US3581929A - Diamond drill core trays - Google Patents

Diamond drill core trays Download PDF

Info

Publication number
US3581929A
US3581929A US818684A US3581929DA US3581929A US 3581929 A US3581929 A US 3581929A US 818684 A US818684 A US 818684A US 3581929D A US3581929D A US 3581929DA US 3581929 A US3581929 A US 3581929A
Authority
US
United States
Prior art keywords
tray
rails
trays
partitions
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US818684A
Inventor
Edward Franklin Guenard
Lionel A Chretien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3581929A publication Critical patent/US3581929A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D21/00Nestable, stackable or joinable containers; Containers of variable capacity
    • B65D21/08Containers of variable capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D21/00Nestable, stackable or joinable containers; Containers of variable capacity
    • B65D21/08Containers of variable capacity
    • B65D21/083Containers of variable capacity by means of additional elements, e.g. modular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/022Containers made of shock-absorbing material

Definitions

  • This invention concerns trays or boxes used for storing, classifying and shipping mineral earth cores. These are of particular utility in the mining industry, in mineralogical explorations, and the like. I-Ieretofore trays used for storing and shipping mineral earth cores have been flat, rectangular wooden boxes with spaced slats defining open top compartments in which the fragile cores are placed. The compartments are rectangular in cross section and the cores are cylindrical. The cores fit loosely. As a result the cores frequently break up into small fragments when the trays are shipped. This is very objectionable. Furthermore the wooden loaded or unloaded trays frequently break when handled and while in shipment. The cores also break up. The present invention is directed at overcoming the above and other difflcultics and disadvantages by providing trays or boxes for mineral earth cores of improved structure.
  • a strong, lightweight tray which can be made of plastic material and can be produced on known types of plastic working machinery by injection molding, extrusion, vacuum forming, pressing, casting and the like.
  • the tray has a plurality of flutes, defining compartments with cylindrical bottoms to support the cylindrical cores. Sidewalls and bottom of the tray are integrally formed therewith to define a rigid, unitary structure. Ends of the tray can be attached to the inner and sidewalls or can be integrally formed therewith. Trays can be manufactured in different colors for classifying different kinds of mineral cores.
  • the trays can be provided with covers which fit snugly on sides of the trays.
  • the trays are arranged so that a multiplicity of them can be stackedin a compact array with ends exposed and bearing identifying cards or labels.
  • the cards can be removably inserted in supporting clips or frames on ends of the trays.
  • FIG. 3 is an enlarged cross-sectional view taken on line 3-3 of FIG. 1 showing details of a first form of tray and an associated cover, part of which is broken away.
  • Outer lateral sidewalls 40 are integral with bottom wall 30 and have rabbets or grooves 42 extending the full lengths of sidewalls 40. These rabbets will receive sidewalls 44 of a rectangular cover 50 which will fit snugly on the tray.
  • the bottom, side and inside walls of the tray define a unitary structure which can be extruded as a channeled member of indefinite length.
  • the extrusion can be polyvinyl chloride or other tough, durable plastic. It can have any desired color.
  • FIG. 4 shows a tray 25A which is similar to tray 25 and corresponding parts are identically numbered.
  • Tray 25A has four interior flutes or partitions 32 defining with lateral sidewalls 40 five compartments 28 as contrasted with tray 25 which has three interior flutes or partitions and only four interior compartments.
  • the bottom wall 30, interior partitions 32 and sidewalls 40a are all integrally formed as a unitary structure. End walls 46a are attached by screws or may be cemented or otherwise fused in place. Sidewalls 40a are higher than partitions 32.
  • Cover 50 fits on tray 25A.
  • Side rails 40b are generally L-shaped in cross section with depending narrow flanges 72 abutting lateral edges of baseboard 66 and receiving-screws 74. Screws 75 extend upwardly from the baseboard into lower sections 76 of rails 40b. Inner sides 60' of rails 40b are concave and cylindrically curved like sides 60 of rails 32b to define compartments with adjacent rails. End walls or plates 46b may be attached to ends of the rails 32b, 40b and to ends of baseboard 66 by screws 73 inserted into screwholes 77, 78.
  • FIGS. 6, 7 and 8 show trays 25C, 25D, and 25B which are generally similar to tray 25B and corresponding parts are identically numbered. Principal differences are in the ways in which the rails of the trays interlock with each other to strengthen the tray structure.
  • opposite ends of crosshead 690 of some T-shaped rails 32c are formed with dovetail tenons 80. These tenons fit slidably into dovetail grooves 82 formed in ends of crossheads 69c of one or more other T-shaped rails 320. The tenons also engage in dovetail grooves 84 formed in lower portions 76c of side rails 40c. Screws 64 attach baseboard 66 to rails 32c, 320. End plates of walls 46c are attached to opposite ends of the rails to complete the tray. By the arrangement described the rails interlock and are ,thus prevented from separating laterally. The dovetail tenons and grooves are interlocked by sliding the rails longitudinally parallel to each other.
  • rabbets 86 are formed at opposite ends of crossheads 69d of some T-shaped rails 32d. These rabbets receive undercut sides 86 of one or more other T-shaped rails 32d. Undercut sides 88 of lower portions of L-shaped side rails 40d interfit with rabbets 86. Screws 64, 74 and 75d secure the rails to baseboard 66 and end walls 46a are attached to opposite ends of the rails to complete the tray.
  • FIGS. and 11 show a tray F which is molded as a unitary structure of plastic material.
  • the end walls 46f are integral with the ends of sidewalls 40f and inner partitions or flutes 32f. Partitions 32f are joined by integral cylindrically curved webs 91.
  • the compartments 28 receive cylindrical mineral earth cores 26. Rabbets 42 seat sides of a cover such as cover 50 shown in FIGS. 3 and 4. Tray 25fis very light in weight and is fabricated with a minimum use of material.
  • the rounded bottom 92 of webs 91 are coplanar in bottom plane P with bottom edges 40f of sidewalls 49f, and with bottom edges 46f of end walls 46f.
  • Tray 25H shown in FIG. 13 is constructed like tray 25E of FIG. 8, except that triangular passages 97' and 98' are formed in sidewalls or rails 40h and in interior partitions or rails 32h.
  • tray 245 This lightens the weight of the tray and saves plastic material without materially reducing the strength of the tray.
  • Other parts corresponding to those of tray 245 are identically numbered.
  • a tray for supporting a plurality of cylindrical mineral earth cores comprising a horizontal bottom wall; vertical side and end walls; and a plurality of vertical partitions extending upwardly from the bottom wall, said partitions and sidewalls defining therebetween a plurality of compartments between the end walls, each compartment having a cylindrical bottom to seat a cylindrical core therein and having fiat parallel spaced sides, the spacing of said sides of the compartments being substantially equal to the diameters of the cores so that the cores are prevented from lateral movements in the compartments, said partitions and sidewalls being formed of molded plastic material, said walls and partitions being formed as individual rails abutted laterally to each other, and fastening means securing the rails to the bottom and end walls.
  • a tray as defined by claim I in which the walls and partitions are abutted to each other by dovetail joints.
  • a tray as defined in claim 1 in which the fastening means securing the rails to the bottom wall includes dovetail joints.
  • a tray as defined in claim 1 and each partition being substantially T-shaped in cross section and each sidewall being substantially L-shaped in cross section.
  • each rail has a passage extending longitudinally therethrough to lighten the weight of the rail and to effect a saving in plastic material.

Abstract

Trays adapted for supporting cylindrical mineral earth cores have cylindrically curved compartments with parallel flutes to support the cores laterally and underneath. Trays are made partially or entirely of plastic material. They may be made in different colors. Trays can be made of individual rails interlocked with each other and with an underlying baseboard. Covers fit snugly on trays which have rabbeted sidewalls.

Description

United States Patent Edward Franklin Guenard 22l0 Barbara Avenue;
Lionel A. Chretien, 710 Ridgeview Terrace, both of Kamloops, British Columbia, Canada AppL'No. 818,684
Filed Apr. 23, 1969 Patented June I, 1971 Inventors DIAMOND DRILL CORE TRAYS 5 Claims, 14 Drawing Figs.
Primary Examiner-George E. Lowrance AttorneyPolachek & Saulsbury ABSTRACT: Trays adapted for supporting cylindrical mineral earth cores have cylindrically curved compartments with parallel flutes to support the cores laterally and underneath. Trays are made partially or entirely of plastic material. They may be made in different colors. Trays can be made of individual rails interlocked with each other and with an underlying baseboard. Covers fit snugly on trays which have rabbeted sidewalls.
U.S. Cl. 220/22, 206/65, 206/72, 220/234 Int. Cl B65d 25/04, 865d 25/10, B65d 1/36 Field of Search 220/20, 22, 23.4; 206/65, 72
v PATENTED JUN 11911 3,581. 929
sum 1 OF 2 DIAMOND DRILL CORE TRAYS This invention concerns trays or boxes used for storing, classifying and shipping mineral earth cores. These are of particular utility in the mining industry, in mineralogical explorations, and the like. I-Ieretofore trays used for storing and shipping mineral earth cores have been flat, rectangular wooden boxes with spaced slats defining open top compartments in which the fragile cores are placed. The compartments are rectangular in cross section and the cores are cylindrical. The cores fit loosely. As a result the cores frequently break up into small fragments when the trays are shipped. This is very objectionable. Furthermore the wooden loaded or unloaded trays frequently break when handled and while in shipment. The cores also break up. The present invention is directed at overcoming the above and other difflcultics and disadvantages by providing trays or boxes for mineral earth cores of improved structure.
According to the invention a strong, lightweight tray is provided which can be made of plastic material and can be produced on known types of plastic working machinery by injection molding, extrusion, vacuum forming, pressing, casting and the like. The tray has a plurality of flutes, defining compartments with cylindrical bottoms to support the cylindrical cores. Sidewalls and bottom of the tray are integrally formed therewith to define a rigid, unitary structure. Ends of the tray can be attached to the inner and sidewalls or can be integrally formed therewith. Trays can be manufactured in different colors for classifying different kinds of mineral cores. The trays can be provided with covers which fit snugly on sides of the trays. The trays are arranged so that a multiplicity of them can be stackedin a compact array with ends exposed and bearing identifying cards or labels. The cards can be removably inserted in supporting clips or frames on ends of the trays.
The invention will be explained in further detail in connection with the drawings, wherein:
FIG. 1 is a' fragmentary perspective view of a stacked array of trays embodying the invention.
FIG. 2 is an enlarged perspective view of a tray partially withdrawn from the stacked array of FIG. 1.
FIG. 3 is an enlarged cross-sectional view taken on line 3-3 of FIG. 1 showing details of a first form of tray and an associated cover, part of which is broken away.
FIG. 4 is a cross-sectional view similar to FIG. 3, but on a reduced scale showing a second form of tray.
FIGS. 5, 6, 7 and S are exploded end elevational views, partially in section of third, fourth, fifth and sixth forms respectively of different trays.
FIG. 9 is a reduced fragmentary perspective view of the bottom of the sixth form of tray shown in FIG. 8.
FIG. 10 is a perspective view of a seventh form of tray.
FIG. 11 is an enlarged perspective view partially in section taken on line ll-ll of FIG. 10.
FIG. 12 is a fragmentary cross-sectional view on a reduced scale similar to a portion of FIG. 3, showing an eighth form of tra FIG. 13 and FIG. !4 are cross-sectional views of ninth and tenth forms of trays.
Referring first to FIGS. 1 and 2, there is shown a shed 20 in which is stacked array of trays 25. The trays contain mineral earth cores 26 obtained by diamond drilling in or at mine sites. The cylindrical cores 26 are disposed end-to-end and side-by side in compartments 28 of each tray 25. FIGS. 2 and 3 show one form of tray structure to best advantage. The tray has a bottom wall 30 which is flat at its underside 32. A plurality of flutes 32 extend upwardly from wall 30 in spaced disposition to define partitions between compartments 28. The bottom 34 of each compartment is cylindrically curved. The cores 26 seat snugly in the curved bottoms 34 and are laterally in contact with inner opposing sides 36 of the compartments. Outer lateral sidewalls 40 are integral with bottom wall 30 and have rabbets or grooves 42 extending the full lengths of sidewalls 40. These rabbets will receive sidewalls 44 of a rectangular cover 50 which will fit snugly on the tray.
End walls 46 of tray 25 are shown attached to ends of the partitions and sidewalls of the tray by screws 48 inserted in screwholes 49. The end walls 45 of cover 50 will overlap end walls or plates 46 of the tray and flat, rectangular top wall 52 of the cover will fit flush with flat upper ends 54 of the partitions. Cover 50 may also be made of plastic material.
The bottom, side and inside walls of the tray define a unitary structure which can be extruded as a channeled member of indefinite length. The extrusion can be polyvinyl chloride or other tough, durable plastic. It can have any desired color. By the arrangement described it is apparent that the tray provides effective support and protection for the fragile cores 26. When covers 50 are applied the closed, covered boxes are shipped long distances by a variety of transportation means and the cores will arrive intact and unbroken. Cards SI bearing indicia 53 can be inserted in clips 55 on end walls 46, to identify the cores 26 in the tray.
FIG. 4 shows a tray 25A which is similar to tray 25 and corresponding parts are identically numbered. Tray 25A has four interior flutes or partitions 32 defining with lateral sidewalls 40 five compartments 28 as contrasted with tray 25 which has three interior flutes or partitions and only four interior compartments. The bottom wall 30, interior partitions 32 and sidewalls 40a are all integrally formed as a unitary structure. End walls 46a are attached by screws or may be cemented or otherwise fused in place. Sidewalls 40a are higher than partitions 32. Cover 50 fits on tray 25A.
FIG. 5 shows a tray 253 made in'part of rigid, plastic rails 32b, 40 b. Each of the interior rails 32b has lateral concave sides 60 the lower portions of which are cylindrically curved and the upper portions of which are straight. The bottom surfaces 62 of the rails are flat and are secured by screws 64 to baseboard 66 which can be a rectangular plywood board. Inside the tray the rails abut each other at flat, vertical sides 68. Rails 3212 are generally T-shaped in cross section with crossheads 69 at the bottom and pedestals 70 extending upwardly. The rails 32b define long, parallel compartments 28b inside the tray extending the-full length of the tray just like compartments 28 in trays 25 and 25A. Side rails 40b are generally L-shaped in cross section with depending narrow flanges 72 abutting lateral edges of baseboard 66 and receiving-screws 74. Screws 75 extend upwardly from the baseboard into lower sections 76 of rails 40b. Inner sides 60' of rails 40b are concave and cylindrically curved like sides 60 of rails 32b to define compartments with adjacent rails. End walls or plates 46b may be attached to ends of the rails 32b, 40b and to ends of baseboard 66 by screws 73 inserted into screwholes 77, 78.
A particular advantage of the structure of tray 25B is the modular arrangement of rails. As many rails 32!: as desired can be assembled in side-by-side disposition to make a tray of any desired number of compartments. Great economies in manufacture are effected by mass producing rails 32b and 40b as extrusions of indefinite length subsequently cut into any desired lengths.
FIGS. 6, 7 and 8 show trays 25C, 25D, and 25B which are generally similar to tray 25B and corresponding parts are identically numbered. Principal differences are in the ways in which the rails of the trays interlock with each other to strengthen the tray structure.
In tray 25C of FIG. 6, opposite ends of crosshead 690 of some T-shaped rails 32c are formed with dovetail tenons 80. These tenons fit slidably into dovetail grooves 82 formed in ends of crossheads 69c of one or more other T-shaped rails 320. The tenons also engage in dovetail grooves 84 formed in lower portions 76c of side rails 40c. Screws 64 attach baseboard 66 to rails 32c, 320. End plates of walls 46c are attached to opposite ends of the rails to complete the tray. By the arrangement described the rails interlock and are ,thus prevented from separating laterally. The dovetail tenons and grooves are interlocked by sliding the rails longitudinally parallel to each other.
In tray 25D of FIG. 6, rabbets 86 are formed at opposite ends of crossheads 69d of some T-shaped rails 32d. These rabbets receive undercut sides 86 of one or more other T-shaped rails 32d. Undercut sides 88 of lower portions of L-shaped side rails 40d interfit with rabbets 86. Screws 64, 74 and 75d secure the rails to baseboard 66 and end walls 46a are attached to opposite ends of the rails to complete the tray.
In tray 25E, dovetail grooves 90 are formed in the flat bottoms 62e of T-shaped rails 32c. These grooves receive dovetail tenons 92 integrally formed on baseboard 66c; see FIG. 9. The tenons are disposed parallel to each other and extend longitudinally of the baseboard. They are spaced apart transversely of the baseboard. The baseboard is formed of plastic material and can be extruded or otherwise formed in indefinite lengths to be cut subsequently to desired lengths and widths. Further dovetail grooves 90' are formed in bottoms of L-shaped side rails 40c. The tray 255 has the advantage that the rails and baseboard are entirely made of plastic material and the use of screws to attach the rails to the baseboard is avoided. End walls 46c can be cemented or otherwise attached to the rails and baseboard to complete the tray.
FIGS. and 11 show a tray F which is molded as a unitary structure of plastic material. The end walls 46f are integral with the ends of sidewalls 40f and inner partitions or flutes 32f. Partitions 32f are joined by integral cylindrically curved webs 91. The compartments 28 receive cylindrical mineral earth cores 26. Rabbets 42 seat sides of a cover such as cover 50 shown in FIGS. 3 and 4. Tray 25fis very light in weight and is fabricated with a minimum use of material. The rounded bottom 92 of webs 91 are coplanar in bottom plane P with bottom edges 40f of sidewalls 49f, and with bottom edges 46f of end walls 46f. This insures a very strong tray which can withstand much rough handling, insertion and removal of heavy cores and repeated reuse. The tray can be made in any desired color depending on the color coding required for any system of core classification. Identification card 51 fits removably in integral frame 55]" on end wall 46f.
Tray 25G, a part of which is shown in FIG. 12 has sidewalls 40g, interior partitions 32g and bottom 66g made entirely of molded plastic material as a unitary structure. End walls 46g are subsequently attached to opposite ends of the sidewalls, partitions and bottom of tray. Cylindrical and triangular chambers or passages 96, 97 and 98 are provided to save in use of plastic material and to lighten the weight of the tray without materially reducing the strength of the tray.
Tray 25H shown in FIG. 13 is constructed like tray 25E of FIG. 8, except that triangular passages 97' and 98' are formed in sidewalls or rails 40h and in interior partitions or rails 32h.
This lightens the weight of the tray and saves plastic material without materially reducing the strength of the tray. Other parts corresponding to those of tray 245 are identically numbered.
Tray 251 shown in FIG. 14 is constructed like tray 25A with sidewalls 401' higher than inner partitions 32L Passages 97" and 98" which are generally triangular in cross section are formed in the sidewalls and inner partitions to lighten the weight of the tray and save plastic material without materially reducing the weight of the tray. Other parts corresponding to those of tray 25A are identically numbered.
All forms of trays can be made in various different colors to facilitate ready identification and classification. All trays have compartments with cylindrically curved bottoms to receive cylindrical cores and to support the same both laterally and underneath. The trays made of plastic material are weather resistant and will not warp, corrode, crack or change in dimensions under all kinds of climatic conditions and wide variations in temperatures. They will resist moisture and cold of rain, snow, ice, etc. The plastic trays are very strong and light in weight, being about one quarter the weight of comparable wood trays of the same size. This facilitates transportation, storage and use.
We claim: 1. A tray for supporting a plurality of cylindrical mineral earth cores, comprising a horizontal bottom wall; vertical side and end walls; and a plurality of vertical partitions extending upwardly from the bottom wall, said partitions and sidewalls defining therebetween a plurality of compartments between the end walls, each compartment having a cylindrical bottom to seat a cylindrical core therein and having fiat parallel spaced sides, the spacing of said sides of the compartments being substantially equal to the diameters of the cores so that the cores are prevented from lateral movements in the compartments, said partitions and sidewalls being formed of molded plastic material, said walls and partitions being formed as individual rails abutted laterally to each other, and fastening means securing the rails to the bottom and end walls.
2. A tray as defined by claim I in which the walls and partitions are abutted to each other by dovetail joints.
3. A tray as defined in claim 1 in which the fastening means securing the rails to the bottom wall includes dovetail joints.
4. A tray as defined in claim 1 and each partition being substantially T-shaped in cross section and each sidewall being substantially L-shaped in cross section.
5. A tray as defined in claim 4, wherein each rail has a passage extending longitudinally therethrough to lighten the weight of the rail and to effect a saving in plastic material.

Claims (5)

1. A tray for supporting a plurality of cylindrical mineral earth cores, comprising a horizontal bottom wall; vertical side and end walls; and a plurality of vertical partitions extending upwardly from the bottom wall, said partitions and sidewalls defining therebetween a plurality of compartments between the end walls, each compartment having a cylindrical bottom to seat a cylindrical core therein and having flat parallel spaced sides, the spacing of said sides of the compartments being substantially equal to the diameters of the cores so that the cores are prevented from lateral movements in the compartments, said partitions and sidewalls being formed of molded plastic material, said walls and partitions being formed as individual rails abutted laterally to each other, and fastening means securing the rails to the bottom and end walls.
2. A tray as defined by claim 1 in which the walls and partitions are abutted to each other by dovetail joints.
3. A tray as defined in claim 1 in which the fastening means securing the rails to the bottom wall includes dovetail joints.
4. A tray as defined in claim 1 and each partition being substantially T-shaped in cross section and each sidewall being substantially L-shaped in cross section.
5. A tray as defined in claim 4, wherein each rail has a passage extending longitudinally therethrough to lighten the weight of the rail and to effect a saving in plastic material.
US818684A 1969-04-23 1969-04-23 Diamond drill core trays Expired - Lifetime US3581929A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81868469A 1969-04-23 1969-04-23

Publications (1)

Publication Number Publication Date
US3581929A true US3581929A (en) 1971-06-01

Family

ID=25226155

Family Applications (1)

Application Number Title Priority Date Filing Date
US818684A Expired - Lifetime US3581929A (en) 1969-04-23 1969-04-23 Diamond drill core trays

Country Status (1)

Country Link
US (1) US3581929A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782582A (en) * 1971-04-26 1974-01-01 D Atwood Core tray
US4095698A (en) * 1976-08-02 1978-06-20 Wright C E Modular storage rack system
DE2813500A1 (en) * 1978-03-25 1979-10-04 Seattle Box Co Pipe shipping bundle - in which pipes spaced by blocks and transverse sleepers are strapped to give a flexible bundle
USRE30373E (en) * 1977-02-17 1980-08-19 Seattle Box Company Shipping bundle for numerous pipe lengths
US4410095A (en) * 1980-11-05 1983-10-18 Southern Case, Inc. Interlocking modular article supporting system and component units therefor
US4573731A (en) * 1982-10-28 1986-03-04 Knaack Manufacturing Company Vehicle storage drawer unit
US4874091A (en) * 1988-07-14 1989-10-17 Mcewen Albert R Core sample box
US4901870A (en) * 1988-11-14 1990-02-20 Wright Tim E Spacer for support of cylindrical rolls
US4927022A (en) * 1986-07-28 1990-05-22 Corstor (Proprietary) Limited Core trays
US4960559A (en) * 1989-05-17 1990-10-02 Westinghouse Electric Corp. Capture row storage tray for holding collated rows of nuclear fuel pellets
CH685146A5 (en) * 1993-06-03 1995-04-13 Paul Dr Med Meyer Frame for the storage of elongated articles, as well as profile element for the construction of such a frame.
US5417395A (en) * 1993-06-30 1995-05-23 Medex, Inc. Modular interconnecting component support plate
US5492346A (en) * 1993-09-21 1996-02-20 21 Fathoms Scuba tote
US5752918A (en) * 1993-06-30 1998-05-19 Medex, Inc. Modular medical pressure transducer
US5829723A (en) * 1995-06-28 1998-11-03 Medex, Inc. Medical device mounting structure
US5868678A (en) * 1993-06-30 1999-02-09 Medex, Inc. Two-part medical pressure transducer with diaphragm stand-offs
US6056924A (en) * 1996-12-10 2000-05-02 Jackson; Milton L. Modified test tube
US6065915A (en) * 1997-03-05 2000-05-23 Ruehl; John W. Tank storage apparatus
US6695419B2 (en) * 2001-09-18 2004-02-24 Floyd A. Searer Drawers with adjustable drawer dividers
US20090301980A1 (en) * 2006-09-08 2009-12-10 Buerger Rolf Dieter Hans-Jochen Storing System
US20100018886A1 (en) * 2006-08-28 2010-01-28 John David Wilson Drill core trays and accessories for use therewith
AU2009251021A1 (en) * 2009-10-13 2011-04-28 Korea Institute Of Geoscience And Mineral Resources Box for Storing Drill Core Samples in Which Partitions are Adjustably Secured by Fixing Units
US8011865B2 (en) 2007-04-12 2011-09-06 Standard Car Truck Company Railroad car coil restraint system
KR101171736B1 (en) * 2012-01-18 2012-08-07 한국지질자원연구원 A device for measuring core sample
AU2010201733B2 (en) * 2009-11-10 2013-10-17 Korea Institute Of Geoscience And Mineral Resources Drill Core Sample Storage Container with Stake
AU2009222632B2 (en) * 2008-10-08 2014-08-14 Dormer, Kevin A core tray
USD773299S1 (en) 2014-12-08 2016-12-06 Signode Industrial Group Llc Contour pad
US20170253437A1 (en) * 2016-03-04 2017-09-07 Nurmeksen Tyosto ja Tarvike Oy Device and method of handling stone samples
WO2018018105A1 (en) * 2016-07-27 2018-02-01 De Barros Ramos Flávio Modular storage box system for storing core samples
US20180057205A1 (en) * 2014-10-03 2018-03-01 Flavio de Barros Ramos Box for packaging core samples
US20210229928A1 (en) * 2020-01-24 2021-07-29 Berry Global, Inc. Core Box
USD952695S1 (en) * 2020-08-06 2022-05-24 Autorun Technologies Pty Ltd Core tray

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782582A (en) * 1971-04-26 1974-01-01 D Atwood Core tray
US4095698A (en) * 1976-08-02 1978-06-20 Wright C E Modular storage rack system
USRE30373E (en) * 1977-02-17 1980-08-19 Seattle Box Company Shipping bundle for numerous pipe lengths
DE2813500A1 (en) * 1978-03-25 1979-10-04 Seattle Box Co Pipe shipping bundle - in which pipes spaced by blocks and transverse sleepers are strapped to give a flexible bundle
US4410095A (en) * 1980-11-05 1983-10-18 Southern Case, Inc. Interlocking modular article supporting system and component units therefor
US4573731A (en) * 1982-10-28 1986-03-04 Knaack Manufacturing Company Vehicle storage drawer unit
US4927022A (en) * 1986-07-28 1990-05-22 Corstor (Proprietary) Limited Core trays
US4874091A (en) * 1988-07-14 1989-10-17 Mcewen Albert R Core sample box
US4901870A (en) * 1988-11-14 1990-02-20 Wright Tim E Spacer for support of cylindrical rolls
US4960559A (en) * 1989-05-17 1990-10-02 Westinghouse Electric Corp. Capture row storage tray for holding collated rows of nuclear fuel pellets
CH685146A5 (en) * 1993-06-03 1995-04-13 Paul Dr Med Meyer Frame for the storage of elongated articles, as well as profile element for the construction of such a frame.
US5417395A (en) * 1993-06-30 1995-05-23 Medex, Inc. Modular interconnecting component support plate
US5752918A (en) * 1993-06-30 1998-05-19 Medex, Inc. Modular medical pressure transducer
US5848971A (en) * 1993-06-30 1998-12-15 Medex, Inc. Modular medical pressure transducer
US5868678A (en) * 1993-06-30 1999-02-09 Medex, Inc. Two-part medical pressure transducer with diaphragm stand-offs
US5492346A (en) * 1993-09-21 1996-02-20 21 Fathoms Scuba tote
US5829723A (en) * 1995-06-28 1998-11-03 Medex, Inc. Medical device mounting structure
US6056924A (en) * 1996-12-10 2000-05-02 Jackson; Milton L. Modified test tube
US6065915A (en) * 1997-03-05 2000-05-23 Ruehl; John W. Tank storage apparatus
US6695419B2 (en) * 2001-09-18 2004-02-24 Floyd A. Searer Drawers with adjustable drawer dividers
US20100018886A1 (en) * 2006-08-28 2010-01-28 John David Wilson Drill core trays and accessories for use therewith
US20090301980A1 (en) * 2006-09-08 2009-12-10 Buerger Rolf Dieter Hans-Jochen Storing System
US8277155B2 (en) 2007-04-12 2012-10-02 Standard Car Truck Company Railroad car coil restraint system
US8011865B2 (en) 2007-04-12 2011-09-06 Standard Car Truck Company Railroad car coil restraint system
US8033768B2 (en) 2007-04-12 2011-10-11 Standard Car Truck Company Railroad car coil restraint system
US8308409B2 (en) 2007-04-12 2012-11-13 Standard Car Truck Company Railroad car coil restraint system
AU2009222632B2 (en) * 2008-10-08 2014-08-14 Dormer, Kevin A core tray
AU2009251021A1 (en) * 2009-10-13 2011-04-28 Korea Institute Of Geoscience And Mineral Resources Box for Storing Drill Core Samples in Which Partitions are Adjustably Secured by Fixing Units
AU2010201733B2 (en) * 2009-11-10 2013-10-17 Korea Institute Of Geoscience And Mineral Resources Drill Core Sample Storage Container with Stake
KR101171736B1 (en) * 2012-01-18 2012-08-07 한국지질자원연구원 A device for measuring core sample
US20180057205A1 (en) * 2014-10-03 2018-03-01 Flavio de Barros Ramos Box for packaging core samples
US11192686B2 (en) * 2014-10-03 2021-12-07 Flavio de Barros Ramos Box for packaging core samples
USD773299S1 (en) 2014-12-08 2016-12-06 Signode Industrial Group Llc Contour pad
US20170253437A1 (en) * 2016-03-04 2017-09-07 Nurmeksen Tyosto ja Tarvike Oy Device and method of handling stone samples
US10532893B2 (en) * 2016-03-04 2020-01-14 Nurmeksen Työstö Ja Tarvike Oy Device and method of handling stone samples
WO2018018105A1 (en) * 2016-07-27 2018-02-01 De Barros Ramos Flávio Modular storage box system for storing core samples
US20210229928A1 (en) * 2020-01-24 2021-07-29 Berry Global, Inc. Core Box
WO2021151058A1 (en) * 2020-01-24 2021-07-29 Berry Global, Inc. Core box
USD952695S1 (en) * 2020-08-06 2022-05-24 Autorun Technologies Pty Ltd Core tray

Similar Documents

Publication Publication Date Title
US3581929A (en) Diamond drill core trays
US4901876A (en) All-purpose utility crate
US4673087A (en) Collapsable, reusable container system
US4671411A (en) Nestable open case
US4199070A (en) Modular rack
US3273952A (en) Method of making furniture drawers or the like and article produced thereby
US2840256A (en) Beverage bottle case
US4529092A (en) Container with sling divider
AU687818B2 (en) Plastic pallet and the method of manufacturing the same
GB2078680A (en) Containers for freight transport
US4138015A (en) Storage tray assembly
KR880012454A (en) Prefab container
US5275302A (en) Plastic container and pallet system
US2456929A (en) Tray structure
US4251006A (en) Crate assembly and materials therefor
US3905478A (en) Container construction and end panel therefor
US4251020A (en) Integral corrugated partition
US3473690A (en) Fruit packing box
KR200404794Y1 (en) corrugated cardboard packing box
US2782936A (en) Tierable nesting receptacle
US4635810A (en) Cardboard box and/or plastic crate partition
US3842457A (en) Bee feeder
US6557718B1 (en) Superimposable and interpenetrable plastics box
GB2150118A (en) Container having pockets
CH675710A5 (en)