 24, namely that of being a connector between the major components of the present invention.
  • the means 58 is a support for a control panel 60.
  • the panel 60 includes pressure gauges, valves and plumbing fittings as needed. It will be noted in FIG. 6 that the means 58 is preferably of one-piece construction, but extends through a portion of the structure of the control panel 60 as a support for it. The manner of support is of no particular consequence as will be understood.
  • the cylindrical member 58 is connected at its rear end through a feed line 62 with a source of pressure fluid such as glycol.
  • the line 62 communicates from the control panel 60 to the rear end of the cylindrical chamber 58.
  • the control panel 60 is connected by a line 63 at the forward end of the means 58. The line 63 will be described along with the line 62 when operation of the device is described hereinafter.
  • a piston assembly 64 is slidable within the member 58 in response to the differential pressure acting on the piston.
  • the piston assembly includes a cylindrical body portion 65.
  • the cylindrical portion 65 extends forwardly and has a threaded opening at 66 which is adapted to receive a grapple means 67.
  • the means 67 is at least partially hollow or tubular, and two or three slots 68 are cut in the means 67 to define a plurality of fingers as shown.
  • the fingers extend forwardly in a circular arrangement, save for the portion cut away at the slots and a peripheral lip 69 is formed on the several fingers for the purpose of engaging the opening 52 shown in FIG. 1.
  • the several fingers are springlike for the purpose of fitting into the opening 52 and expanding so that the lip 69 locks the means 64 to the nozzle assembly 12. It will be noted that three or four fingers are sufficient in comprising the grapple means 67. Moreover, the grapple means 67 is of sufficient springiness to adequately engage and make fast the two members described.
  • the piston 64 includes a tubular extension at 70 which is joined to the body portion 65.
  • the tubular portion 70 is a support means for a pair of packing members 71 and 72.
  • the packing members 71 and 72 will be noted to be facing in opposite directions in the bore of the tubular member 58.
  • the packing members seal so that leakage of pressure fluid past the piston means 64 is impossible.
  • the packing members 71 and 72 forbid fluid communication between the lines 62 and 63 as shown in FIG. 3. So long as the packing members are located in the chamber 58 with its narrow diameter or between the two inlets associated with the feed lines 62 and 63, the pressure seal is preferably maintained.
  • the numeral 73 identifies an inlet or supply line connection in the control panel 60. Preferably, it is connected with the glycol source such as the line 13 shown in FIG. 1.
  • the line 73 communicates through a needle valve 74 which can be cracked over so slightly to very accurately control the rate of flow.
  • the needle valve 74 is connectedwith the gauge 75 which indicates the glycol or driving pressure which moves the piston 64.
  • the piston assembly 64 is communicated with the supply line by the valve 74 previously described.
  • the numeral 76 identifies a glycol drain valve which drops the pressure in the line 62 and to the rear of the piston assembly 64 at the completion of the pressure step in operation as will be set forth hereinafter.
  • the numeral 77 identifies an additional needle valve which vents the line 63.
  • the line 63 is thus connected forward of the piston assembly 64 when it is in the normal withdrawn posture of FIG. 4. Additionally, the valve 77 is connected to an indicator or pressuring meter 78 which indicates the pressure acting on the piston on its upstream face.
  • control panel 60 and its associated apparatus have been described to this juncture as including a means for pressurizing the piston at its rear face or at its forward face.
  • the pressure at both faces can be reduced by venting to atmosphere through the valves 76 and 77 as described.
  • the nozzle assembly 12 is to be serviced by removing, cleaning, and returning it to the installation in question. It will be further assumed that the plug 25 is installed as shown in FIG. 1. If this is the case, the plug 25 is first removed to expose the opening 52 for later connection with the grapple means 67 as will be described. The plug 25 is removed and the elongate cylindrical members are assembled in the manner of FIG. 3. That is to say, the connector means 24 is engaged with the plug or ball valve 54, the valve being closed, and the connector means 56 is joined to the tubular member 58. Preferably, the valves 74, 76 and 77 are likewise closed. Once the threaded connections are made in the manner illustrated in FIG. 3, the nozzle assembly 12 is prepared or exposed for removal.
  • the glycol liquid through the line 13 is terminated.
  • the piston assembly 64 is at the right hand end of the tubular member 58 as best illustrated in the sectional view of FIG. 4.
  • the valve 74 is cracked slightly to apply glycol pressure through the line 62 at the rear of the piston assembly 64.
  • the valve 77 is slightly cracked open to exhaust the pressure on the forward face of the piston 64.
  • the piston thus inches forwardly in the member 58.
  • the valve 54 is turned from fully closed to fully opened as illustrated in FIG. 5.
  • the glycol pressure is continuously increased until the piston 64 passes through the valve 54 and the grapple means 67 at its forward end engages the opening 52 of the nozzle assembly 12.
  • the member 58 maintains a relatively constant diameter so that a pressure seal is maintained at the seal members 71 and 72 even though the piston traverses the length of the member 58.
  • the grapple 67 is jammed into the rear opening of the nozzle assembly 12 to engage it in the posture shown in FIG. 5.
  • the pin 34 is withdrawn to free the nozzle assembly 12 of its fixed connection with the flanged receptacle 11.
  • pressure is maintained on the rear face of the piston assembly 64.
  • the vent line 63 is located at a point no further rearward than the front packing member 71 so that it does not bleed the glycol pressure to atmosphere.
  • vent valve 77 is closed and at this juncture, the piston 64 and the nozzle assembly 12, acting as a single unit, are maintained in a hydrostatic balance.
  • the glycol pressure far exceeds the pressure within the chamber so that the removable assembly 12 and piston 64 are forced to the left as shown in FIG. 5.
  • the next step is retrieval of the piston 64 connected with the nozzle assembly 12.
  • the valve 77 is fully closed.
  • the valve 74 is now fully closed and the valve 76 is slightly opened to vent to atmosphere. This tends to reduce the pressure on the back face of the piston 64.
  • the pressure within the chamber 10 acts on the forward face of the entire assembly as a single unit and forces the assembly slowly to the right.
  • the piston 64 moves to the right connected to the nozzle assembly 12.
  • the movement is preferably maintained somewhat slowly to keep the piston assembly from rebounding off the back plug at 60 shown in FIG. 3.
  • FIG. 6 showing the nozzle assembly 12 moving to the right.
  • the pressure within the vessel 10 is used as the driving force while the rate of withdrawal is controlled by manipulating the needle valve 75.
  • the entire nozzle assembly is withdrawn past the plug valve 54.
  • this then permits the plug valve 54 to be closed.
  • leakage of pressure fluid from the vessel 10 is forbidden.
  • the valve 77 is then opened to reduce pressure between the valve 54 on the seal 71. This then permits the fitting 56 to be disconnected.
  • the nozzle assembly 12 is retrieved from the cylindrical chamber 58 and is disconnected from the grapple 67 for servicing.
  • the flanged receptacle 1] is left without a nozzle assembly but its rear opening is plugged to prevent leakage.
  • the nozzle assembly can then be serviced, or in the alternative, a replacement assembly can be positioned in the tubular member 58 for return to the illustrated position of FIG. 5. All this is accomplished while the plug or ball valve 54 is closed.
  • the nozzle assembly is returned to the illustrated position. This is accomplished by first engaging the connective coupling 56 with the closed valve 54. This attaches all the necessary apparatus. Within the tubular chamber 58, the piston 64 is engaged by its grapple means 67'with a fresh or repaired nozzle assembly 12. The valves 74, 76 and 77 are now closed. Since this is a closed system, there is no particular surge of pressure through the valve 54 when it is opened. The valve 54 is then opened and the initial condition of the equipment finds the piston 64 at the far right-hand end of the equipment and connected with the replacement nozzle assembly. The valve 74 is cracked slightly to pressure the back face of the piston which drives it slowly against the pressure within the chamber 10 to return the nozzle assembly to its required position.
  • the piston 64 and connected nozzle assembly 12 are resident in the tubular member 58.
  • the entire assemblage is connected to the back of the plug valve 54, and the valve 54 is then opened.
  • the valve 74 is opened to increase the pressure on the back face of the piston which gently urges the piston and nozzle assembly to the left. As shown in FIG. 5, it moves to the left and forces the nozzle assembly 12 through the flanged receptacle 11.
  • An apparatus for manipulation of an elongate nozzle assembly relative to a supportive receptacle with which an exposed opening permitting access to the nozzle assembly comprising:
  • valve means having an open position permitting passage of the nozzle assembly and said piston means therethrough, said valve means being found between said chamber means and the supportive receptacle.
  • an alignment pin means protruding adjacent to the path of movement of said elongate nozzle assembly
  • shoulder means on the nozzle assembly for coacting with said pin means, said shoulder means extending at least partly around the circumference of the nozzle assembly such that relative movement of the nozzle assembly with respect to said pin means rotates the nozzle assembly to a desired attitude with respect to the receptacle.
  • seal means carried on said piston means for preventing leakage under pressure along said piston means
  • third valve means for bleeding fluid from one end of said chamber means
  • valve means connected to the second end of said chamber means for connection and axial alignment with the receptacle opening and being further aligned with the elongate nozzle assembly;
  • said fourth valve means permitting said piston means to pass therethrough to bring said grappling means into con tact with said coacting means, and thereafter permitting movement of said piston means and the nozzle assembly as a unit back through said fourth valve means in response to a pressure differential across said piston means, which differential is at least partially controlled by manipulation of said third valve means.
  • a supply line communicated through said first valve means with a suitable source of pressure fluid and connected to one end of said chamber means;
  • said third valve means connected with the supply line and vented from said supply line for the purpose of dropping the pressure in said supply line, a pressure gauge indica tive of pressure in said supply line;
  • a pressure gauge indicative of the pressure in the line.
  • said piston means includes:
  • first and second seal means one of said seal means facing forwardly of said piston means and the other facing rearwardly whereby the two seal means cooperatively seal against pressure leaka e past the iston means in said c amber means on hot forward an rearward movement of said piston means;
  • a plurality of at least two fingers extending forwardly of said piston means and being flexible for movement radially inwardly and outwardly and having a protruding partially encircling lip on the exterior thereof near the forward end thereof.
  • said nozzle assembly includes an elongate cylindrical structure having an opening means at the rear thereof, said opening means having an undercut portion which is of greater diameter than the opening thereof for the purpose of engaging and connecting with a grappling means carried on said piston means.
  • said piston means includes:
  • first seal means carried on said elongate body
  • said first and second seal means cooperatively sealing against the wall of said chamber means against leakage past said piston means during forward and rearward movement of said piston means in said chamber means;
  • said elongate body supporting a forwardly extending grappling means which includes at least a pair of fingers which are springingly movable into an opening, a portion of which is smaller in diameter than said pair of fingers.
  • said chamber means includes:

Abstract

A problem exists in cleaning and servicing injector nozzles which normally extend into a high pressure atmosphere. Inasmuch as they cannot simply be removed from their point of installation, a means and system are needed for removal. The present invention incorporates a housing which surrounds a pressure-driven retriever which has a forward grappling means, the entirety of the retriever screwing onto the rear of an injector nozzle assembly, the assembly being supported by a flanged structure, the retriever moving forwardly to engage and grasp the assembly and pull it back into the retriever housing, thereafter permitting closure of a valve to plug the opening left on removal of the assembly.

Description

United States Patent [72] inventor Bryan L. Haneline. Jr.
5739 Cerritos St.. Houston, Tex. 77036 {21] Appl. No. 23,545 {22] Filed Mar. 30, 1970 [45) Patented June 29, 1971 (54] INJECTOR NOZZLE RETRIEVER AND 'llNSERl'lON APPARATUS 10 Claims, 6 Drawing Figs.
[52] U.S.Cl 137/315, 137/317, 29/213, 118/302, 134/167 [51]- Int. Cl ..F16k 43/00, B23p 19/04. B08b 3/02 [50] Field otSearch 137/315, 317, 318;239/600; 29/213; 134/167, 168; 1 18/302 [56] References Cited UNITED STATES PATENTS' 1,181,910 5/1916 MeGilvray 137/317X 2,870,629 1/1959 Willis 137/318 X 3,031,742 5/1962 Aver 291/213 3,456,679 7/1969 Graham; 137/315 Primary Examiner- Henry T. Klinksiek A(t0rne vDona1d Gunn ABSTRACT: A problem exists in cleaning and servicing injector nozzles which normally extend into a high pressure atmosphere. Inasmuch as they cannot simply be removed from their point of installation, a means and system are needed for PATENIED JUN29 l97| SHEET 1 BF 3 Bryan L.Haneline Jr l/vvENroi? BY MW ATTORNEY PATENTED JUN29 197i SHEET 2 [1F 3 ATTORNEY SHEET 3 [IF 3 PATENIED JUN29 I971 Bryan L. HaneUneJ/r INVENTOR BY flaw/4M ATTORNEY INJECTOR NOZZLE RETRIEVER AND INSERTION In a substantial number of processes, it is necessary to inject aspray through a nozzle. A common environment is found in petrochemical processing plants wherein the process found within a pressurized chamber may require a spray, notwithstanding the fact that the pressure within the chamber is perhaps 300 psi. or greater. While success has been had with the maintenance of a spray in suchatmosphere, nevertheless, the spray injectors must occasionally be serviced. Quite often it is not possible to shut down the entirety of the equipment merely to clean a spray nozzle, replace the component, or perform needed repair work. As will be understood, it is difficult to remove the injector nozzle from its point of mounting in the pressurized vessel because of the action of the pressures. For instance, if the nozzle has a cross-sectional area of 2 square inches and is found in a chamber with 300 p.s.i. internal pressure, the force acting on the nozzle is 600 pounds. Such a force cannot be handled through hand techniques. Moreover, once the injector nozzle is removed from the opening, great difficulties are encountered working against a force of 600 pounds in attempting to plug the opening. This process must a be repeated on replacing the repaired or serviced injector nozzle. The problems noted herein are readily apparent.
The present invention which meets these problems is summarized broadly as incorporating a means for controlled removal of an injector nozzle assembly from its secured position in the wall of a process vessel. The present invention is particularly cooperative with an injector nozzle mounted on a bayonet which protrudes within the pressure vessel from a fitting found at the wall of the pressure vessel. The fitting routinely incorporates a nippled connection for a glycol line for a source of material to be sprayed in the chamber. The fitting includes the nipple connection for the glycol line, and a rearwardly facing access opening which is normally closed by a protective plug. The present apparatus includes a plug or ball valve which has a full bore opening which is adapted to be placed at the rear of the flanged fitting attached to the housing. Additionally, an elongate cylindrical chamber closed at its rear end is connected to the ball valve. This forms a long, tubular opening extending from the rear of the bayonet by a length greater than the length of the bayonet to receive it on removal. Suitable valve and line connections are incorporated and in communication with the elongate cylindrical chamber to pressurize a slidable piston which carries a grappling means for engagement with the rear end of the bayonet to lock the bayonet and pull it back from its position, once the plug valve or ball valve is opened to permit passage. The availability of pressure fluid on both sides of the retriever apparatus permits the retriever and the attached bayonet to be retrieved smoothly and slowly. After retrieval, the plug valve is closed and the flanged fitting attached to the pressure vessel is thusly closed to prevent leakage'lt will be noted that the foregoing process achieves removal, or can be reversed for insertion without any leakage and without any danger or harm arising from opening ofthe high pressure vessel.
Many objects and advantages of the present invention will become more readily apparent from a consideration of the following specification and drawings, wherein:
FIG. I is a sectional view taken along the longitudinal axis of the installed bayonet and flanged fitting in the pressure vessel;
FIG. 2 is a view of a portion of the structure shown in FIG. 1 showing the relationship of a guide pin and shoulders formed on the bayonet to insure that the installed bayonet is oriented properly and not at some random angle;
FIG. 3 is an assembled view, omitting the wall of the pressure vessel, showing the bayonet, its flanged fitting, the plug valve, and the retrieval means of the present invention;
FIG. 4 is an enlarged view of the retriever means shown in FIG. 3 with portions thereof cut away to show internal details I of construction and the retriever plunger;
FIG. 5 shows the retriever tool cooperative with an installed bayonet in a position to retrieve the bayonet from its flanged fitting after opening the plug valve; and,
FIG. 6 is a view similar to FIG. 5 showing the bayonet fully withdrawn past the plug valve and further permitting closure of the opening left vacant in the pressure vessel housing.
Attention is first directed to FIG. I of the drawings which illustrates a pressure vessel in dotted line at 10 having secured thereto a flanged receptacle 11 for receiving a nozzle assembly 12. A glycol conduit 13, or some other suitable source of liquid, supplies the liquid to be sprayed through the nozzle assembly 12, The flanged receptacle 11 is joined to the side wall of the pressure vessel 10 to hold the nozzle assembly 12 in position.
The nozzle assembly 12 in conjunction with the flanged receptacle 11 will be first described in its normal or quiescent condition wherein the spray is injected into the pressure vessel 10. Thereafter, the apparatus of the present invention will be described cooperative with the spray nozzle and the entire system will be developed for the purpose of describing the manner in which the nozzles are removed and returned to the illustrated position.
In FIG. 1, the line 13 supplies a flow of glycol or some other spray material. It is connected through a fitting 17 which is welded into a cylindrical housing 18. The housing 18 has a flange 19 which abuts the wall of the pressure vessel 10, the flange 19 beingwelded, bolted, or otherwise joined to the pressure vessel 10. The cylindrical member 18 has an internal bore 20 which is smooth and cylindrical and of a suitable diameter to receive the nozzle assembly therethrough in sliding movement as will be described. More particularly, the cylindrical bore 20 extends rearwardly to a shoulder 21 which is somewhat larger in diameter and which is rearwardly facing for providing a stop position for the nozzle assembly as will be described. The rear end of the cylindrical member 18 is threaded at 22 to receive an assembly generally indicated at 24 as will be described.
The assembly 24 includes multiple components but is in the main a connector assembly which is closed by incorporating a plug 25 which is threadedly received within a tubular coupling 26 which is locked in position by a knockoff clamp 27. The clamp 27 draws the cylindrical coupling 26 sealing contact with an adapter 28. The whole assembly 24 provides a sealed internal chamber permitting access to the rear of the nozzle assembly as will be described.
Attention is next directed to a perpendicular cylindrical chamber 32 which is immediately opposite of the glycol inlet 17 previously mentioned. The chamber 32 is internally threaded and receives a lock ring 33 which secures in position an Allen wrench removable threaded lock pin 34 which secures the nozzle assembly 12 in fixed position with respect to the flanged receptacle 11. It will be noted that the lock pin 32 protrudes into the nozzle assembly 12 to prevent its removal except after the pin 34 has been withdrawn. A seal prevents leakage.
It will be noted that the nozzle assembly 12 is pinned in position by the pin 34. However, the nozzle assembly must be rotated to a particular angleto receive the pin 34. For this purpose, a pin 36 protruding through the sidewall of the flanged receptacle 11 extends into the axial opening 20 for the purpose of turning the nozzle assembly 12 to the correctly oriented position. Attention is momentarily directed to FIG. 2, which shows a pair of shoulders 37 and 38 which wrap fully around the nozzle assembly 12, each in the form of about onehalf of a helix, and which terminate in a semicircular recess 39 which mates with the protruding pin 36 to position the nozzle assembly 12 with the correct orientation. Thus, if the nozzle assembly is inserted at some random angle, the pin 36 will strike either the shoulder 37 or the shoulder 38, and as the nozzle assembly is driven home, it is rotated by the pin 36 bearing against one of the two shoulders until the pin comes to rest in the receptacle 39 which is dished out at the end of the two shoulders 37 and 38. This locates the nozzle assembly in the correctly oriented posture. This also positions it so that the pin 34 which locks it in position can be inserted.
Referring again to FIG. I, the numerals 40 and 41 indicate a pair of O-rings which fully encircle the nozzle assembly 12 in appropriate slots formed for the O-rings. The O-rings seal against liquid flow therepast. The glycol line I3 and its connective receptacle 17 are in communication with an opening 42 in the flanged receptacle II which communicates to a point amid the pair of O- rings 40 and 41. A passage 43 provides an opening for the lock pin 34. Additionally, the nozzle assembly is drilled with an axial opening 44 for directing the glycol from the passage 42 along the length of the hollow nozzle assembly as will be described.
The opening 44 is formed in the forward end of a member 46 which is essentially a solid member except for the passages 42, 43 and 44. The member 46 comprises the solid body portion of the nozzle assembly 12. At its forward end, it has a neck portion which is of reduced diameter for seating a thinwalled pipelike member 48 which comprises the great length of the nozzle assembly 12. The hollow member 48 is plugged at its forward end by a streamlined plug 49 and a number of nozzle assemblies represented by the numerals 50 are located at strategic locations along the length of the member 48. The member 48 is preferably brazed or welded to the solid portion 46. The member 46 likewise provides support for the shoulder 38 which is a contour, or half-helix, as mentioned above, wrapping around the pipelike member 48.
At the rear of the solid cylindrical portion 46 of the nozzle assembly 12, the numeral 52 identifies an undercut rearwardly facing opening for use with a grapple as will be described. It should be particularly noted that the opening 52 is undercut or has an internal shoulder which protrudes inwardly and which overlays a portion of increased diameter.
To this juncture, the nozzle assembly I2 has been described as it fits within the flanged receptacle 11. It will be noted that the nozzle assembly I2 is movable to the rear as viewed in FIG. I on removal of the lock pin 34. On forward motion, it achieves the desired relative rotational angle or position with respect to the flange 11 through operation of the guide pin 36. IN sum and substance, the nozzle assembly 12 has been described to this juncture, and now the remainder of the equipment will be described for removing and returning the nozzle assembly 12 without forming a leak or opening in the pressure vessel [0.
Attention is next directed to FIG. 3, of the drawings which illustrates the connection of additional equipment for removing the nozzle assembly 12. In FIG. 3, threaded connections are achieved by removing the plug 25 shown in FIG. I from the connector means 24 and threading it to a plug or ball valve 54. The plug or ball valve 54 is likewise connected with an additional connective means 56 which is similar to the means 24. The means 56 is threaded to an elongate cylindrical member 58 which is closed at its back end by an additional connector means 60 which is similar to the means 24 and 56 previously noted. The rear end is closed by a plug 61 which is similar to the plug 25 shown in FIG. I.
An axial passage is formed from the flanged receptacle 1] through the means 24, 54, 56, and into the cylindrical member 58. The passage is of sufficient length to receive the nozzle assembly 12 when it is fully withdrawn. The diameter is sufficiently large to receive it with adequate clearance. The clearance should be something on the order of that provided at the shoulder 21 shown in FIG. I, it being noted that the relatively narrow bore at in the flanged receptacle II must provide a sealing surface cooperative with the O- ring seal members 40 and 41. Thus, when the nozzle assembly pulls free of the relatively narrow bore at 20, and the portion 46 passes the shoulder 21, it moves rather easily and freely within the elongate tubular means permitting withdrawal of the nozzle assembly.
The means 24 in FIG. 3 is hollow and incorporates suitable threads for connection with the ball or plug valve 54. The plug valve 54 is of conventional construction and includes either a plug or ball which is opened by rotating the stem which protrudes from the valve 54. Moreover, the opening in the ball or plug within the valve 54 is of sufficient diameter to permit the nozzle assembly to be withdrawn through the valve 54. The means 56 serves the same function as the means 24, namely that of being a connector between the major components of the present invention.
The means 58 is a support for a control panel 60. The panel 60 includes pressure gauges, valves and plumbing fittings as needed. It will be noted in FIG. 6 that the means 58 is preferably of one-piece construction, but extends through a portion of the structure of the control panel 60 as a support for it. The manner of support is of no particular consequence as will be understood.
In FIG. 3, the cylindrical member 58 is connected at its rear end through a feed line 62 with a source of pressure fluid such as glycol. The line 62 communicates from the control panel 60 to the rear end of the cylindrical chamber 58. Additionally, the control panel 60 is connected by a line 63 at the forward end of the means 58. The line 63 will be described along with the line 62 when operation of the device is described hereinafter.
As shown in the enlarged sectional view of FIG. 4, a piston assembly 64 is slidable within the member 58 in response to the differential pressure acting on the piston. The piston assembly includes a cylindrical body portion 65. The cylindrical portion 65 extends forwardly and has a threaded opening at 66 which is adapted to receive a grapple means 67. The means 67 is at least partially hollow or tubular, and two or three slots 68 are cut in the means 67 to define a plurality of fingers as shown. The fingers extend forwardly in a circular arrangement, save for the portion cut away at the slots and a peripheral lip 69 is formed on the several fingers for the purpose of engaging the opening 52 shown in FIG. 1. The several fingers are springlike for the purpose of fitting into the opening 52 and expanding so that the lip 69 locks the means 64 to the nozzle assembly 12. It will be noted that three or four fingers are sufficient in comprising the grapple means 67. Moreover, the grapple means 67 is of sufficient springiness to adequately engage and make fast the two members described.
The piston 64 includes a tubular extension at 70 which is joined to the body portion 65. The tubular portion 70 is a support means for a pair of packing members 71 and 72. The packing members 71 and 72 will be noted to be facing in opposite directions in the bore of the tubular member 58. The packing members seal so that leakage of pressure fluid past the piston means 64 is impossible. By way of example, the packing members 71 and 72 forbid fluid communication between the lines 62 and 63 as shown in FIG. 3. So long as the packing members are located in the chamber 58 with its narrow diameter or between the two inlets associated with the feed lines 62 and 63, the pressure seal is preferably maintained.
It will be observed from the foregoing that the piston assembly 64 traverses the member 58 in response to pressure differential. The means for providing the pressure differential will now be described. Briefly, the numeral 73 identifies an inlet or supply line connection in the control panel 60. Preferably, it is connected with the glycol source such as the line 13 shown in FIG. 1. The line 73 communicates through a needle valve 74 which can be cracked over so slightly to very accurately control the rate of flow. The needle valve 74 is connectedwith the gauge 75 which indicates the glycol or driving pressure which moves the piston 64. The piston assembly 64 is communicated with the supply line by the valve 74 previously described. Additionally, the numeral 76 identifies a glycol drain valve which drops the pressure in the line 62 and to the rear of the piston assembly 64 at the completion of the pressure step in operation as will be set forth hereinafter.
The numeral 77 identifies an additional needle valve which vents the line 63. The line 63 is thus connected forward of the piston assembly 64 when it is in the normal withdrawn posture of FIG. 4. Additionally, the valve 77 is connected to an indicator or pressuring meter 78 which indicates the pressure acting on the piston on its upstream face.
Thus, the control panel 60 and its associated apparatus have been described to this juncture as including a means for pressurizing the piston at its rear face or at its forward face. The pressure at both faces can be reduced by venting to atmosphere through the valves 76 and 77 as described.
In operation, it will be presumed that the nozzle assembly 12 is to be serviced by removing, cleaning, and returning it to the installation in question. It will be further assumed that the plug 25 is installed as shown in FIG. 1. If this is the case, the plug 25 is first removed to expose the opening 52 for later connection with the grapple means 67 as will be described. The plug 25 is removed and the elongate cylindrical members are assembled in the manner of FIG. 3. That is to say, the connector means 24 is engaged with the plug or ball valve 54, the valve being closed, and the connector means 56 is joined to the tubular member 58. Preferably, the valves 74, 76 and 77 are likewise closed. Once the threaded connections are made in the manner illustrated in FIG. 3, the nozzle assembly 12 is prepared or exposed for removal. At some juncture,the glycol liquid through the line 13 is terminated. At this time, the piston assembly 64 is at the right hand end of the tubular member 58 as best illustrated in the sectional view of FIG. 4. The valve 74 is cracked slightly to apply glycol pressure through the line 62 at the rear of the piston assembly 64. Simultaneously, the valve 77 is slightly cracked open to exhaust the pressure on the forward face of the piston 64. The piston thus inches forwardly in the member 58. At this juncture, the valve 54 is turned from fully closed to fully opened as illustrated in FIG. 5. The glycol pressure is continuously increased until the piston 64 passes through the valve 54 and the grapple means 67 at its forward end engages the opening 52 of the nozzle assembly 12. It should be noted that the member 58 maintains a relatively constant diameter so that a pressure seal is maintained at the seal members 71 and 72 even though the piston traverses the length of the member 58. In any case, the grapple 67 is jammed into the rear opening of the nozzle assembly 12 to engage it in the posture shown in FIG. 5. Once the connection is made, the pin 34 is withdrawn to free the nozzle assembly 12 of its fixed connection with the flanged receptacle 11. At this juncture, it will be noted that pressure is maintained on the rear face of the piston assembly 64. Moreover, the vent line 63 is located at a point no further rearward than the front packing member 71 so that it does not bleed the glycol pressure to atmosphere. The vent valve 77 is closed and at this juncture, the piston 64 and the nozzle assembly 12, acting as a single unit, are maintained in a hydrostatic balance. Preferably, the glycol pressure far exceeds the pressure within the chamber so that the removable assembly 12 and piston 64 are forced to the left as shown in FIG. 5.
The next step is retrieval of the piston 64 connected with the nozzle assembly 12. The valve 77 is fully closed. The valve 74 is now fully closed and the valve 76 is slightly opened to vent to atmosphere. This tends to reduce the pressure on the back face of the piston 64. As this pressure decreases, the pressure within the chamber 10 acts on the forward face of the entire assembly as a single unit and forces the assembly slowly to the right. Thus, the piston 64 moves to the right connected to the nozzle assembly 12. The movement is preferably maintained somewhat slowly to keep the piston assembly from rebounding off the back plug at 60 shown in FIG. 3.
Attention is directed to FIG. 6 showing the nozzle assembly 12 moving to the right. The pressure within the vessel 10 is used as the driving force while the rate of withdrawal is controlled by manipulating the needle valve 75. As the back side pressure is slowly reduced, the entire nozzle assembly is withdrawn past the plug valve 54. As shown in FIG. 6, this then permits the plug valve 54 to be closed. Once it is closed, leakage of pressure fluid from the vessel 10 is forbidden. The valve 77 is then opened to reduce pressure between the valve 54 on the seal 71. This then permits the fitting 56 to be disconnected. At this juncture, the nozzle assembly 12 is retrieved from the cylindrical chamber 58 and is disconnected from the grapple 67 for servicing. It will be noted that the flanged receptacle 1] is left without a nozzle assembly but its rear opening is plugged to prevent leakage. The nozzle assembly can then be serviced, or in the alternative, a replacement assembly can be positioned in the tubular member 58 for return to the illustrated position of FIG. 5. All this is accomplished while the plug or ball valve 54 is closed.
At some time immediately after retrieval of the nozzle assembly 12, or after some elapsed interval permitting service, the nozzle assembly is returned to the illustrated position. This is accomplished by first engaging the connective coupling 56 with the closed valve 54. This attaches all the necessary apparatus. Within the tubular chamber 58, the piston 64 is engaged by its grapple means 67'with a fresh or repaired nozzle assembly 12. The valves 74, 76 and 77 are now closed. Since this is a closed system, there is no particular surge of pressure through the valve 54 when it is opened. The valve 54 is then opened and the initial condition of the equipment finds the piston 64 at the far right-hand end of the equipment and connected with the replacement nozzle assembly. The valve 74 is cracked slightly to pressure the back face of the piston which drives it slowly against the pressure within the chamber 10 to return the nozzle assembly to its required position.
In returning a nozzle assembly 12 to the required connection with the flanged receptacle 11, the piston 64 and connected nozzle assembly 12 are resident in the tubular member 58. The entire assemblage is connected to the back of the plug valve 54, and the valve 54 is then opened. When the valve 54 is fully opened, this clears the axial path to permit the joined assemblage to traverse to the left of FIG. 5. The valve 74 is opened to increase the pressure on the back face of the piston which gently urges the piston and nozzle assembly to the left. As shown in FIG. 5, it moves to the left and forces the nozzle assembly 12 through the flanged receptacle 11. At this juncture, it will be noted that the angular orientation of the nozzle assembly 12 with respect to the flanged receptacle 11 is corrected by operation of the alignment pin 36 bearing against either the shoulder 37 or the shoulder 38. Once the pin 36 is seated within the cutout 39, the proper alignment is obtained and the nozzle assembly 12 has been forced home to its seated position. The lock pin 34 is then threaded inwardly of FIG. 1 to secure the nozzle assembly 12 in the required location. Once it is locked in position, glycol flow through line 13 may be resumed to the flanged receptacle 11, and glycol may again be pumped through the nozzle assembly 12. The nozzle assembly 12 is well secured in position to thereby permit disconnection of all the equipment at the quick disconnect fitting 24. That is to say, the plug valve 54 is removed and the various equipment connected to it goes with it. The plug 25 is returned to the position of FIG. 1, thusly restoring all of the equipment to the original condition of FIG. 1.
Many alterations and variations, too numerous to set forth herein, may be incorporated in the present invention without departing from the spirit thereof. The scope of the present invention is determined by the claims which are appended hereto.
What I claim is:
1. An apparatus for manipulation of an elongate nozzle assembly relative to a supportive receptacle with which an exposed opening permitting access to the nozzle assembly, comprising:
a. an elongate chamber means;
b. coupling means for connecting said elongate chamber means with the opening of the supportive receptacle;
c. slidable piston means in said chamber means;
d. means for controllably introducing pressure fluid on one side of said piston means for moving same along said chamber means;
e. there being a means for releasably connecting said piston means to the nozzle assembly; and
f. said piston means on movement through said chamber means drawing the nozzle assembly with it.
2. The invention of claim 1 including a valve means having an open position permitting passage of the nozzle assembly and said piston means therethrough, said valve means being found between said chamber means and the supportive receptacle.
3. The invention of claim 1 for use with a cylindrical elongate nozzle, and including:
a. an alignment pin means protruding adjacent to the path of movement of said elongate nozzle assembly; and,
b. shoulder means on the nozzle assembly for coacting with said pin means, said shoulder means extending at least partly around the circumference of the nozzle assembly such that relative movement of the nozzle assembly with respect to said pin means rotates the nozzle assembly to a desired attitude with respect to the receptacle.
4. The invention of claim 1 wherein the receptacle includes the improvement of a removable radially directed pin means for locking the nozzle assembly in position in the receptacle.
5. The invention of claim 1 including:
a. a valve and supply line connected to one end of said chamber means;
b. a second valve and line connected to the second end of said chamber means;
c. seal means carried on said piston means for preventing leakage under pressure along said piston means;
d. third valve means for bleeding fluid from one end of said chamber means;
e. fourth valve means connected to the second end of said chamber means for connection and axial alignment with the receptacle opening and being further aligned with the elongate nozzle assembly;
f. grappling means carried on the forward end of said piston means;
g. means for coacting with said grappling means found on the portion of the nozzle assembly exposed at the opening of the receptacle;
h. said piston means moving toward said fourth valve means on opening said valve, said second valve permitting reduction of pressure ahead of said piston means as it moves in said chamber means; and,
. said fourth valve means permitting said piston means to pass therethrough to bring said grappling means into con tact with said coacting means, and thereafter permitting movement of said piston means and the nozzle assembly as a unit back through said fourth valve means in response to a pressure differential across said piston means, which differential is at least partially controlled by manipulation of said third valve means.
6. The invention of claim 1 including a control means which incorporates:
a. first valve means;
b. second valve means;
c. third valve means;
d. a supply line communicated through said first valve means with a suitable source of pressure fluid and connected to one end of said chamber means;
e. a line connected through said second valve means and communicated with the other of the ends of said chamber means;
f. said third valve means connected with the supply line and vented from said supply line for the purpose of dropping the pressure in said supply line, a pressure gauge indica tive of pressure in said supply line; and,
g. a pressure gauge indicative of the pressure in the line.
7. The invention of claim 1 wherein said piston means includes:
a. first and second seal means, one of said seal means facing forwardly of said piston means and the other facing rearwardly whereby the two seal means cooperatively seal against pressure leaka e past the iston means in said c amber means on hot forward an rearward movement of said piston means; and,
b. a plurality of at least two fingers extending forwardly of said piston means and being flexible for movement radially inwardly and outwardly and having a protruding partially encircling lip on the exterior thereof near the forward end thereof.
8. The invention of claim 1 wherein said nozzle assembly includes an elongate cylindrical structure having an opening means at the rear thereof, said opening means having an undercut portion which is of greater diameter than the opening thereof for the purpose of engaging and connecting with a grappling means carried on said piston means.
9. The invention of claim 1 wherein said piston means includes:
a. an elongate body;
b. first seal means carried on said elongate body;
0. second seal means carried on said elongate body;
d. said first and second seal means cooperatively sealing against the wall of said chamber means against leakage past said piston means during forward and rearward movement of said piston means in said chamber means; and,
said elongate body supporting a forwardly extending grappling means which includes at least a pair of fingers which are springingly movable into an opening, a portion of which is smaller in diameter than said pair of fingers.
10. The invention of claim 1 wherein said chamber means includes:
a. a closure plug at one end;
b. a threaded connective means at the other end, said means and said end being open axially;
c. an internal wall sealingly contacted against said piston means and extending from one end to said other end;
d. an inlet port at said one end;
e. an additional port near said other end; and,
f. said means for introducing pressure fluid utilizing said port and said additional port.

Claims (10)

1. An apparatus for manipulation of an elongate nozzle assembly relative to a supportive receptacle with which an exposed opening permitting access to the nozzle assembly, comprising: a. an elongate chamber means; b. coupling means for connecting said elongate chamber means with the opening of the supportive receptacle; c. slidable piston means in said chamber means; d. means for controllably introducing pressure fluid on one side of said piston means for moving same along said chamber means; e. there being a means for releasably connecting said piston means to the nozzle assembly; and f. said piston means on movement through said chamber means drawing the nozzle assembly with it.
2. The invention of claim 1 including a valve means having an open position permitting passage of the nozzle assembly and said piston means therethrough, said valve means being found between said chamber means and the supportive receptacle.
3. The invention of claim 1 for use with a cylindrical elongate nozzle, and including: a. an alignment pin means protruding adjacent to the path of movement of said elongate nozzle assembly; and, b. shoulder means on the nozzle assembly for coacting with said pin means, said shoulder means extending at least partly around the circumference of the nozzle assembly such that relative movement of the nozzle assembly with respect to said pin means rotates the nozzle assembly to a desired attitude with respect to the receptacle.
4. The invention of claim 1 wherein the receptacle includes the improvement of a removable radially directed pin means for locking the nozzle assembly in position in the receptacle.
5. The invention of claim 1 including: a. a vaLve and supply line connected to one end of said chamber means; b. a second valve and line connected to the second end of said chamber means; c. seal means carried on said piston means for preventing leakage under pressure along said piston means; d. third valve means for bleeding fluid from one end of said chamber means; e. fourth valve means connected to the second end of said chamber means for connection and axial alignment with the receptacle opening and being further aligned with the elongate nozzle assembly; f. grappling means carried on the forward end of said piston means; g. means for coacting with said grappling means found on the portion of the nozzle assembly exposed at the opening of the receptacle; h. said piston means moving toward said fourth valve means on opening said valve, said second valve permitting reduction of pressure ahead of said piston means as it moves in said chamber means; and, i. said fourth valve means permitting said piston means to pass therethrough to bring said grappling means into contact with said coacting means, and thereafter permitting movement of said piston means and the nozzle assembly as a unit back through said fourth valve means in response to a pressure differential across said piston means, which differential is at least partially controlled by manipulation of said third valve means.
6. The invention of claim 1 including a control means which incorporates: a. first valve means; b. second valve means; c. third valve means; d. a supply line communicated through said first valve means with a suitable source of pressure fluid and connected to one end of said chamber means; e. a line connected through said second valve means and communicated with the other of the ends of said chamber means; f. said third valve means connected with the supply line and vented from said supply line for the purpose of dropping the pressure in said supply line, a pressure gauge indicative of pressure in said supply line; and, g. a pressure gauge indicative of the pressure in the line.
7. The invention of claim 1 wherein said piston means includes: a. first and second seal means, one of said seal means facing forwardly of said piston means and the other facing rearwardly whereby the two seal means cooperatively seal against pressure leakage past the piston means in said chamber means on both forward and rearward movement of said piston means; and, b. a plurality of at least two fingers extending forwardly of said piston means and being flexible for movement radially inwardly and outwardly and having a protruding partially encircling lip on the exterior thereof near the forward end thereof.
8. The invention of claim 1 wherein said nozzle assembly includes an elongate cylindrical structure having an opening means at the rear thereof, said opening means having an undercut portion which is of greater diameter than the opening thereof for the purpose of engaging and connecting with a grappling means carried on said piston means.
9. The invention of claim 1 wherein said piston means includes: a. an elongate body; b. first seal means carried on said elongate body; c. second seal means carried on said elongate body; d. said first and second seal means cooperatively sealing against the wall of said chamber means against leakage past said piston means during forward and rearward movement of said piston means in said chamber means; and, e. said elongate body supporting a forwardly extending grappling means which includes at least a pair of fingers which are springingly movable into an opening, a portion of which is smaller in diameter than said pair of fingers.
10. The invention of claim 1 wherein said chamber means includes: a. a closure plug at one end; b. a threaded connective means at the other end, said means and said end being open axially; c. an internal wall sealingly contacted against said piston means and exteNding from one end to said other end; d. an inlet port at said one end; e. an additional port near said other end; and, f. said means for introducing pressure fluid utilizing said port and said additional port.
US23545A 1970-03-30 1970-03-30 Injector nozzle retriever and insertion apparatus Expired - Lifetime US3589388A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2354570A 1970-03-30 1970-03-30

Publications (1)

Publication Number Publication Date
US3589388A true US3589388A (en) 1971-06-29

Family

ID=21815753

Family Applications (1)

Application Number Title Priority Date Filing Date
US23545A Expired - Lifetime US3589388A (en) 1970-03-30 1970-03-30 Injector nozzle retriever and insertion apparatus

Country Status (1)

Country Link
US (1) US3589388A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707757A (en) * 1970-09-02 1973-01-02 United Aircraft Corp In-line replacement tool
US3832904A (en) * 1972-03-15 1974-09-03 Krupp Gmbh Apparatus for monitoring and taking gas samples in shaft furnaces
US3901252A (en) * 1974-08-07 1975-08-26 Dow Chemical Co Tube cleaning apparatus
US4282894A (en) * 1977-09-12 1981-08-11 Northern Natural Gas Company Pressure-operated portable siphon apparatus for removing concentrations of liquid from a gas pipeline
US4344570A (en) * 1980-08-11 1982-08-17 Paseman Richard R Apparatus for cleaning the interior of tubes
US4520773A (en) * 1982-03-18 1985-06-04 Miller Special Tools Division Triangle Corporation Fuel injection cleaning and testing system and apparatus
US4605028A (en) * 1984-08-20 1986-08-12 Paseman Richard R Tube cleaning apparatus
US4606311A (en) * 1982-01-04 1986-08-19 Miller Special Tools, Div. Of Triangle Corp. Fuel injection cleaning system and apparatus
US5002120A (en) * 1990-03-08 1991-03-26 Boisture Thomas B Multi-lance tube cleaning system
US5022463A (en) * 1990-03-08 1991-06-11 Ohmstede Mechanical Services, Inc. Multi-hose flexible lance tube cleaning system
US5031691A (en) * 1990-03-08 1991-07-16 Ohmstede Mechanical Services, Inc. Multi-lance tube cleaning system having sliding plate
US5067558A (en) * 1990-03-08 1991-11-26 Ohmstede Mechanical Services, Inc. Multi-lance tube cleaning system
US5097806A (en) * 1991-05-06 1992-03-24 Wynn Oil Company Multi-mode engine cleaning fluid application apparatus and method
US5129455A (en) * 1990-03-08 1992-07-14 Ohmstede Mechanical Services, Inc. Multi-lance tube cleaning system having flexible portions
US5257604A (en) * 1991-05-06 1993-11-02 Wynn Oil Company Multi-mode engine cleaning fluid application apparatus and method
US5390636A (en) * 1994-02-14 1995-02-21 Wynn Oil Company Coolant transfer apparatus and method, for engine/radiator cooling system
US5425333A (en) * 1994-02-14 1995-06-20 Wynn Oil Company Aspiration controlled collant transfer apparatus and method, for engine/radiator cooling systems
US5680882A (en) * 1994-04-05 1997-10-28 Dumke; Ralph W. Waterline injection nozzle apparatus
US6397864B1 (en) * 1998-03-09 2002-06-04 Schlumberger Technology Corporation Nozzle arrangement for well cleaning apparatus
US6553969B1 (en) * 1998-12-14 2003-04-29 Robert Bosch Gmbh Device for assembling and dismantling a fuel injection valve
US20070240644A1 (en) * 2006-03-24 2007-10-18 Hiroyuki Matsuura Vertical plasma processing apparatus for semiconductor process
WO2010088646A1 (en) * 2009-02-02 2010-08-05 Tenneco Automotive Operating Company, Inc. Injector mounting system
CN101042992B (en) * 2006-03-24 2011-07-20 东京毅力科创株式会社 Vertical plasma processing apparatus for semiconductor process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1181910A (en) * 1915-03-06 1916-05-02 Hunter M Bennett Method of removing accumulated liquid from gas-mains and the like.
US2870629A (en) * 1956-01-18 1959-01-27 Willis Oil Tool Co Apparatus for moving an element into and from a vessel containing fluid under pressure
US3031742A (en) * 1960-03-15 1962-05-01 Grant Oil Tool Company High pressure reciprocating retriever apparatus
US3456679A (en) * 1965-09-17 1969-07-22 Combustion Eng Safety lock for high pressure valves

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1181910A (en) * 1915-03-06 1916-05-02 Hunter M Bennett Method of removing accumulated liquid from gas-mains and the like.
US2870629A (en) * 1956-01-18 1959-01-27 Willis Oil Tool Co Apparatus for moving an element into and from a vessel containing fluid under pressure
US3031742A (en) * 1960-03-15 1962-05-01 Grant Oil Tool Company High pressure reciprocating retriever apparatus
US3456679A (en) * 1965-09-17 1969-07-22 Combustion Eng Safety lock for high pressure valves

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707757A (en) * 1970-09-02 1973-01-02 United Aircraft Corp In-line replacement tool
US3832904A (en) * 1972-03-15 1974-09-03 Krupp Gmbh Apparatus for monitoring and taking gas samples in shaft furnaces
US3901252A (en) * 1974-08-07 1975-08-26 Dow Chemical Co Tube cleaning apparatus
US4282894A (en) * 1977-09-12 1981-08-11 Northern Natural Gas Company Pressure-operated portable siphon apparatus for removing concentrations of liquid from a gas pipeline
US4344570A (en) * 1980-08-11 1982-08-17 Paseman Richard R Apparatus for cleaning the interior of tubes
US4606311A (en) * 1982-01-04 1986-08-19 Miller Special Tools, Div. Of Triangle Corp. Fuel injection cleaning system and apparatus
US4520773A (en) * 1982-03-18 1985-06-04 Miller Special Tools Division Triangle Corporation Fuel injection cleaning and testing system and apparatus
US4605028A (en) * 1984-08-20 1986-08-12 Paseman Richard R Tube cleaning apparatus
US5002120A (en) * 1990-03-08 1991-03-26 Boisture Thomas B Multi-lance tube cleaning system
US5022463A (en) * 1990-03-08 1991-06-11 Ohmstede Mechanical Services, Inc. Multi-hose flexible lance tube cleaning system
US5031691A (en) * 1990-03-08 1991-07-16 Ohmstede Mechanical Services, Inc. Multi-lance tube cleaning system having sliding plate
US5067558A (en) * 1990-03-08 1991-11-26 Ohmstede Mechanical Services, Inc. Multi-lance tube cleaning system
US5129455A (en) * 1990-03-08 1992-07-14 Ohmstede Mechanical Services, Inc. Multi-lance tube cleaning system having flexible portions
US5257604A (en) * 1991-05-06 1993-11-02 Wynn Oil Company Multi-mode engine cleaning fluid application apparatus and method
US5097806A (en) * 1991-05-06 1992-03-24 Wynn Oil Company Multi-mode engine cleaning fluid application apparatus and method
US5390636A (en) * 1994-02-14 1995-02-21 Wynn Oil Company Coolant transfer apparatus and method, for engine/radiator cooling system
US5425333A (en) * 1994-02-14 1995-06-20 Wynn Oil Company Aspiration controlled collant transfer apparatus and method, for engine/radiator cooling systems
US5680882A (en) * 1994-04-05 1997-10-28 Dumke; Ralph W. Waterline injection nozzle apparatus
US6397864B1 (en) * 1998-03-09 2002-06-04 Schlumberger Technology Corporation Nozzle arrangement for well cleaning apparatus
US6553969B1 (en) * 1998-12-14 2003-04-29 Robert Bosch Gmbh Device for assembling and dismantling a fuel injection valve
US20070240644A1 (en) * 2006-03-24 2007-10-18 Hiroyuki Matsuura Vertical plasma processing apparatus for semiconductor process
US20090078201A1 (en) * 2006-03-24 2009-03-26 Hiroyuki Matsuura Vertical plasma processing apparatus for semiconductor process
CN101042992B (en) * 2006-03-24 2011-07-20 东京毅力科创株式会社 Vertical plasma processing apparatus for semiconductor process
US8394200B2 (en) 2006-03-24 2013-03-12 Tokyo Electron Limited Vertical plasma processing apparatus for semiconductor process
WO2010088646A1 (en) * 2009-02-02 2010-08-05 Tenneco Automotive Operating Company, Inc. Injector mounting system
US20100192913A1 (en) * 2009-02-02 2010-08-05 Sean Keidel Injector Mounting System
CN102301124A (en) * 2009-02-02 2011-12-28 坦尼科汽车营业公司 Injector mounting system
US8327829B2 (en) 2009-02-02 2012-12-11 Tenneco Automotive Operating Company Inc. Injector mounting system
CN102301124B (en) * 2009-02-02 2014-12-24 坦尼科汽车营业公司 Injector mounting system

Similar Documents

Publication Publication Date Title
US3589388A (en) Injector nozzle retriever and insertion apparatus
US8596297B2 (en) Dry-break fuel receiver with integral back-flow prevention
US4383547A (en) Purging apparatus
US2545796A (en) Quick-release coupling for highpressure fluid lines
US5911404A (en) Automatic fluid stopper and fluid stopper mounting spanner
EP0650005B1 (en) Breakaway concentric hose coupling
US5437300A (en) Apparatus for changing out gas meters
US5341846A (en) Valve stack assembly
US10480701B2 (en) Pipeline insertion apparatus and method
US5346260A (en) Device for connecting a fuel nozzle to a filling hose
US4442863A (en) Fluid line coupling device
US4638835A (en) Automatic overflow control apparatus for the pipeline passage
US2619119A (en) Fluid pressure operated multiway valve
US4916797A (en) Hydraulic retriever and method for changing probes arranged in pipes or vessels under pressure
JPS62255691A (en) Insertion coupler for manually connecting large number of hose
US4413806A (en) Shut-off valve assembly
US2958219A (en) Adapter for portable gage tester
US5975104A (en) Ball valve seal replacement apparatus and method
US20010047825A1 (en) Pressure flow stop
US2840108A (en) Safety disconnect valve with swivel joints
US3718312A (en) Quick connect and disconnect valved coupling
US4485653A (en) Hydraulic chuck for threaded tube
US7066193B2 (en) Poppet shear protection apparatus and system
US6588441B1 (en) Flow direction indicator loop
US5207358A (en) Isolation apparatus for a dispenser delivery system