US3580853A - Detergent compositions containing particle deposition enhancing agents - Google Patents

Detergent compositions containing particle deposition enhancing agents Download PDF

Info

Publication number
US3580853A
US3580853A US671117A US3580853DA US3580853A US 3580853 A US3580853 A US 3580853A US 671117 A US671117 A US 671117A US 3580853D A US3580853D A US 3580853DA US 3580853 A US3580853 A US 3580853A
Authority
US
United States
Prior art keywords
sodium
composition
polymer
deposition
cationic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US671117A
Inventor
John J Parran Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Application granted granted Critical
Publication of US3580853A publication Critical patent/US3580853A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4906Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
    • A61K8/4933Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having sulfur as an exocyclic substituent, e.g. pyridinethione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/227Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3773(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • C11D3/42Brightening agents ; Blueing agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D9/00Compositions of detergents based essentially on soap
    • C11D9/04Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
    • C11D9/22Organic compounds, e.g. vitamins
    • C11D9/225Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5426Polymers characterized by specific structures/properties characterized by the charge cationic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/006Antidandruff preparations

Definitions

  • the field of this invention is detergent compositions including shampoos (liquid and cream), laundering, hardsurface and dishwashing detergents (granular and liquid), and personal use toilet detergent bars.
  • Particulate antimicrobial substances have also been used in various laundry detergents and personal use toilet detergent bars to impart residual antimicrobial activity on the fabrics or skin surfaces washed with same. Such products are disclosed by Reller and Jordan in US. Pats. 3,134,711, granted May 26, 1964, and 3,256,200, granted June 14, 1966.
  • the detergent compositions of this invention are comprised of (1) an organic surface active agent (surfactant, i.e., detergent compound); (2) at least one water-soluble cationic nitrogencontaining polymer having a molecular weight within the range from about 2,000 to about 3,000,000 and having a cationic charge density greater than .001 in aqueous solution; and (3) a water-insoluble or sparingly soluble particulate substance capable of imparting a desired residual property to a surface to which it becomes afiixed.
  • an organic surface active agent surfactant, i.e., detergent compound
  • at least one water-soluble cationic nitrogencontaining polymer having a molecular weight within the range from about 2,000 to about 3,000,000 and having a cationic charge density greater than .001 in aqueous solution
  • a water-insoluble or sparingly soluble particulate substance capable of imparting a desired residual property to a surface to which it becomes afiixed.
  • this invention is a method for enhancing the deposition and retention of particulate substances upon surfaces washed with a detergent composition containing same, comprising uniformly admixing said particulate substances with a water-soluble cationic nitrogen-containing polymer having a molecular weight within the range from about 2,000 to about 3,000,000, and having a cationic charge density greater than .001'in aqueous solution, and incorporating said mixture in a detergent base.
  • the cationic charge density of a polymer as that term is used herein refers to the ratio of the number of positive charges on a monomeric unit of which the polymer is comprised to the molecular weight of said monomeric unit, i.e.,
  • Such surfactants include the sodium, potassium, and triethanolamine alkyl sulfates, especially those derived by sulfation of higher alcohols produced by reduction of tallow or coconut oil glycerides; sodium or potassium alkyl benzene sulfonates, especially those of the types described by Gunther et al. in US. Pat.
  • alkyl group contains from about 9 to about carbon atoms; sodium alkyl glyceryl ether sulfonates, especially those others of higher alcohols obtained from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfates and sulfonates; sodium salts of sulfuric acid esters of the reaction product of one mole of a higher alcohol (i.e., tallo'w or coconut oil alcohols) and about 3 moles of ethylene oxide; and the water-soluble salts of condensation products of fatty acids with sarcosine, e.g., triethanolamine N-acyl sarcosinate, the acyl radicals being derived from coconut oil fatty acids.
  • sarcosine e.g., triethanolamine N-acyl sarcosinate
  • anionic organic surfactants of the high sudsing type are used for the shampoo embodiments of this invention.
  • alkyl glyceryl ether sulfonates, N-acyl sarcosinates, and alkyl ether ethylene oxide sulfates as described above are used to special advantage.
  • These and the foregoing surfactants can be used in the form of their sodium, potassium or lower alkanolamine (e.g., mono-, di, and triethanolamine) salts.
  • soaps are also operable anionic surfactants for 'the purposes of this invention.
  • Suitable soaps include the water-soluble salts, e.g., sodium, potassium, and lower alkanolamine salts of fatty acids occurring'in coconut oil, soybean oil, castor oil or tallow, or syntheti cally produced fatty acids may be used.
  • Polar nonionic surfactants can be used herein, either alone or in admixture with anionic and/or ampholytic surfactants. Surfactants of this class can serve to enhance lathering and cleaning properties of anionic detergents. By polar nonionic surfactant is meant a surfacsurfactant molecule bears no net charge and does not dissociate into ions.
  • a preferred polar nonionic surfactant for use in the present compositions is amine amine oxide of the general formula R R R N O, wherein R is an alkyl, alkenyl, or monohydroxyalkyl radical having from about 10 to 16 carbon atoms, and R and R are each methyl, ethyl, propyl, ethanol or propanol radicals.
  • R is an alkyl, alkenyl, or monohydroxyalkyl radical having from about 10 to 16 carbon atoms, and R and R are each methyl, ethyl, propyl, ethanol or propanol radicals.
  • An especially preferred amine oxide is dodecyldimethylamine oxide.
  • phosphine oxides having the general formula R R R P-' O, wherein R is an alkyl, alkenyl or monohydroxyalkyl radical ranging in chain length from 10 to 18 carbon atoms, and R and R are each alkyl or monohydroxyalkyl radicals containing from 1 to 3 carbon atoms.
  • R is an alkyl, alkenyl or monohydroxyalkyl radical ranging in chain length from 10 to 18 carbon atoms, and R and R are each alkyl or monohydroxyalkyl radicals containing from 1 to 3 carbon atoms.
  • a preferred phosphine oxide is dodecyldimethyl phosphine oxide.
  • Suitable amphoteric surfactants include the alkyl betaiminodipropionates, RN(C H COOM) alkyl beta-aminopropionates, RN(H)C H COOM; and long chain imidazole derivatives having the general formula:
  • R is an acyclic hydrophobic group containing from about 8 to about 18 carbon atoms and M is a cation to neutralize the charge of theanion, e.g., alkali metal such as sodium and potassium and ammonium and substituted ammonium cations.
  • amphoteric surfactants include the (11'. sodium salt of lauroyl-cycloimidinium-l-ethoxy-ethionic acid 2 ethionic acid, dodecyl beta-alanine, and the inner salt of Z-trimethylamino lauric acid.
  • the substituted betaines such as alkyl dimethyl ammonio acetates wherein the alkyl radical contains from about 12 to about 18 carbon atoms can also be used.
  • this class of zwitterionic surfactants are set forth in Canadian Pat. 696,355, granted Oct. 20, 1964.
  • Especially preferred shampoo compositions in accord ance with this invention will contain a non-soap anionic organic surfactant at a concentration of from about 8% to about 30% by weight of the total composition.
  • Nonionic and cationic surfactants are not preferred for the purposes of this invention they can nevertheless be used without substantial loss of the advantageous effects of the cationic polymers on deposition and retention of particulate matter on washed surfaces.
  • Nonionic surfactants may be described as compounds produced by the condensation of alkylene oxide .groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic or alkyl aromatic in nature. As those skilled in the are are well aware, the length of the hydrophilic or polyoxyalkylene radical required for condensation with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
  • a well known class of nonionics is made available on the market under the tradename of Pluronic! These compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol.
  • the hydrophobic portion of the molecule exhibits-water insolubility.
  • the molecular weight of this portion is-of the order of 950 to 4,000.
  • the addition of polyoxyethylene radicals to this hydrophobic portion tends to increase thewater solubility of the molecule as a whole. Liquid products are obtained up to the point where polyoxyethyl'ene content is about 50% of the total weight of the condensation product.
  • Suitable nonionics also include the polyethylene oxide condensates of alkyl phenols, e.g., the condensation prod-- nets of alkyl phenols having about 6 to 12 carbon atoms, either straight chain or 'branch chain, in the alkyl group with ethylene oxide in amounts equal to 10 to 25 moles of ethylene oxide per mole of alkyl phenol.
  • the alkyl subs-tituent in such compounds may be derived from polym* erized propylene, diisobutylene, octane, or nonane, for example.
  • nonionics may be derived by the condensation of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamine.
  • a series of compounds may be produced, depending on the desired balance between hydrophobic and hydrophilic elements.
  • compounds molecular weight from about 5,000 to about 11,000
  • a hydrophobic base constituted of the reaction product of ethylene diamine and excess propylene oxide, said base having a molecular weight of the order of 2,500 to 3,000, are satisfactory.
  • nonionics include the condensation product of aliphatic alcohols having from 8 to 18 carbon atoms, either straight chain or branch chain, with ethylene oxide, an example being a coconut alcohol/ ethylene oxide condensate having from 10 to 30 moles of ethylene oxide per mole of coconutalcohol, the coconut alcohol fraction having from 10 to 14 carbon atoms.
  • Cationic surfactants which can be used in the compositions of this invention include distearyl dimethyl ammonium chloride, stearyl dimethyl benzyl ammonium chloride, coconut alkyl dimethyl benzyl ammonium chloride, dicoconut alkyl dimethyl ammonium chloride, cetyl pyridinium chloride, and cetyl trimethyl ammonium bromide.
  • compositions of this invention contain as an essential component a water-soluble cationic nitrogen-containing polymer having a molecular weight within the range from about 2,000 to about 3,000,- 000 and a cationic charge density greater than .001 in aqueous solution.
  • Operable cationic polymers for the purpose of this invention include polyethylenimine or alkoxylated polyethylenimine polymers. It is believed that the structural formula of the backbone of polyethylenimine is:
  • x represents a whole number of sufiicient magnitude to yield a polymer of molecular weight greater than about 2,000.
  • Branch chains occur along the polymeric backbone and the relative proportions of primary, secondary and tertiary amino groups present in the polymer will vary, depending on the manner of preparation.
  • the distribution of amino groups in a typical polyethylenimine is approximately as follows:
  • the polyethylenimine is characterized herein in terms of molecular weight.
  • Such polymers can be prepared, for example, by polymerizing ethylenimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
  • a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
  • a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
  • Specific methods are described in US. Pat. Nos. 2,182,306, Ulrich et al., granted Dec. 5, 1939; 3,033,746, Mayle et al., granted May 8, 1962; 2,208,095, Esslemann et al., granted July 16, 1940; 2,806,839, Crowther, granted Sept. 17, 1957; and 2,553,696, Wilson,
  • alkoxylated polyethylenimine can be prepared, for example, by reacting one part by weight ethylene oxide or propylene oxide with one part by weight of polyethylenimine prepared as described above and having a molecular weight greater than about 2,000.
  • the weight ratio of polyethylenimine to alkylene oxide is at least about 1:1. If this ratio is less than about 124 the cationic charge density of the polymer in aqueous solution will not be greater than .001 as is required for the purpose of this invention.
  • a preferred ethoxylated polyethylenimine has a molecular weight of about 80,000 to 120,000 and a cationic charge density of .004 in aqueous solution at pH 7.0.
  • Yet another class of water-soluble cationic nitrogencontaining polymers which can be used in the practice of this invention are those in which at least 30 mole percent of the molecular structure is composed of monomeric units containing one or more quaternary ammonium groups and any balance of which is comprised of non-quaternized polymeric units derived from monoethylenically unsatu rated monomeric groups.
  • the degree of quaternization must be suflicient to provide a cationic charge density greater than about .001.
  • Such polymers include, for example, quaternized polyvinylimidazole, quaternized poly- (dimethylaminoethylmethacrylate), quaternized poly(diethylaminoethylmethacrylate), quaternized poly(p dimethylaminomethylstyrene) and others disclosed by Lang in US. Pat. 3,313,734, granted Apr. 11, 1967, all having molecular weights within the range from about 2,000 to 3,000,000.
  • Still other types of water-soluble cationic polymers useful herein are the following:
  • Water-soluble quaternary nitrogen-substituted cel- *Hydroxyethyleellulose Hydroxyethylcellulose is, of course, comprised of hydroxyethyl-substituted anhydroglu'cose units with varying degrees of hydroxyethyl substitution. This material is pre pared by reacting alkaline cellulose with ethylene oxide as is more fully described by Gloor et al., Ind. Eng. Chem., 42:2150 (1950). The extent of substitution with the quaternary nitrogen-containing group must be sufficient to provide a cationic charge density greater than .001, and the molecular weight of the substituted hydroxyethylcellulose polymer must be within the range from about 2,000 to 3,000,000.
  • the preferred cellulose ether derivative from which the quaternary ammonium-substituted polymers described above are prepared include those which are water-soluble nonionic lower alkyl or hydroxyalkyl substituted. Such derivatives include methylcellulose, ethylcellulose, and hydroxyethylcellulose.
  • a particuarly efficacious quaternary ammonium-substituted cellulose ether derivative for the purpose of this invention is available from Union Carbide under the code name JR-lL.
  • This polymer has a molecular weight within the range from 100,000 to 1,000,000 and a cationic charge density of .005.
  • Polymer JA-1L is a cationic cellulose ether having the structure:
  • R is a residue of an anhydroglucose unit, Wherein Y is an integer from 50 to 20,000 and wherein each R individually represents a substituent of the general formula:
  • n is from 0.35 to 0.45
  • L AH J. wherein x is an integer of sufiicient magnitude to yield a polymer having a viscosity at 74 F. of 21 to 42 centipoise.
  • These polymers have a molecular Weight within the range from about 2,000 to 3,000,000 and a cationic charge density greater than .001 in aqueous solution at pH 7.0.
  • Coagulant Aid #225 commercially from The Calgon Company. This product is a water-soluble nitrogencontaining polymer having a molecular weight within the range from about 30,000 to 3,000,000 and a cationic charge density greater than .001 in aqueous solution at pH 7.0.
  • Coagulent Aid #225 is a condensation polyethylene amine extended with epichlorohydrin and prepared as follows: A l-liter flask was fitted with a stirrer, reflux condenser, thermometer, and an addition funnel, and 232 g. of Amine E-100 was introduced.
  • the prepolymer formed as above was heated to 80 C. and the dropwise addition of 37 g., 0.4 mole, of epichlorohydrin (ECH) was begun. The temperature was allowed to rise no higher than 90 during the addition. On completion of the addition the reaction mixture was held at 100 for 30 minutes. The resulting polymer, was a 57.5% active solution 'with a viscosity of 2,000 cps.
  • ECH epichlorohydrin
  • Conductive Polymer #261 commercially available from The Calgon Company. This product is a water-soluble nitrogen-containing polymer having a molecular weight within the range from about 30,000 to 3,000,000 and a cationic charge density greater than .001 in aqueous solution at pH 7.0.
  • Conductive Polymer #261 is poly(N,N-dimethyl-3,5-methylene piperidinium chloride), average molecular weight 50,000.
  • the molecular weight of the cationic polymers em.- ployed herein is less than about 2,000, no substantial enhancement of particle deposition occurs. Best results are obtained with polymers having 'a'molecular weight within the range from about 30,000 to about 1,000,000.
  • the cationic polymer can be employed herein at a concentration within the range from about 0.1% to about 10.0% by weight, preferably" from about 0.25% to about 4.0% by weight.
  • Particulate substances which can be used in the detergent compositions of this invention preferably have an average particle diameter within the range from about 0.2 to about 50 microns and include water-insoluble or sparingly soluble anti-microbial agents, sunscreens, fabric brighteners, and various substances which create a favorable skin feel after washing. These particulate substances depend on deposition and retention on washed surfaces to produce their intended elfect.
  • Particulate antimicrobial substances the deposition and retention of which is enhanced by the cationic polymers described herein include, for example, (a) substituted salicylanilides having the general formula:
  • R is an alkylene radical having from 1 to 4 carbon atoms or divalent sulfur; and (d) mixtures of (a), (b), and (c).
  • the salicylanilides encompassed by (a) above include 3,4,S-tribromosalicylanilide; 5 bromosalicyl-3,5-di(trifluoromethyDanilide; 5 chlorosalicyl 3,5-di(trifluoromethyl)anilide; 3,5 dichlorosalicyl-3,4-dich1oroanilide; and 5-chlorosalicyl 3 tri-fluoromethyl-4-chloranilide.
  • These and other salicylanilides useful herein are disclosed by Bindler and Model in U.S. Pat. 2,703,332, granted Mar. 1, 1955.
  • the preferred carbanilides of (b) above include 3,4,4- trichlorocarbanilide; 3 trifluoromethyl-4,4-dichlorocarbanilide; 3 trifluoromethyl-3,4,4'-trichlorocarbanilide; 3,3'-bis(trifluoromethyl) 4 ethoxy 4' chlorocarbanilide; and 3,5 bis(trifluoromethyl) 4 chlorocarbanilide.
  • R represents an alkylene radical
  • the preferred compounds of the general class of (0) above are those which are symmetrical in structural configuration, such as bis(S chloro-Z-hydroxyphenyl) methane, bis(3,5-dichloro-2hydroxyphenyl)methane, bis(3,5,6 trichloro-Z- hydroxyphenyl)methane, bis(3,5 dichloro 2-hydroxyphenyl) sulfide, bis (3,5,6-trichloro-2-hydroxyphenyl)sul fide, and mixtures thereof.
  • Additional antimicrobial compounds suitable for use in this invention are N-trichloromethylmercapto l-cyclohexene-1,2-dicarboximide and N-(1,1,2,2-tetrachloroethylsulfenyl -cis-A-4-cyclohexene-1,2-dicarboximide.
  • Preferred antibacterial agents employed herein are salts of 2-pyridinethiol-1-oxide which has the following structural formula in tautomeric form, the sulfur being attached to the number 2 position of the pyridine ring:
  • antimicrobial compounds are used in particulate form, with average particle sizes ranging from about 0.2 to about 30 microns.
  • the quantity of antimicrobial agent employed can range from about 0.1% to about 10% and preferably from about 0.5% to about 2.0% by weight.
  • Preferred antimicrobial detergent compositions in accordance with this invention especially adapted to washing hair and scalp are comprised of from about to about 35% by weight of at least one non-soap anionic, polar nonionic, ampholytic or zwitterionic surfactant; from about 0.25% to about 2.0% by weight of a watersoluble cationic nitrogen-containing polymer having a cationic charge density greater than about .001 and having an average molecular weight within the range from about 30,000 to about 1,000,000; from about 0.5% to about 2.0% by weight of a water-soluble or sparingly soluble antimicrobial substance in particulate form; and the balance substantially water.
  • Detergent compositions in accordance with this invention can be prepared by methods well known in the art; however, as hereinbefore indicated, it has been found that especially good results are obtained when the cationic polymer and particulate substances are uniformly admixed in an initial step, with the mixture then being added to an aqueous solution or slurry of the surfactant. If the polymeric component and particulate substance are added to the surfactant separately, the degree of deposition and retention enhancement effected by the polymer will be somewhat less.
  • aqueous vehicle which may, in addition, include such materials as organic solvents, such as ethanol; thickeners, such as carboxymethylcellulose, magnesiumaluminum silicate, hydroxyethylcellulose or methylcellulose; perfumes; sequestering agents, such as tetrasodium ethylenediaminetetraacetate; and opacifiers, such as zinc stearate or magnesium stearate, which are useful in enhancing the appearance or cosmetic properties of the product.
  • organic solvents such as ethanol
  • thickeners such as carboxymethylcellulose, magnesiumaluminum silicate, hydroxyethylcellulose or methylcellulose
  • perfumes such as tetrasodium ethylenediaminetetraacetate
  • opacifiers such as zinc stearate or magnesium stearate, which are useful in enhancing the appearance or cosmetic properties of the product.
  • coconut acyl monoor diethanol amides as suds boosters, and strongly ionizing salts such as sodium chloride and sodium sulfate may be used to advantage.
  • Toilet detergent or soap bars containing a cationic polymer and particulate substance according to this invention can be based on soap or non-soap synthetic detergents and can also contain a variety of adjuvants to improve product performance or appearance.
  • adjuvants include free fatty acids or cold cream to improve cosmetic properties, perfumes, inorganic salts to improve bar firmness, insoluble soap to improve bar texture, coloring matter and the like.
  • such detergents can be in granular, flake, liquid or tablet form and can contain, in addition to detergent and inorganic or organic builder compounds (such as those disclosed by Diehl in U.S. Pat. 3,159,581, granted Dec. 1, 1964), minor amounts of adjuvant materials which make the product more effective or more attractive.
  • a tarnish inhibitor such as benzotriazole or ethylenethiourea may also be added in amounts up to about 2%.
  • Fluorescers, perfume and color while not essential in the compositions of the invention, can be added in amounts up to about 1%.
  • alkaline material or alkali such as sodium hydroxide or potassium hydroxide
  • supplementary pH adjusters can also be mentioned as suitable additives, brightening agents, sodium sulfate, and sodium carbonate.
  • Corrosion inhibitors generally are also added.
  • Soluble silicates are highly effective inhibitors and can be added to certain formulas of this invention at levels of from about 3% to about 8%.
  • Alkali metal, preferably potassium or sodium, silicates having a weight ratio of SiO :M O of from 1.0:1 to 2.811 can advantageously be used. M in this ratio refers to sodium or potassium.
  • a sodium silicate having a ratio of SiO :Na O of about 1.6:1 to 2.45:1 is especially preferred for economy and effectiveness.
  • a hydrotropic agent at times is found desirable.
  • Suitable hydrotropes are water-soluble alkali metal salts of toluenesulfonate, benzenesulfonate, and xylenesulfonate.
  • the preferred hydrotropes are the potassium or sodium toluenesulfonates.
  • the hydrotrope salt can be added, if desired, at levels of 1% to about 12%. While a hydrotrope will not ordinarily be found necessary, it can be added if so desired, for any reason including the preparation of a product which retains its homogeneity at a low temperature.
  • coconut alkyl as used herein and in the following examples refers to alkyl groups which are derived from the middle cut of coconut alcohol having the following approximate chain length distribution: 2% C 66% C12, 23% C and 9% C Other compounds designated as coconut oil derived are based on unfractionated' coconut oil or its fatty acids.
  • a shampoo composition was prepared having the following composition:
  • Sodium coconut alkyl glyceryl ether sulfonate about 23% diglyceryl and the balance substantially monoglyceryl
  • Sodium tallow alkyl glyceryl ether sulfonate about 23% diglyceryl and the balance substantially monoglyceryl; the tallow alkyls correspond to those of substantially saturated tallow alcohols and contain approximately 2% C 32% C and Water Balance 1 Average particle size 2 microns.
  • the zinc pyridinethione and ethoxylated polyethylenimine were uniformly admixed and added to and uniformly mixed with the balance of the components.
  • the resulting product was a stable cream having excellent cosmetic and antidandrutf properties.
  • the degree of deposition of zinc pyridinethione from this composition was.
  • EXAMPLE II Another antimicrobial detergent formulation in accordance with this invention is formulated as follows:
  • This composition provides a substantial degree of antidandruff elfect when used in the customary fashion.
  • the degree of deposition and retention of particulate zinc pyridinethione on the hair and scalp after shampooing with this product is substantially greater than is attained with a similar composition without the polyethylenimine/ ethylene oxide reaction product.
  • Tin Z-pyridmethiol-l-oxide (average particle size 7 microns)
  • Zirconium 2-pyridinethiol-1-oxide (average particle size 4 microns)
  • Water nut alkyl dimethyl ammonium chloride can be used in place of sodium dodecyl benzene sulfonate without loss of the improved deposition and retention of zirconium 2-pyridinethiol-l-oxide particles effected by the polyethylemmine.
  • sodium coconut alkyl (ethoxy) sulfate can be replaced with the condensation product of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide 'with propylene glycol and :having a molecular weight of 1600 or the condensat1on product of octyl phenol and ethylene oxide using a 1mole ratio of 1:15, with substantially equivalent resu ts.
  • a control composition was formulated as in Example I, but omitting the polyethylenimine/ethylene oxide reaction product.
  • a composition similar in formulation but containing 0.5% of polyethylenimine having a cationic charge density of .004 in aqueous solution at pH 7.0 and a molecular weight Of 50,000 was prepared and designated test composition A.
  • a test composition designated B which differed from the control composition in containing 0.5% of the polyethylenimine of composition A and 1.0% of zinc Z-pyridine-thiol-l-oxide having an average particle size of 2 microns rather than 2.0% of this latter component as in the control composition, was also prepared.
  • the hair of 16 female subjects was shampooed by experienced beauty shop operators who washed half of the hair and scalp of each subject with the control composition. The other half of the subjects hair and scalp was washed in the assigned test composition.
  • the test and control composition were used ad libitum, in quantities sufficient to provide a good lather. After lathering for 45 seconds, the hair was rinsed and the compositions were reapplied, lathered for 45 seconds and rinsed again. The hair was then dried.
  • a sample of cornified epithelium from both the control and test halves of each subjects scalp was obtained by applying cellulose adhesive tape against the scalp. The tape was then placed on a glass slide with the adhesive in contact with the glass.
  • the slide was examined with a polarizing microscope at approximately 400 diameters with polaroids crossed. While the cornified epithelium exhibited some degree of birefringence, the highly anisotropic properties of the particulate zinc 2-pyridinethiol-l-oxide made it readily visible under such 'viewing conditions. The relative quantity of particulate zinc Z-pryidinethiol 1 oxide was then graded on a 0 to 4 scale, with a grade of 4 indicating heavy deposition, and 0 indicating substantially no deposition.
  • Examples V11 VIII 1 Molecular weight 10,000; cationic charge density .004 in aqueous solu 2 Weight ratio 2:1; molecular weight 30,000; cationic charge density gre tion at pH 7.0. ater than .001 in aqueous solution at pH 7.0.
  • composition C containing only half as much zinc Z-pyridinethiol-l-oxide as the control was yet greater than the control.
  • Composition D which contains 1.0% polymer and only A as much zinc Z-pyridinethiol-l-oxide than the control displayed only moderately less deposition than the control.
  • Composition E which contains 2% polymer and only half as much zinc 2-pyridinethiol-loxide as the control, provides somewhat greater deposition than the control.
  • Composition F containing 2.0% polymer and only A as much zinc 2-pyridinethiol-l-oxide as the control, provides a degree of deposition approximately equal to the control.
  • Dandruff scales are collected from the scalps of afflicted individuals and mounted on glass slides with a clear acrylic adhesive.
  • the dandruff slides are covered with a clean white polyester/cotton cloth, wetted with water, and washed with a test detergent composition by brushing the cloth-covered slide with a soft toothbrush and using 20 grams of the detergent composition for 50 strokes.
  • the slides are then rinsed for one minute with cloth in place and then for two minutes with cloth re- 14 moved.
  • the rinse water used is tap water at 37 C. with a flow rate of 4 liters per minute.
  • the slides are then allowed to dry.
  • the washed slides are examined microscopically at 400 diameters magnification using cross polarized filters. Deposition is graded on a 0-4 scale, no deposition being given a 0 grade, while maximum expected deposition is given a 4 grade. Grades in between vary approximately linearly with the density of deposited particles. Several areas of each slide are given whole number grades before the average for that slide is taken to the nearest of a deposition grade. In each test three slides for each test material are treated in random order. All grading and washing is done on a blind basis.
  • Detergent compositions substantially corresponding to the composition of Example I but containing 0.5% by weight of zinc Z-pyridinethiol-l-oxide and 2.0% by 'weight of various cationic polymers of this invention were tested against a control composition without polymer using the method described above. The following results were obtained.
  • Polyvinylimidazole substantially completely quaternized with dimethyl sulfate, having a molecular Weight of from 5 to 20 X 10 and a cationic charge density of .009.
  • Quaternary ammonium-substituted hydroxyethylcellulose ether formed by reacting a hydroxyethylcellulose ether (havi-ng a degree of substitution with hydroxyethyl groups of 1.3) with the reaction product of 0.7 mole epiclmlorohydrin and 0.7 mole of Itrimethylamine per substituted anhydroglucose unit thereof, said polymer having a cationic charge density of .002 and a molecular weight within the range from about 200,000 %to 230,000.
  • the deposition and retention of the particulate antimicrobial agent 3,4',S-tribromosalicylanilide upon skin washed with the above composition is substantially greater 15 than H occurs with 7 a control composition without cationic polymer.
  • Toilet detergent bars identical in composition to the bar described above are prepared, replacing the 3,4,5-tribromosalicylanilide with 4 micron particles of the antimicrobial agents 3,4,4'-trichlorocarbanilide; 4,4'-dichloro-3- (trifluoromethyl)carbanilide; bis(2 hydroxy 3,5,6-trichlorophenyl)methane; and a 1:1 mixture of 4,4-dichloro- 3-(trifluoromethyl)carbanilide and 3,4,5-tribromosalicylanilide, respectively, with improved deposition and retention of the antimicrobial particles being attained in each case. relative to control compositions without cationic polymer.
  • Example XII Additional toilet detergent bars are prepared as in Example XII each containing one of the following cationic polymers in place of the quaternary ammonium-substituted cellulose ether polymer employed therein:
  • Each of these toilet detergent bars provides a degree of 3,4,5-tribromosalicylanilide particle deposition and retention on skin washed therewith which is substantially greater than is attained with toilet detergent control bars without such polymers.
  • Polyvinylimirlazole in which 80% of the vinylirnidazole units are quarternized with dimethyl sulfate, having a molecular weight of 250,000 and a cationic charge density of .007.
  • Toilet detergent bars desirably contain a sunscreen or ultraviolet absorber which will deposit on the skin in the course of washing therewith to provide protection against harmful sun rays.
  • a toilet soap bar containing ,an ultraviolet absorber is formulated in accordance with this invention as follows: Percent by weight Sodium soap of 50:50 itallow-zcoconut fatty acids 13.19 Coconut fatty acid 7.30 Cold cream 1.10
  • the toilet soap bar of this example effects a substantially greater degree of deposition and retention of the particulate ultraviolet asborber (2-hydroxy-4-n-octoxybenzophenone) on the washed skin surfaces than does an identical composition without polymer.
  • toilet soap bars formulated in accordance with Example XIV are prepared containing polyvinylimidazole substantially completely quaternized with dimethyl sul-' fate, having a molecular weight of 200,000 and a cationic charge density of .009; quaternized poly(p-dirnethylaminomethylstyrene) having a molecular weight of 250,000 and a cationiccharge density of .006; and JR-1L, a quaternary ammonium-substituted cellulose derivative supplied by Union Carbide, having a molecular weight within the range from 100,000 to 1,000,000, and a cationic charge density of .004; respectively, in place of the cationic polymer employed in that
  • insoluble particulatesubstances which are desirably incorporated in toilet soap or detergent bars include the so-called skin feel enhancers.
  • skin feel enhancers Such materials are deposited as particles on the skin in the course of washing and create a favorable skin feel after washing.
  • Such materials include, for example, nicotinic acid, talc and silicones, such as Dow-Corning Silicone F-157. These materials are desirablyincorporated in a toiletbar formula at levels of about 10% by weight.
  • EXAMPLE XV A bar soap formulation as set forth in Example XIV is prepared substituting 10.2% by weight of nicotinic acid particles (average particlesize 5 microns) for the 2-hydroxy-4-n-octoxybenzophenone and "coconut fatty acid. The resulting composition yields a substantially greater degree of deposition and retention of nicotinic acid particles on skin washed with the bar than is attained with a bar similarly formulated but without cationic polymer. Similar results are obtained when Dow-Co rn' 17' used in heavy-duty laundry detergent products in concentrations up to about 1% by weight.
  • a built liquid detergent formulation containing a particulate bluing material and a cationic polymer in accordance with this invention is formulated as follows:
  • tallow alkyls correspond to those of substantially saturated tallow alcohols and contain approximately 2% Cu, 32% C and 66% 0 s.
  • Polymer (1) in the above example is poly (diethlaminoethylmethacrylate) substantially completely quaternized with dimethylsuliate, hfazig a molecular weight of 2,000,000 and a cationic charge density 0
  • Polymer (2) is JR-IL.
  • Polymer (3) is polyethylenimine/ethylene oxide reaction product (weight ratio 1:1) molecular weight 80,000120,000 and cationic charge density of .004 in aqueous solution at pH 7.0.
  • Polymer (4) is primafloe C-3.
  • compositions provides a substantially greater degree of deposition and retention of the particulate antimicrobial agents contained therein than similar compositions formulated without these polymers.
  • a detergent composition consisting essentially of: (I) from about 2% to about of an organic surfactant selected from the group consisting of anionic, ampholytic, polar nonionic, nonionic, and zwitterionic surfactants and cationic surfactants selected What is claimed is:
  • n is an integer from 1 to 3
  • p is an integer from 0 to 10
  • antimicrobial substances selected from the group consisting of:
  • R is an alkylene radical having from 1 to 4 carbon atoms or divalent sulfur
  • R0911 is the residue of an anhydroglucose unit
  • Y is an integer from 50 to 20,000
  • each R has the general formula:
  • n is an integer from 0 to 3
  • p is an integer from 0 to 10.
  • composition of claim 1 wherein the cationic polymer is a quaternary ammonium-substituted cellulose ether derivative formed by reacting a hydroxyethylcellulose ether having a degree of substitution with hydroxyethyl groups of 1.3 with the reaction product of 0.7 mole of epichlorohydrin and 0.7 mole of trimethylamine per substituted anhydroglucose unit thereof.
  • composition of claim 1 wherein the particulate substance is an antimicrobial substance.
  • composition of claim 4 wherein the particulate substance is a heavy metal salt of 2-pyridinethiol-1-oxide wherein said heavy metal salt is selected fromthe group consisting of zinc, cadmium, tin, and zirconium salts.
  • composition of claim 5 wherein the heavy metal salt is zinc.
  • composition of claim 2 wherein the particulate substance is an antimicrobial substance.
  • composition of claim 7 wherein the particulate substance is a heavy metal salt of Z-pyridinethiol-l-oxide wherein said heavy metal is selected from the group consisting of zinc, cadmium, tin, and zirconium salts.
  • composition of claim 1 wherein the detergent is a water-soluble salt of a member selected from the group consisting of higher fatty acids, anionic organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 8 to about 20 carbon atoms and a sulfuric or sulfonic acid ester radical, and acyl sarcosinates, wherein the acyl group contains from about 10 to about 18 carbon atoms.

Abstract

DETERGENT COMPOSITIONS CONTAINING WATER-INSOLUBLE PARTICULATE SUBSTANCES, SUCH AS ANTIMICROBIAL AGENTS, AND CERTAIN CATIONIC POLYMERS WHICH SERVE TO ENHANCE THE DEPOSITION AND RETENTION OF SUCH PARTICULATE SUBSTANCES ON SURFACES WASHED WITH THE DETERGENT COMPOSITION.

Description

United States Patent 3,580,853 DETERGENT COMPOSITIONS CONTAINING PARTICLE DEPOSITION ENHANCING AGENTS John J. Parran, Jr., Springfield Township, Hamilton County, Ohio, assignor to The Procter & Gamble Company, Cincinnati, Ohio No Drawing. Filed Sept. 27, 1967, Ser. No. 671,117 Int. Cl. C11d 3/22, 3/48 US. Cl. 252-152 Claims ABSTRACT OF THE DISCLOSURE Detergent compositions containing water-insoluble particulate substances, such as antimicrobial agents, and certain cationic polymers which serve to enhance the deposition and retention of such particulate substances on surfaces washed with the detergent composition.
CROSS-REFERENCE TO RELATED APPLICATIONS This application is related to the earlier-filed copending application of John J. Parran, Jr., Ser. No. 476,175, filed July 30, 1965, now abandoned.
BACKGROUND OF THE INVENTION The field of this invention is detergent compositions including shampoos (liquid and cream), laundering, hardsurface and dishwashing detergents (granular and liquid), and personal use toilet detergent bars.
Various water-insoluble particulate substances have been incorporated in detergent products for the purpose of imparting some residual property or characteristic on surfaces washed with the products. For example, shampoo compositions containing particulate antidandruif agents have been developed which function by deposition and retention of the particulate agent on the hair and scalp during shampooing. Sufficient quantities of the deposited particulate agents are retained after rinsing to impart some degree of residual antimicrobial activity to the washed hair and scalp. Such antidandruff shampoo compositions are disclosed, for example, by Karsten, Taylor and Parran in US. Pat. 3,236,733, granted Feb. 22, 1966.
Particulate antimicrobial substances have also been used in various laundry detergents and personal use toilet detergent bars to impart residual antimicrobial activity on the fabrics or skin surfaces washed with same. Such products are disclosed by Reller and Jordan in US. Pats. 3,134,711, granted May 26, 1964, and 3,256,200, granted June 14, 1966.
Various other water-insoluble or sparingly soluble particulate materials such as sunscreens, fabric brighteners, and whiteners have been employed in detergent compositions and depend for their activity on particle deposition and retention on washed surfaces.
It is apparent that an effective detergent composition, properly used, will by its very nature tend to minimize retention of particulate matter on washed surfaces. Thus, only a relatively small proportion of particles present in such detergent compositions are actually retained after rinsing of the washed surface. Since the activity of antimicrobial and other particulate agents is in part a function of the quantity of particles deposited and retained on the involved surfaces, measures which enhance deposition and/or promote retention of such particles serve to reduce the quantity of the substance in the composition required to attain a given level of activity or increase the activity attainable with a given concentration of such particles.
SUMMARY OF THE INVENTION It has now been discovered that water-soluble cationic nitrogen-containing polymers having a molecular weight within the range from about 2,000 to about 3,000,000, and having a cationic charge density (as defined hereinafter) greater than .001 in aqueous solution, enhance the deposition and retention of water-insoluble or sparingly soluble particulate substances contained in detergent compositions on surfaces washed therewith.
Although the mechanism whereby this phenomenon occurs is not fully understood, it is believed that the polymer coats or attaches itself in some way on the involved particles imparting a net positive charge thereto which increases the aflinity of the particle for the generally negatively charged washed surfaces.
It is therefore an object of this invention to provide detergent compositions which have improved capacities to impart residual activity or properties to surfaces washed therewith.
It is a further object of this invention to provide improved detergent compositions containing water-insoluble or sparingly soluble particulate substances which are deposited and retained on washed surfaces.
It is yet another object of this invention to provide a method for enhancing the deposition of particulate substances from detergent compositions and the retention of such substances on surfaces washed therewith.
These and other objects will become apparent from the following detailed description of the invention.
DETAILED DESCRIPTION OF THE INVENTION The detergent compositions of this invention are comprised of (1) an organic surface active agent (surfactant, i.e., detergent compound); (2) at least one water-soluble cationic nitrogencontaining polymer having a molecular weight within the range from about 2,000 to about 3,000,000 and having a cationic charge density greater than .001 in aqueous solution; and (3) a water-insoluble or sparingly soluble particulate substance capable of imparting a desired residual property to a surface to which it becomes afiixed.
In its process aspect, this invention is a method for enhancing the deposition and retention of particulate substances upon surfaces washed with a detergent composition containing same, comprising uniformly admixing said particulate substances with a water-soluble cationic nitrogen-containing polymer having a molecular weight within the range from about 2,000 to about 3,000,000, and having a cationic charge density greater than .001'in aqueous solution, and incorporating said mixture in a detergent base.
The cationic charge density of a polymer as that term is used herein refers to the ratio of the number of positive charges on a monomeric unit of which the polymer is comprised to the molecular weight of said monomeric unit, i.e.,
cationic charge density number of positive charges monomeric unit molecular weight of organic sulfuric reaction products having in their mo- I lecular structure an alkyl group containing from about 8 to about 20 carbon atoms and a sulfonic acid or sulfuric acid ester radical. Such surfactants include the sodium, potassium, and triethanolamine alkyl sulfates, especially those derived by sulfation of higher alcohols produced by reduction of tallow or coconut oil glycerides; sodium or potassium alkyl benzene sulfonates, especially those of the types described by Gunther et al. in US. Pat. 2,477,383, granted July 26, 1949, in which the alkyl group contains from about 9 to about carbon atoms; sodium alkyl glyceryl ether sulfonates, especially those others of higher alcohols obtained from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfates and sulfonates; sodium salts of sulfuric acid esters of the reaction product of one mole of a higher alcohol (i.e., tallo'w or coconut oil alcohols) and about 3 moles of ethylene oxide; and the water-soluble salts of condensation products of fatty acids with sarcosine, e.g., triethanolamine N-acyl sarcosinate, the acyl radicals being derived from coconut oil fatty acids.
Preferably, anionic organic surfactants of the high sudsing type are used for the shampoo embodiments of this invention. Thus, alkyl glyceryl ether sulfonates, N-acyl sarcosinates, and alkyl ether ethylene oxide sulfates as described above are used to special advantage. These and the foregoing surfactants can be used in the form of their sodium, potassium or lower alkanolamine (e.g., mono-, di, and triethanolamine) salts.
Conventional soaps are also operable anionic surfactants for 'the purposes of this invention. Suitable soaps include the water-soluble salts, e.g., sodium, potassium, and lower alkanolamine salts of fatty acids occurring'in coconut oil, soybean oil, castor oil or tallow, or syntheti cally produced fatty acids may be used.
Polar nonionic surfactants can be used herein, either alone or in admixture with anionic and/or ampholytic surfactants. Surfactants of this class can serve to enhance lathering and cleaning properties of anionic detergents. By polar nonionic surfactant is meant a surfacsurfactant molecule bears no net charge and does not dissociate into ions.
A preferred polar nonionic surfactant for use in the present compositions is amine amine oxide of the general formula R R R N O, wherein R is an alkyl, alkenyl, or monohydroxyalkyl radical having from about 10 to 16 carbon atoms, and R and R are each methyl, ethyl, propyl, ethanol or propanol radicals. An especially preferred amine oxide is dodecyldimethylamine oxide.
Other operable polar nonionic surfactants are the phosphine oxides having the general formula R R R P-' O, wherein R is an alkyl, alkenyl or monohydroxyalkyl radical ranging in chain length from 10 to 18 carbon atoms, and R and R are each alkyl or monohydroxyalkyl radicals containing from 1 to 3 carbon atoms. A preferred phosphine oxide is dodecyldimethyl phosphine oxide.
Suitable amphoteric surfactants include the alkyl betaiminodipropionates, RN(C H COOM) alkyl beta-aminopropionates, RN(H)C H COOM; and long chain imidazole derivatives having the general formula:
In each of the above formulae, R is an acyclic hydrophobic group containing from about 8 to about 18 carbon atoms and M is a cation to neutralize the charge of theanion, e.g., alkali metal such as sodium and potassium and ammonium and substituted ammonium cations.
Specific operable amphoteric surfactants include the (11'. sodium salt of lauroyl-cycloimidinium-l-ethoxy-ethionic acid 2 ethionic acid, dodecyl beta-alanine, and the inner salt of Z-trimethylamino lauric acid. As zwitterionics, the substituted betaines such as alkyl dimethyl ammonio acetates wherein the alkyl radical contains from about 12 to about 18 carbon atoms can also be used. Several examples of this class of zwitterionic surfactants are set forth in Canadian Pat. 696,355, granted Oct. 20, 1964.
Especially preferred shampoo compositions in accord ance with this invention will contain a non-soap anionic organic surfactant at a concentration of from about 8% to about 30% by weight of the total composition.
Although nonionic and cationic surfactants are not preferred for the purposes of this invention they can nevertheless be used without substantial loss of the advantageous effects of the cationic polymers on deposition and retention of particulate matter on washed surfaces. Nonionic surfactants may be described as compounds produced by the condensation of alkylene oxide .groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic or alkyl aromatic in nature. As those skilled in the are are well aware, the length of the hydrophilic or polyoxyalkylene radical required for condensation with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
For example, a well known class of nonionics is made available on the market under the tradename of Pluronic! These compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol. The hydrophobic portion of the molecule, of course, exhibits-water insolubility. The molecular weight of this portion is-of the order of 950 to 4,000. The addition of polyoxyethylene radicals to this hydrophobic portion tends to increase thewater solubility of the molecule as a whole. Liquid products are obtained up to the point where polyoxyethyl'ene content is about 50% of the total weight of the condensation product.
Suitable nonionics also include the polyethylene oxide condensates of alkyl phenols, e.g., the condensation prod-- nets of alkyl phenols having about 6 to 12 carbon atoms, either straight chain or 'branch chain, in the alkyl group with ethylene oxide in amounts equal to 10 to 25 moles of ethylene oxide per mole of alkyl phenol. The alkyl subs-tituent in such compounds may be derived from polym* erized propylene, diisobutylene, octane, or nonane, for example.
Other suitable nonionics may be derived by the condensation of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamine. Here again, a series of compounds may be produced, depending on the desired balance between hydrophobic and hydrophilic elements. For example, compounds (molecular weight from about 5,000 to about 11,000) of about 40% to polyoxyethylene content and resulting from the reaction of ethylene oxide groups with a hydrophobic base constituted of the reaction product of ethylene diamine and excess propylene oxide, said base having a molecular weight of the order of 2,500 to 3,000, are satisfactory.
Further satisfactory nonionics include the condensation product of aliphatic alcohols having from 8 to 18 carbon atoms, either straight chain or branch chain, with ethylene oxide, an example being a coconut alcohol/ ethylene oxide condensate having from 10 to 30 moles of ethylene oxide per mole of coconutalcohol, the coconut alcohol fraction having from 10 to 14 carbon atoms.
Cationic surfactants which can be used in the compositions of this invention include distearyl dimethyl ammonium chloride, stearyl dimethyl benzyl ammonium chloride, coconut alkyl dimethyl benzyl ammonium chloride, dicoconut alkyl dimethyl ammonium chloride, cetyl pyridinium chloride, and cetyl trimethyl ammonium bromide.
As hereinbefore indicated, the compositions of this invention contain as an essential component a water-soluble cationic nitrogen-containing polymer having a molecular weight within the range from about 2,000 to about 3,000,- 000 and a cationic charge density greater than .001 in aqueous solution.
Operable cationic polymers for the purpose of this invention include polyethylenimine or alkoxylated polyethylenimine polymers. It is believed that the structural formula of the backbone of polyethylenimine is:
wherein x represents a whole number of sufiicient magnitude to yield a polymer of molecular weight greater than about 2,000. Branch chains occur along the polymeric backbone and the relative proportions of primary, secondary and tertiary amino groups present in the polymer will vary, depending on the manner of preparation. The distribution of amino groups in a typical polyethylenimine is approximately as follows:
The polyethylenimine is characterized herein in terms of molecular weight. Such polymers can be prepared, for example, by polymerizing ethylenimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc. Specific methods are described in US. Pat. Nos. 2,182,306, Ulrich et al., granted Dec. 5, 1939; 3,033,746, Mayle et al., granted May 8, 1962; 2,208,095, Esslemann et al., granted July 16, 1940; 2,806,839, Crowther, granted Sept. 17, 1957; and 2,553,696, Wilson, granted May 21, 1951. Polyethylenimine has a cationic charge density of .004 in aqueous solution at pH 7.0.
Similarly, alkoxylated polyethylenimine can be prepared, for example, by reacting one part by weight ethylene oxide or propylene oxide with one part by weight of polyethylenimine prepared as described above and having a molecular weight greater than about 2,000. Preferably, the weight ratio of polyethylenimine to alkylene oxide is at least about 1:1. If this ratio is less than about 124 the cationic charge density of the polymer in aqueous solution will not be greater than .001 as is required for the purpose of this invention. A preferred ethoxylated polyethylenimine has a molecular weight of about 80,000 to 120,000 and a cationic charge density of .004 in aqueous solution at pH 7.0.
Yet another class of water-soluble cationic nitrogencontaining polymers which can be used in the practice of this invention are those in which at least 30 mole percent of the molecular structure is composed of monomeric units containing one or more quaternary ammonium groups and any balance of which is comprised of non-quaternized polymeric units derived from monoethylenically unsatu rated monomeric groups. The degree of quaternization must be suflicient to provide a cationic charge density greater than about .001. Such polymers include, for example, quaternized polyvinylimidazole, quaternized poly- (dimethylaminoethylmethacrylate), quaternized poly(diethylaminoethylmethacrylate), quaternized poly(p dimethylaminomethylstyrene) and others disclosed by Lang in US. Pat. 3,313,734, granted Apr. 11, 1967, all having molecular weights within the range from about 2,000 to 3,000,000.
Still other types of water-soluble cationic polymers useful herein are the following:
(1) Water-soluble quaternary nitrogen-substituted cel- *Hydroxyethyleellulose Hydroxyethylcellulose is, of course, comprised of hydroxyethyl-substituted anhydroglu'cose units with varying degrees of hydroxyethyl substitution. This material is pre pared by reacting alkaline cellulose with ethylene oxide as is more fully described by Gloor et al., Ind. Eng. Chem., 42:2150 (1950). The extent of substitution with the quaternary nitrogen-containing group must be sufficient to provide a cationic charge density greater than .001, and the molecular weight of the substituted hydroxyethylcellulose polymer must be within the range from about 2,000 to 3,000,000.
The preferred cellulose ether derivative from which the quaternary ammonium-substituted polymers described above are prepared include those which are water-soluble nonionic lower alkyl or hydroxyalkyl substituted. Such derivatives include methylcellulose, ethylcellulose, and hydroxyethylcellulose.
A particuarly efficacious quaternary ammonium-substituted cellulose ether derivative for the purpose of this invention is available from Union Carbide under the code name JR-lL. This polymer has a molecular weight within the range from 100,000 to 1,000,000 and a cationic charge density of .005. Polymer JA-1L is a cationic cellulose ether having the structure:
wherein R is a residue of an anhydroglucose unit, Wherein Y is an integer from 50 to 20,000 and wherein each R individually represents a substituent of the general formula:
wherein m is an integer from 0 to 10, n is an integer from 0 to 3, and p is an integer from 0 to 10. The average values per hydroglucose unit are: n is from 0.35 to 0.45
and the sum of m-l-p is from 1 to 2.
(2) Water-soluble linear polyamines available from The Rohm & Haas Company under the trade name Primafloc C3. This polymer has a molecular weight within the range from about 30,000 to 80,000 and a cationic charge density in aqueous solution at pH 7.0 greater than .001, and contains at least 50 mole percent of units of the formula the Nalco Chemical Company under the trade names Nalco 600 and Nalcolyte 605. Such polymers have the formula:
L AH J. wherein x is an integer of sufiicient magnitude to yield a polymer having a viscosity at 74 F. of 21 to 42 centipoise. These polymers have a molecular Weight within the range from about 2,000 to 3,000,000 and a cationic charge density greater than .001 in aqueous solution at pH 7.0.
(4) Coagulant Aid #225 commercially from The Calgon Company. This product is a water-soluble nitrogencontaining polymer having a molecular weight within the range from about 30,000 to 3,000,000 and a cationic charge density greater than .001 in aqueous solution at pH 7.0. Coagulent Aid #225 is a condensation polyethylene amine extended with epichlorohydrin and prepared as follows: A l-liter flask was fitted with a stirrer, reflux condenser, thermometer, and an addition funnel, and 232 g. of Amine E-100 was introduced. This is a product of Dow Chemical Company containing about 10% tetraethylenepentamine, about 40% pentaethylenehexamine, about 20% cyclized polyalkylene, polyamines, and about 10% polyalkylene polyamines having chains greater than pentaethylene (mostly hexaethyleneheptamine and heptaethyleneoctamine) 250 g. of water was added and the solution heated to reflux. To the solution was added, at a suitable rate, 60 g., 0.6 mole, of ethylene dichloride. The addition rate of the EDC was carefully controlled so that a minimum of unreacted EDC excess was maintained. On completion of EDC addition the reaction mixture was held at 100-110 for one hour. The reaction product at this point was a prepolymer as above described.
The prepolymer formed as above was heated to 80 C. and the dropwise addition of 37 g., 0.4 mole, of epichlorohydrin (ECH) was begun. The temperature was allowed to rise no higher than 90 during the addition. On completion of the addition the reaction mixture was held at 100 for 30 minutes. The resulting polymer, was a 57.5% active solution 'with a viscosity of 2,000 cps.
(5) Conductive Polymer #261 commercially available from The Calgon Company. This product is a water-soluble nitrogen-containing polymer having a molecular weight within the range from about 30,000 to 3,000,000 and a cationic charge density greater than .001 in aqueous solution at pH 7.0. Conductive Polymer #261 is poly(N,N-dimethyl-3,5-methylene piperidinium chloride), average molecular weight 50,000.
If the molecular weight of the cationic polymers em.- ployed herein is less than about 2,000, no substantial enhancement of particle deposition occurs. Best results are obtained with polymers having 'a'molecular weight within the range from about 30,000 to about 1,000,000.
The cationic polymer can be employed herein at a concentration within the range from about 0.1% to about 10.0% by weight, preferably" from about 0.25% to about 4.0% by weight.
Particulate substances which can be used in the detergent compositions of this invention preferably have an average particle diameter within the range from about 0.2 to about 50 microns and include water-insoluble or sparingly soluble anti-microbial agents, sunscreens, fabric brighteners, and various substances which create a favorable skin feel after washing. These particulate substances depend on deposition and retention on washed surfaces to produce their intended elfect.
Particulate antimicrobial substances, the deposition and retention of which is enhanced by the cationic polymers described herein include, for example, (a) substituted salicylanilides having the general formula:
Y OH (I? Y Y X Y 8 wherein X is hydrogen or halogen, and Y is hydrogen, halogen or trifluoromethyl; (b) substituted carbanilides having the general structural formula:
X Xu
wherein X is a halogen and n is an integer from 1 to 3, R is an alkylene radical having from 1 to 4 carbon atoms or divalent sulfur; and (d) mixtures of (a), (b), and (c).
The salicylanilides encompassed by (a) above include 3,4,S-tribromosalicylanilide; 5 bromosalicyl-3,5-di(trifluoromethyDanilide; 5 chlorosalicyl 3,5-di(trifluoromethyl)anilide; 3,5 dichlorosalicyl-3,4-dich1oroanilide; and 5-chlorosalicyl 3 tri-fluoromethyl-4-chloranilide. These and other salicylanilides useful herein are disclosed by Bindler and Model in U.S. Pat. 2,703,332, granted Mar. 1, 1955.
The preferred carbanilides of (b) above include 3,4,4- trichlorocarbanilide; 3 trifluoromethyl-4,4-dichlorocarbanilide; 3 trifluoromethyl-3,4,4'-trichlorocarbanilide; 3,3'-bis(trifluoromethyl) 4 ethoxy 4' chlorocarbanilide; and 3,5 bis(trifluoromethyl) 4 chlorocarbanilide.
The compounds in (c) above in which R represents an alkylene radical are more fully described in U.S. Letters Patent 2,555,077, granted Dec. 26, 1950. The preferred compounds of the general class of (0) above are those which are symmetrical in structural configuration, such as bis(S chloro-Z-hydroxyphenyl) methane, bis(3,5-dichloro-2hydroxyphenyl)methane, bis(3,5,6 trichloro-Z- hydroxyphenyl)methane, bis(3,5 dichloro 2-hydroxyphenyl) sulfide, bis (3,5,6-trichloro-2-hydroxyphenyl)sul fide, and mixtures thereof.
Additional antimicrobial compounds suitable for use in this invention are N-trichloromethylmercapto l-cyclohexene-1,2-dicarboximide and N-(1,1,2,2-tetrachloroethylsulfenyl -cis-A-4-cyclohexene-1,2-dicarboximide.
Preferred antibacterial agents employed herein are salts of 2-pyridinethiol-1-oxide which has the following structural formula in tautomeric form, the sulfur being attached to the number 2 position of the pyridine ring:
| OH N N SH Us 2-pyridinethioll-hydroxyl-oxide 2-pyridinethione Heavy metal salts of the above compounds are sparingly soluble and have a high degree of antibacterial activity. Preferred salts include zinc, cadmium, tin and zirconium 2-pyridinethiol-1-oxide.
Combinations of the above-described antibacterial substances can also be used to advantage. Such combinations are illustrated in U.S. Pat. 3,281,366, granted Oct. 25, 1966.
These antimicrobial compounds are used in particulate form, with average particle sizes ranging from about 0.2 to about 30 microns. The quantity of antimicrobial agent employed can range from about 0.1% to about 10% and preferably from about 0.5% to about 2.0% by weight.
Preferred antimicrobial detergent compositions in accordance with this invention especially adapted to washing hair and scalp are comprised of from about to about 35% by weight of at least one non-soap anionic, polar nonionic, ampholytic or zwitterionic surfactant; from about 0.25% to about 2.0% by weight of a watersoluble cationic nitrogen-containing polymer having a cationic charge density greater than about .001 and having an average molecular weight within the range from about 30,000 to about 1,000,000; from about 0.5% to about 2.0% by weight of a water-soluble or sparingly soluble antimicrobial substance in particulate form; and the balance substantially water.
Detergent compositions in accordance with this invention can be prepared by methods well known in the art; however, as hereinbefore indicated, it has been found that especially good results are obtained when the cationic polymer and particulate substances are uniformly admixed in an initial step, with the mixture then being added to an aqueous solution or slurry of the surfactant. If the polymeric component and particulate substance are added to the surfactant separately, the degree of deposition and retention enhancement effected by the polymer will be somewhat less.
Each of the aforementioned components can be incorporated in an aqueous vehicle which may, in addition, include such materials as organic solvents, such as ethanol; thickeners, such as carboxymethylcellulose, magnesiumaluminum silicate, hydroxyethylcellulose or methylcellulose; perfumes; sequestering agents, such as tetrasodium ethylenediaminetetraacetate; and opacifiers, such as zinc stearate or magnesium stearate, which are useful in enhancing the appearance or cosmetic properties of the product.
Coconut acyl monoor diethanol amides as suds boosters, and strongly ionizing salts such as sodium chloride and sodium sulfate may be used to advantage.
Toilet detergent or soap bars containing a cationic polymer and particulate substance according to this invention can be based on soap or non-soap synthetic detergents and can also contain a variety of adjuvants to improve product performance or appearance. Examples of such adjuvants include free fatty acids or cold cream to improve cosmetic properties, perfumes, inorganic salts to improve bar firmness, insoluble soap to improve bar texture, coloring matter and the like.
In the case of heavy-duty laundering detergents containing the cationic polymers and particulate substances in accordance with this invention, such detergents can be in granular, flake, liquid or tablet form and can contain, in addition to detergent and inorganic or organic builder compounds (such as those disclosed by Diehl in U.S. Pat. 3,159,581, granted Dec. 1, 1964), minor amounts of adjuvant materials which make the product more effective or more attractive. The following are mentioned by way of example. A tarnish inhibitor such as benzotriazole or ethylenethiourea may also be added in amounts up to about 2%. Fluorescers, perfume and color while not essential in the compositions of the invention, can be added in amounts up to about 1%. An alkaline material or alkali, such as sodium hydroxide or potassium hydroxide, can be added in minor amounts as supplementary pH adjusters when needed. There can also be mentioned as suitable additives, brightening agents, sodium sulfate, and sodium carbonate.
Corrosion inhibitors generally are also added. Soluble silicates are highly effective inhibitors and can be added to certain formulas of this invention at levels of from about 3% to about 8%. Alkali metal, preferably potassium or sodium, silicates having a weight ratio of SiO :M O of from 1.0:1 to 2.811 can advantageously be used. M in this ratio refers to sodium or potassium. A sodium silicate having a ratio of SiO :Na O of about 1.6:1 to 2.45:1 is especially preferred for economy and effectiveness.
In the embodiment of this invention which provides for a built liquid detergent, a hydrotropic agent at times is found desirable. Suitable hydrotropes are water-soluble alkali metal salts of toluenesulfonate, benzenesulfonate, and xylenesulfonate. The preferred hydrotropes are the potassium or sodium toluenesulfonates. The hydrotrope salt can be added, if desired, at levels of 1% to about 12%. While a hydrotrope will not ordinarily be found necessary, it can be added if so desired, for any reason including the preparation of a product which retains its homogeneity at a low temperature.
The term coconut alkyl as used herein and in the following examples refers to alkyl groups which are derived from the middle cut of coconut alcohol having the following approximate chain length distribution: 2% C 66% C12, 23% C and 9% C Other compounds designated as coconut oil derived are based on unfractionated' coconut oil or its fatty acids.
The following examples are illustrative of several de-' tergent compositions of this invention.
EXAMPLE I A shampoo composition was prepared having the following composition:
Parts by weight Sodium coconut alkyl glyceryl ether sulfonate (about 23% diglyceryl and the balance substantially monoglyceryl) Sodium tallow alkyl glyceryl ether sulfonate (about 23% diglyceryl and the balance substantially monoglyceryl; the tallow alkyls correspond to those of substantially saturated tallow alcohols and contain approximately 2% C 32% C and Water Balance 1 Average particle size 2 microns.
Molecular weight 40,000-60,000.
The zinc pyridinethione and ethoxylated polyethylenimine were uniformly admixed and added to and uniformly mixed with the balance of the components. The resulting product was a stable cream having excellent cosmetic and antidandrutf properties. The degree of deposition of zinc pyridinethione from this composition was.
much greater than the degree of deposition attained with a similarly formulated product which contained no cationic polymer. Residual antimicrobial activity of surfaces washed with this composition is markedly greater as compared to surfaces washed with a control product without polymer.
Compositions identical to the composition of Example I, but containing 5 micron diameter particles of 3,4,4- trichlorocarbanilide; 3,4',5 tribromosalicylanilide; 4,4- dichloro 3 (trifluoromethyl)carbanilide; and bis(2- hydroxy 3,5,6 trichlorophenyDmethane, and 6.5 mi- 11 mer is found to be substantially greater than is attached with the control compositions, and a corresponding increase in residual antimicrobial activity is observed on surfaces washed therewith.
EXAMPLE II Another antimicrobial detergent formulation in accordance with this invention is formulated as follows:
Parts by weight Triethanolamine coconut alkyl sulfate 10.0
Coconut alkyl dimethyl amine oxide 10.0 Monoethanol amide of coconut fatty acids 5.0 Ethanol 10.0 Polyethylenimine 1 0.75 Cadmium 2-pyridinethiol-l-oxide (average particle size 3.0 microns) 0.25 Water, NaOH to adjust to pH 8.5 balance 1 A water-soluble cationic polymer having a molecular weight of 50,000 to 100,000, a cationic charge density of .004 in aqueous solution alt pH 7.0, and la viscosity of 2.5 centipqise (absolute viscosity) in. 'a 1% by weight aqueous solution measured with an Ostwaild viscosimeter at 100 F.
Triethanolamine coconut alkyl sulfate 20.0 Monoethanol amide of coconut fatty acid 4.5 Magnesium aluminum silicate 0.9 Methylcellulose 0.23 Dye 0.008 Perfume 08 Zinc 2-pyridinethiol-1-oxide 1 1.0 Polyethylenimine /ethylene oxide reaction prodduct (weight ratio 4:1; molecular weight 50,000;
cationic charge density .004 in aqueous solution at pH 7.0) 0.5 Water balance 1 Average particle size 1.5 microns. 2 Molecular weight 10,000.
This composition provides a substantial degree of antidandruff elfect when used in the customary fashion. The degree of deposition and retention of particulate zinc pyridinethione on the hair and scalp after shampooing with this product is substantially greater than is attained with a similar composition without the polyethylenimine/ ethylene oxide reaction product.
Sodium coconut alkyl (ethoxy) sulfate Sodium lauroyl sarcosinate Sodium dodecyl benzene sullonate. 2-trimethylamine laurie acid 'Iriethanolamine coconut alkyl mono lye ride sulfonate Potassium coconut soap.-. Ethanol Polyethylenimine 1 Polyethyleniminel /propylene oxide reaction product 2 .1. i6
Tin Z-pyridmethiol-l-oxide (average particle size 7 microns) Zirconium 2-pyridinethiol-1-oxide (average particle size 4 microns) Water nut alkyl dimethyl ammonium chloride can be used in place of sodium dodecyl benzene sulfonate without loss of the improved deposition and retention of zirconium 2-pyridinethiol-l-oxide particles effected by the polyethylemmine.
In Example IV, sodium coconut alkyl (ethoxy) sulfate can be replaced with the condensation product of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide 'with propylene glycol and :having a molecular weight of 1600 or the condensat1on product of octyl phenol and ethylene oxide using a 1mole ratio of 1:15, with substantially equivalent resu ts.
The enhanced deposition and retention of pyridinethione salts was demonstrated as follows: A control composition was formulated as in Example I, but omitting the polyethylenimine/ethylene oxide reaction product. A composition similar in formulation but containing 0.5% of polyethylenimine having a cationic charge density of .004 in aqueous solution at pH 7.0 and a molecular weight Of 50,000 was prepared and designated test composition A. A test composition designated B which differed from the control composition in containing 0.5% of the polyethylenimine of composition A and 1.0% of zinc Z-pyridine-thiol-l-oxide having an average particle size of 2 microns rather than 2.0% of this latter component as in the control composition, was also prepared.
The hair of 16 female subjects was shampooed by experienced beauty shop operators who washed half of the hair and scalp of each subject with the control composition. The other half of the subjects hair and scalp was washed in the assigned test composition. The test and control composition were used ad libitum, in quantities sufficient to provide a good lather. After lathering for 45 seconds, the hair was rinsed and the compositions were reapplied, lathered for 45 seconds and rinsed again. The hair was then dried. A sample of cornified epithelium from both the control and test halves of each subjects scalp was obtained by applying cellulose adhesive tape against the scalp. The tape was then placed on a glass slide with the adhesive in contact with the glass. The slide was examined with a polarizing microscope at approximately 400 diameters with polaroids crossed. While the cornified epithelium exhibited some degree of birefringence, the highly anisotropic properties of the particulate zinc 2-pyridinethiol-l-oxide made it readily visible under such 'viewing conditions. The relative quantity of particulate zinc Z-pryidinethiol 1 oxide was then graded on a 0 to 4 scale, with a grade of 4 indicating heavy deposition, and 0 indicating substantially no deposition.
Examples V11 VIII 1 Molecular weight 10,000; cationic charge density .004 in aqueous solu 2 Weight ratio 2:1; molecular weight 30,000; cationic charge density gre tion at pH 7.0. ater than .001 in aqueous solution at pH 7.0.
The following results were obtained.
It can be seen from the above results that deposition and retention of zinc Z-pyridinethiol-l-oxide was substantially greater from a detergent composition which contained 0.5 of polyethylenimine as compared to the control composition which contained the same amount of zinc 2-pyridinethiol-l-oxide without polymer. Similarly, composition B which contained only 1.0% of Zinc 2-pyridinethiol-l-oxide yielded a somewhat higher degree of deposition and retention than the control composition which contained twice as much of this salt, but no polymer.
In like manner the relative deposition of zinc 2-pyridinethiol-l-oxide from a detergent composition containing various concentrations of ethoxylated polyethylenimine was demonstrated as follows: The following compositions were prepared.
TABLE 2 Parts by weight Composition Control C D E Sodium coconut alkyl glyceryl ether sulionate 1 Sodium tallow alkyl glyceryl ethe sultonate Sodium chloride Sodium sulfate Sodium N-lauroylsarcosinate N-coconut acyl sarcosinate Coconut acyl diethanolannde Acetylated lanolin Perfume Zine 2-pyridinethio ide (average particle size 2 microns) Polyethylenimine/ethylene oxide reaction product I Water was Balance 1 Same as Example 1.
Each of the compositions was tested in the manner described supra, using a test composition and control composition on each of the test subjects. The results attained were as follows:
Average degree of deposition It can be seen that the degree of deposition attained with composition C containing only half as much zinc Z-pyridinethiol-l-oxide as the control was yet greater than the control. Composition D, which contains 1.0% polymer and only A as much zinc Z-pyridinethiol-l-oxide than the control displayed only moderately less deposition than the control. Composition E, which contains 2% polymer and only half as much zinc 2-pyridinethiol-loxide as the control, provides somewhat greater deposition than the control. Composition F, containing 2.0% polymer and only A as much zinc 2-pyridinethiol-l-oxide as the control, provides a degree of deposition approximately equal to the control.
The degree of enhancement of particle deposition and retention in the presence of cationic polymer is also demonstrated by the Slide Particle Deposition test conducted as follows:
Dandruff scales are collected from the scalps of afflicted individuals and mounted on glass slides with a clear acrylic adhesive. The dandruff slides are covered with a clean white polyester/cotton cloth, wetted with water, and washed with a test detergent composition by brushing the cloth-covered slide with a soft toothbrush and using 20 grams of the detergent composition for 50 strokes. The slides are then rinsed for one minute with cloth in place and then for two minutes with cloth re- 14 moved. The rinse water used is tap water at 37 C. with a flow rate of 4 liters per minute. The slides are then allowed to dry.
The washed slides are examined microscopically at 400 diameters magnification using cross polarized filters. Deposition is graded on a 0-4 scale, no deposition being given a 0 grade, while maximum expected deposition is given a 4 grade. Grades in between vary approximately linearly with the density of deposited particles. Several areas of each slide are given whole number grades before the average for that slide is taken to the nearest of a deposition grade. In each test three slides for each test material are treated in random order. All grading and washing is done on a blind basis.
Detergent compositions substantially corresponding to the composition of Example I but containing 0.5% by weight of zinc Z-pyridinethiol-l-oxide and 2.0% by 'weight of various cationic polymers of this invention were tested against a control composition without polymer using the method described above. The following results were obtained.
1 Ethoxylated polyethylenimine as in Example I.
2 Polyvinylimidazole substantially completely quaternized with dimethyl sulfate, having a molecular Weight of from 5 to 20 X 10 and a cationic charge density of .009.
3 Poly(dimethylaminoethylmethaerylate) substantially completely quaternized with methyl phosphate, having a molecular weight between 1,000 and 5,000,000 and a cationic charge density of .006.
Poly(diethylaminoethylmethacrylate) substantially quaternized with dimethyl sulfate, having a molecular weight within tlfle tinge from about 1,000 and 5,000,000 and a cationic charge density 0 .00
completely -It can be seen that substantial enhancement of particle deposition and retention is effected by the inclusion of representative cationic polymers in detergent formulations containing same.
EXAMPLE XII An antimicrobial milled toilet detergent bar which also constitutes a preferred embodiment of this invention is prepared in accordance with methods well known in the art and having the following composition:
Parts by weight Sodium alkyl glyceryl ether sulfonate 1 8.0 Potassium alkyl sulfate 1 20.0 Magnesium soap of :20 tallow: coconut fatty acids 16.7 Sodium soap of 80:20 tallow: coconut fatty acids 32.4 Inorganic salts (sodium and potassium chlorides and sulfates) 9.2 3,4,S-tribromosalicylanilide (Average particle size 5 microns) 1.0 Cationic polymer 2 2 0 Water and miscellaneous 10:7
1 Alkyl groups derived from middle cut of alcohols obtained by catalytic reduction of coconut alcohol which has a chain length distribution substantially as follows: 2% C10, 66 C12, 23% C14, and 9% C16.
Quaternary ammonium-substituted hydroxyethylcellulose ether formed by reacting a hydroxyethylcellulose ether (havi-ng a degree of substitution with hydroxyethyl groups of 1.3) with the reaction product of 0.7 mole epiclmlorohydrin and 0.7 mole of Itrimethylamine per substituted anhydroglucose unit thereof, said polymer having a cationic charge density of .002 and a molecular weight within the range from about 200,000 %to 230,000.
The deposition and retention of the particulate antimicrobial agent 3,4',S-tribromosalicylanilide upon skin washed with the above composition is substantially greater 15 than H occurs with 7 a control composition without cationic polymer.
Toilet detergent bars identical in composition to the bar described above are prepared, replacing the 3,4,5-tribromosalicylanilide with 4 micron particles of the antimicrobial agents 3,4,4'-trichlorocarbanilide; 4,4'-dichloro-3- (trifluoromethyl)carbanilide; bis(2 hydroxy 3,5,6-trichlorophenyl)methane; and a 1:1 mixture of 4,4-dichloro- 3-(trifluoromethyl)carbanilide and 3,4,5-tribromosalicylanilide, respectively, with improved deposition and retention of the antimicrobial particles being attained in each case. relative to control compositions without cationic polymer.
Additional toilet detergent bars are prepared as in Example XII each containing one of the following cationic polymers in place of the quaternary ammonium-substituted cellulose ether polymer employed therein:
(1) Nalcolyte 605, as hereinbefore defined.
(2) Coagulant Aid 225, as hereinbefore defined.
(3) Conductive Polymer 261, as hereinbefore defined.
(4) Poly-vinylimidazole substantially completely quarternized with dimethyl sulfate, having a molecular weight of 5,000, and a cationic charge density of .009.
(5) Poly(dimethylaminoethylmethacrylate) substantially completely quarternized with methyl phosphate, having a molecular weight of 1,000,000, and a cationic charge density of .006.
(6) Poly(diethylaminoeth'ylmethacrylate) substantially completely quaternized with dimethyl sulfate, having a molecular weight of 300,000, and a cationic charge density of .005.
Each of these toilet detergent bars provides a degree of 3,4,5-tribromosalicylanilide particle deposition and retention on skin washed therewith which is substantially greater than is attained with toilet detergent control bars without such polymers.
IEXAMPLE XIII An antimicrobial granular built laundry detergent prodnet is prepared by conventional means, having the following composition:
:Parts by weight Sodium alkyl benzene sulfonate (the alkyl group averaging about 12 carbon atoms and being derived from polypropylene) 17.5 Sodium tripolyphosphate 49.7 Sodium sulfate 13.3
Silicate solids 7. 0 3,4,4'-trichlorocarbanilide (particle size averaging 3 microns) 0.5 Quaternized polyvinylimidazole 1.5
Polyvinylimirlazole in which 80% of the vinylirnidazole units are quarternized with dimethyl sulfate, having a molecular weight of 250,000 and a cationic charge density of .007.
Fabris laundered in this product retain a substantially greater quantity of 3,4,4'-trichlorocarbanilide particles than do fabrics washed in a control product formulated as above, but 'without the cationic polymer.
Each of the foregoing examples describe embodiments of this invention which involve antimicrobial particulate substances. Ashereinbefore disclosed, the deposition and retention of other particulate substances are also enhanced by the cationic polymers. The following examples are illustrative of detergent compositions in accordance withthis invention containing representative particulate substances which function through deposition and retention, on washed surfaces.
Toilet detergent bars desirably contain a sunscreen or ultraviolet absorber which will deposit on the skin in the course of washing therewith to provide protection against harmful sun rays. Suitable particulate ultraviolet absorberswhich can be incorporated in detergent bars for this purpose include, for example, 2-hydroxy-4-n-octoxybenzophenone, 2 hydroxy 4-methoxy-2-carboxybenzophenone, and .2rhydI'QXY:4:methQXbQI ZQPhQnQnQ- .=Thfisfi materials are insoluble particulate solids which are employed in bar soap formulations in concentrations ranging from about 1% to about 5% by weight.
EXAMPLE XIY A toilet soap bar containing ,an ultraviolet absorber is formulated in accordance with this invention as follows: Percent by weight Sodium soap of 50:50 itallow-zcoconut fatty acids 13.19 Coconut fatty acid 7.30 Cold cream 1.10
Inorganic salts (sodium chloride and sulfate and 1 Same as Example XII.
When used in the customary fashion, the toilet soap bar of this example effects a substantially greater degree of deposition and retention of the particulate ultraviolet asborber (2-hydroxy-4-n-octoxybenzophenone) on the washed skin surfaces than does an identical composition without polymer.
Additional toilet so'ap bars are prepared as above but containing Z-hydroxy-4 methoxy-2'-carboxybenzophenone and 2-hydroxy-4-methoxybenzophenone, respectively, in place of 2-hydroxy-4-n-octoxybenzophenone, with substantially equivalent results' v 1 Toilet soap bars formulated in accordance with Example XIV are prepared containing polyvinylimidazole substantially completely quaternized with dimethyl sul-' fate, having a molecular weight of 200,000 and a cationic charge density of .009; quaternized poly(p-dirnethylaminomethylstyrene) having a molecular weight of 250,000 and a cationiccharge density of .006; and JR-1L, a quaternary ammonium-substituted cellulose derivative supplied by Union Carbide, having a molecular weight within the range from 100,000 to 1,000,000, and a cationic charge density of .004; respectively, in place of the cationic polymer employed in that example. The resulting products are substantially equivalent to the product of Example XIV in terms of particle deposition and retention.
Other insoluble particulatesubstances which are desirably incorporated in toilet soap or detergent bars include the so-called skin feel enhancers. Such materials are deposited as particles on the skin in the course of washing and create a favorable skin feel after washing. Such materials include, for example, nicotinic acid, talc and silicones, such as Dow-Corning Silicone F-157. These materials are desirablyincorporated in a toiletbar formula at levels of about 10% by weight.
EXAMPLE XV A bar soap formulation as set forth in Example XIV is prepared substituting 10.2% by weight of nicotinic acid particles (average particlesize 5 microns) for the 2-hydroxy-4-n-octoxybenzophenone and "coconut fatty acid. The resulting composition yields a substantially greater degree of deposition and retention of nicotinic acid particles on skin washed with the bar than is attained with a bar similarly formulated but without cationic polymer. Similar results are obtained when Dow-Co rn' 17' used in heavy-duty laundry detergent products in concentrations up to about 1% by weight.
EXAMPLE XVI A built liquid detergent formulation containing a particulate bluing material and a cationic polymer in accordance with this invention is formulated as follows:
Percent by weight 3 (N,N dimethyl-N-coconutammonio)-2-hydroxypropane-l-sulfonate 9.00 Tergitol 12-P-12 (condensation product of 12 moles of ethylene oxide and one mole of dodecyl- 1 phenol) 3.00
Tripotassium methylene diphosphonate 26.00
Sodium silicate (SiO :Na O=1.6:1) 3.00 Potassium toluenesulfonate 8.50 Sodium carboxymethylhydroxyethylcellulose 0.30 Ultramarine blue (particle size 1.8 microns) 0.15 Cationic polymer 3.5 Water Balance Parts by weight XVII XVIII Example Sodium coconut alkyl glyceryl ether sullonate 1 Sodium talloW alkyl glyceryl ether sulionate Sodium suliate Sodium N-lauroylsarcosinate- N-coconut aeyl sarcosine Diethanolamide of coconut fatty acids-.. Acetylated lanolin Zinc 2-pyridinethiol-1-oxide N-Trichloromethylruerca t-4-cyc hexene-1,2-dicarboximi e 4 0.5 N-(1,1,2,2-tetraehloroethylsulfenyl)-cis A-4-eyelohexene-1,2-dicarboximido 5 1. 0 Polymer (1) XIX XX 1 About 23% diglyceryl and the balance substantially moneglyceryl.
2 About 23% diglyceryl and the balance substantially monoglyceryl; the tallow alkyls correspond to those of substantially saturated tallow alcohols and contain approximately 2% Cu, 32% C and 66% 0 s.
8 Average particle size 2 microns.
4 Average particle size 6.5 microns.
5 Average particle size 10.0 microns.
No'rns:
Polymer (1) in the above example is poly (diethlaminoethylmethacrylate) substantially completely quaternized with dimethylsuliate, hfazig a molecular weight of 2,000,000 and a cationic charge density 0 Polymer (2) is JR-IL.
Polymer (3) is polyethylenimine/ethylene oxide reaction product (weight ratio 1:1) molecular weight 80,000120,000 and cationic charge density of .004 in aqueous solution at pH 7.0.
Polymer (4) is primafloe C-3.
Each of the above compositions provides a substantially greater degree of deposition and retention of the particulate antimicrobial agents contained therein than similar compositions formulated without these polymers.
It will be obvious to those skilled in the art that the concept of this invention is applicable to a wide variety of insoluble or sparingly soluble particulate substances in addition to those specifically described in the foregoing specification. For example, perfumes which have been adsorbed on insoluble particulate resinous substances can be deposited on skin, fabrics and other surfaces washed with detergent compositions containing same to a substantially greater degree, through the inclusion in said compositions of a cationic polymer as herein defined.
1.A detergent composition consisting essentially of: (I) from about 2% to about of an organic surfactant selected from the group consisting of anionic, ampholytic, polar nonionic, nonionic, and zwitterionic surfactants and cationic surfactants selected What is claimed is:
from the group consisting of distearyldimethyb. chloride stearyldimethylbenzylammoammonium nium chloride, coconutalkyldimethylbenzylammonium chloride, dicoconutalkyldimethylammonium chloride, cetylpyridinium chloride, and cetyltrimethylammonium bromide;
(II) from about 0.25% to about 4% of quaternary ammonium substituted cellulose derivatives having molecular weights within the range from about 2,000 to about 3,000,000 and cationic charge densities greater than .001 said derivatives containing as substituents groups selected from the group consisting of lower alkyls, lower hydroxy alkyls, polyethoxy groups containing up to twenty ethoxy units, and quaternary ammonium groups having the general formula:
wherein m is an integer from 0 to 10, n is an integer from 1 to 3, and p is an integer from 0 to 10;
(III) from about 0.1% to about 10% of a waterinsoluble or sparingly soluble particulate substance having an average diameter within the range from 0.2 to 30 microns, selected from the group consisting of:
(A) antimicrobial substances selected from the group consisting of:
(1) substituted salicylanilides having the general formula:
Y OH E) Y Y X Y wherein X is hydrogen or halogen, and Y is hydrogen, halogen or trifluoromethyl;
(2) substituted carbanilides having the general structural formula:
Y (I? Y wherein Y is hydrogen, halogen, or trifluoromethyl, X is halogen or ethoxy, X is hydrogen or halogen;
(3) substituted bisphenols having the general structural formula:
wherein X is a halogen and n is an integer from 1 to 3, R is an alkylene radical having from 1 to 4 carbon atoms or divalent sulfur;
(4) N trichloromethylmercapto-4-cyclohexene-1,2-dicarboximide;
(5) N (1,1,2,2-tetrachloroethylsulfenyl)-cis- A-4-cyclohexene-1,2-dicarboximide;
(6) heavy metal salts of 2-pyridinethiol-loxide selected from the group consisting of zinc, cadmium, tin, and zirconium salts; and
(7) combination thereof;
19 (B) ultraviolet absorbers selected from the group consisting of 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-methoxy 2' carboxybenzophenone, and 2-hydroxy-4-methoxybenzophenone; and (C) ultramarine blue. 2. The composition of claim 1 wherein the cationic polymer is a quaternary ammonium substituted cellulose ether derivative having the formula:
wherein R0911 is the residue of an anhydroglucose unit, Y is an integer from 50 to 20,000, and each R has the general formula:
wherein m is an integer from to 10, n is an integer from 0 to 3, and p is an integer from 0 to 10.
3. The composition of claim 1 wherein the cationic polymer is a quaternary ammonium-substituted cellulose ether derivative formed by reacting a hydroxyethylcellulose ether having a degree of substitution with hydroxyethyl groups of 1.3 with the reaction product of 0.7 mole of epichlorohydrin and 0.7 mole of trimethylamine per substituted anhydroglucose unit thereof.
- 4. The composition of claim 1 wherein the particulate substance is an antimicrobial substance.
5. The composition of claim 4 wherein the particulate substance is a heavy metal salt of 2-pyridinethiol-1-oxide wherein said heavy metal salt is selected fromthe group consisting of zinc, cadmium, tin, and zirconium salts.
6. The composition of claim 5 wherein the heavy metal salt is zinc.
7. The composition of claim 2 wherein the particulate substance is an antimicrobial substance.
8. The composition of claim 7 wherein the particulate substance is a heavy metal salt of Z-pyridinethiol-l-oxide wherein said heavy metal is selected from the group consisting of zinc, cadmium, tin, and zirconium salts.
9. The composition of claim 8 wherein the heavy metal 1s zinc;
10. The composition of claim 1 wherein the detergent is a water-soluble salt of a member selected from the group consisting of higher fatty acids, anionic organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 8 to about 20 carbon atoms and a sulfuric or sulfonic acid ester radical, and acyl sarcosinates, wherein the acyl group contains from about 10 to about 18 carbon atoms.
References Cited UNITED STATES PATENTS 2,768,162 10/1956 Evans 260-232X 2,891,025 6/1959 Price 252-152X 3,080,264 3/1963 Zimrnie et al. 13422 3,235,455 2/1966 Judge et al. 252l07X 3,236,733 2/1966 Karsten et al 252107X 3,313,734 4/1967 Lang et a1 252-152 3,400,148 9/1968 Quimby 252-137X LEON D. ROSDOL, Primary Examiner M. HALPERN, Assistant Examiner US. Cl. X.R.
POW? UNITED STATES PATENT OFFICE 5 CERTIFICATE OF CORRECTION Patent No. 3,580,853 Dated May 25, 197 1 Inventor(s) John J. Parran, Jr
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 3 line 47, the second "amine" should be deleted. -1 Column 4, lines 23 and 24, the second phrase "or alkyl aromatic" should be deleted.
Column 4, line 24, "are" should read -art-.
Column 5, line 38, "Esslemann" should read -Esselmann-.
Column 6, line 5, "anhydroglycose" should read --anhydroglucose---. Column 6, line 32, "particuarly" should read -particularly-. Column 6, line 37, "JA-lL" should read --JRlL-- Column 6, line 65, "-HC-C (R C" should read --HCC (R')-C--. Column 8, line 5, "HHCNH" should read ---N'HCNH-.
Column 12, line 26, "2-pyridine-thiol-l-oxide" should read -2pyridinethiol-loxide-.
Column 13, line 27, "Sodium N-lauroylsarcosinate" should read -Sodium N-lauroyl sarcosinate--.
Column 13, line 55, "than" should read -as.
Column 13, line 55, after "control" should read Column 15, line 22, "quarter-" should read quater---. Column 15, line 26, "quarternized" should read ---quaternized-. Column 15, line 56, "Fabris" should read -Fabrics--. Column 16, line 28, "asborber should read -absorber--. Column 17, line 40, "Sodium N-lauroylsarcosinate" should read Sodium N-lauroyl sarcosinate-.
Cgugn 17, line 52 "2% C 32% C should read --2% C Signed and sealed this let day of May 1973 (bnAL) Attest:
.J EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents
US671117A 1967-09-27 1967-09-27 Detergent compositions containing particle deposition enhancing agents Expired - Lifetime US3580853A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US67111767A 1967-09-27 1967-09-27

Publications (1)

Publication Number Publication Date
US3580853A true US3580853A (en) 1971-05-25

Family

ID=24693193

Family Applications (1)

Application Number Title Priority Date Filing Date
US671117A Expired - Lifetime US3580853A (en) 1967-09-27 1967-09-27 Detergent compositions containing particle deposition enhancing agents

Country Status (12)

Country Link
US (1) US3580853A (en)
JP (1) JPS4720635B1 (en)
AT (1) AT310905B (en)
BE (1) BE721384A (en)
BR (1) BR6802634D0 (en)
CH (1) CH531041A (en)
DE (1) DE1792618C3 (en)
FR (1) FR1588952A (en)
GB (1) GB1195158A (en)
IT (1) IT1046452B (en)
NL (1) NL6813826A (en)
SE (1) SE353738B (en)

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862310A (en) * 1971-12-22 1975-01-21 Gillette Co Cosmetic compositions containing formylated polyethylene polyamine
US3876760A (en) * 1969-10-23 1975-04-08 Bristol Myers Co Hair dressing compositions containing a hair substantive quaternary resin
US3912808A (en) * 1970-02-25 1975-10-14 Gillette Co Hair waving and straightening process and composition containing water-soluble amino and quaternary ammonium polymers
US3940482A (en) * 1971-04-21 1976-02-24 Colgate-Palmolive Company Solubilization of the zinc salt of 1-hydroxy-2-pyridinethione
US3950510A (en) * 1972-08-01 1976-04-13 Lever Brothers Company Conditioning shampoo containing a water-insoluble hair cosmetic agent
US3959463A (en) * 1972-07-10 1976-05-25 Bristol-Myers Company Hair dressing compositions containing a hair substantive quaternary resin
US3962150A (en) * 1974-04-10 1976-06-08 Richardson-Merrell Inc. Foam producing cleansing compositions
US3964500A (en) * 1973-12-26 1976-06-22 Lever Brothers Company Lusterizing shampoo containing a polysiloxane and a hair-bodying agent
US3986825A (en) * 1972-06-29 1976-10-19 The Gillette Company Hair coloring composition containing water-soluble amino and quaternary ammonium polymers
US4009256A (en) * 1973-11-19 1977-02-22 National Starch And Chemical Corporation Novel shampoo composition containing a water-soluble cationic polymer
US4027008A (en) * 1975-05-14 1977-05-31 The Gillette Company Hair bleaching composition containing water-soluble amino and quaternary ammonium polymers
US4061602A (en) * 1976-08-03 1977-12-06 American Cyanamid Company Conditioning shampoo composition containing a cationic derivative of a natural gum (such as guar) as the active conditioning ingredient
DE2727255A1 (en) * 1976-06-21 1977-12-29 Unilever Nv SHAMPOO
US4069066A (en) * 1976-11-10 1978-01-17 The Procter & Gamble Company Method and composition for cleaning polished surfaces
US4089945A (en) * 1975-06-30 1978-05-16 The Procter & Gamble Company Antidandruff shampoos containing metallic cation complex to reduce in-use sulfide odor
US4101456A (en) * 1975-04-18 1978-07-18 Colgate-Palmolive Company Light duty liquid detergent
JPS5415912A (en) * 1977-06-24 1979-02-06 Lion Corp Shampoo composition
DE2833013A1 (en) * 1977-07-28 1979-02-15 Oreal NEW ALUMINUM-SULFUR COMPOUND, METHOD OF MANUFACTURING IT, AND MEANS OF CONTAINING THIS COMPOUND
US4166845A (en) * 1970-11-16 1979-09-04 Colgate-Palmolive Company Antidandruff shampoo compositions containing an aminopolyureylene resin
EP0007704A2 (en) * 1978-07-28 1980-02-06 Beecham Group Plc Method of preparing a hair conditioning product
US4206195A (en) * 1978-06-06 1980-06-03 The Procter & Gamble Company Hair conditioning article and a method of its use
US4206196A (en) * 1978-06-06 1980-06-03 The Procter & Gamble Company Hair conditioning article and a method of its use
US4220548A (en) * 1977-04-15 1980-09-02 The Lion Fat And Oil Co., Ltd. Shampoo composition comprising calcium or magnesium anionic surfactants and quaternary nitrogen-containing cellulose ethers
DE2911857A1 (en) * 1979-03-26 1980-10-16 Henkel Kgaa APPEARING TEXTILE DETERGENT
DE3040362C1 (en) * 1980-10-25 1982-06-09 Blendax-Werke R. Schneider Gmbh & Co, 6500 Mainz Foam and shower bath composition
EP0060611A2 (en) * 1981-01-31 1982-09-22 Beecham Group Plc Medicated hair conditioner
GB2122214A (en) * 1982-04-30 1984-01-11 Unilever Plc Particle depositing washing compositions
US4548744A (en) * 1983-07-22 1985-10-22 Connor Daniel S Ethoxylated amine oxides having clay soil removal/anti-redeposition properties useful in detergent compositions
US4551506A (en) * 1982-12-23 1985-11-05 The Procter & Gamble Company Cationic polymers having clay soil removal/anti-redeposition properties useful in detergent compositions
US4557928A (en) * 1982-07-06 1985-12-10 Amway Corporation Anti-dandruff cream rinse conditioner
US4631187A (en) * 1982-09-29 1986-12-23 S.C. Johnson & Son, Inc. Hair treating composition containing a quaternary ammonium compound containing an erucyl group
US4659802A (en) * 1982-12-23 1987-04-21 The Procter & Gamble Company Cationic compounds having clay soil removal/anti-redeposition properties useful in detergent compositions
US4661288A (en) * 1982-12-23 1987-04-28 The Procter & Gamble Company Zwitterionic compounds having clay soil removal/anti/redeposition properties useful in detergent compositions
US4664848A (en) * 1982-12-23 1987-05-12 The Procter & Gamble Company Detergent compositions containing cationic compounds having clay soil removal/anti-redeposition properties
US4676921A (en) * 1982-12-23 1987-06-30 The Procter & Gamble Company Detergent compositions containing ethoxylated amine polymers having clay soil removal/anti-redeposition properties
US4783484A (en) * 1984-10-05 1988-11-08 University Of Rochester Particulate composition and use thereof as antimicrobial agent
US4806263A (en) * 1986-01-02 1989-02-21 Ppg Industries, Inc. Fungicidal and algicidal detergent compositions
US4830784A (en) * 1986-03-01 1989-05-16 Henkel Kommanditgesellschaft Auf Aktien Laundry detergents and cleaners with reduced requirement for conventional chemicals
US4832950A (en) * 1984-08-29 1989-05-23 Kao Corporation Antimicrobial suspensions and antimicrobial hair treatment compositions
US4837007A (en) * 1985-12-11 1989-06-06 Lever Brothers Company Fluoridating oral cavity
US4938951A (en) * 1980-12-30 1990-07-03 Union Carbide Chemicals And Plastics Company Inc. Potentiation of topical compositions wherein a uniform microdispersion of active agent is formed
US4997454A (en) * 1984-05-21 1991-03-05 The University Of Rochester Method for making uniformly-sized particles from insoluble compounds
US5037818A (en) * 1982-04-30 1991-08-06 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Washing composition for the hair
US5100657A (en) * 1990-05-01 1992-03-31 The Procter & Gamble Company Clean conditioning compositions for hair
US5100658A (en) * 1989-08-07 1992-03-31 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5104646A (en) * 1989-08-07 1992-04-14 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5106609A (en) * 1990-05-01 1992-04-21 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5186928A (en) * 1989-02-20 1993-02-16 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Shampoo composition
US5277899A (en) * 1991-10-15 1994-01-11 The Procter & Gamble Company Hair setting composition with combination of cationic conditioners
US5441664A (en) * 1993-11-15 1995-08-15 Colgate Palmolive Co. Gelled hard surface cleaning composition
US5543074A (en) * 1994-02-18 1996-08-06 Chesebrough-Pond's Usa Co., Div. Of Conopco, Inc. Personal washing compositions
US5565145A (en) * 1994-05-25 1996-10-15 The Procter & Gamble Company Compositions comprising ethoxylated/propoxylated polyalkyleneamine polymers as soil dispersing agents
US5665689A (en) * 1996-09-04 1997-09-09 Colgate-Palmolive Co. Cleaning compositions comprising mixtures of partially esterified full esterified and non-esterfied ethoxylated polyhydric alcohols and N-alkyl aldonamides
WO1997045525A1 (en) * 1996-05-24 1997-12-04 Unilever Plc System for delivery of function ingredients
US5723112A (en) * 1995-07-14 1998-03-03 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Pyrithione containing hair treatment composition
US5731281A (en) * 1993-08-04 1998-03-24 Colgate-Palmolive Company Microemulsion liquid crystal cleaning compositions comprising esterified and non-esterfied ethoxylated glycerol mixture and sulfoxy anionic surfactant
US5741760A (en) * 1993-08-04 1998-04-21 Colgate-Palmolive Company Aqueous cleaning composition which may be in microemulsion form comprising polyalkylene oxide-polydimethyl siloxane
US5759983A (en) * 1993-08-04 1998-06-02 Colgate-Palmolive Co. Aqueous cleaning composition which may be in microemulsion form comprising polyalkylene oxide -polydimethyl siloxane and ethoxylated secondary alcohol
US5780415A (en) * 1997-02-10 1998-07-14 Colgate-Palmolive Company Stable microemulsion cleaning composition
US5804538A (en) * 1996-06-20 1998-09-08 The Procter & Gamble Company Perfume delivery systems in liquid personal cleansing compositions
US5807543A (en) * 1993-08-27 1998-09-15 The Procter & Gamble Co. Cosmetic compositions containing hydrophobically modified nonionic polymer and unsaturated quaternary ammonium surfactant
US5843875A (en) * 1996-06-20 1998-12-01 The Procter & Gamble Company Perfume delivery systems in liquid personal cleansing
US5843418A (en) * 1991-03-19 1998-12-01 The Procter & Gamble Co. Cosmetic compositions containing hydrophobically modified nonionic polymer and unsaturated quaternary ammonium surfactant
US5861367A (en) * 1993-08-04 1999-01-19 Colgate Palmolive Company Cleaning and disinfecting composition in microemulsion/liquid crystal form comprising aldehyde and mixture of partially esterified, fully esterified and non-esterified polyhydric alcohols
US5951991A (en) * 1997-05-22 1999-09-14 The Procter & Gamble Company Cleansing products with improved moisturization
US5972361A (en) * 1996-10-25 1999-10-26 The Procter & Gamble Company Cleansing products
US5980931A (en) * 1996-10-25 1999-11-09 The Procter & Gamble Company Cleansing products having a substantially dry substrate
US6063397A (en) * 1996-10-25 2000-05-16 The Procter & Gamble Company Disposable cleansing products for hair and skin
US6126954A (en) * 1999-04-05 2000-10-03 Unilever Home & Personal Care Usa, Division Of Conopco Liquid compositions comprising stable emulsion of small particle skin benefit agent
US6132746A (en) * 1997-05-22 2000-10-17 The Procter & Gamble Company Cleansing products with improved moisturization
US6153208A (en) * 1997-09-12 2000-11-28 The Procter & Gamble Company Cleansing and conditioning article for skin or hair
US6190678B1 (en) 1997-09-05 2001-02-20 The Procter & Gamble Company Cleansing and conditioning products for skin or hair with improved deposition of conditioning ingredients
US6224852B1 (en) 1999-04-23 2001-05-01 Unilever Home & Personal Care Usa Liquid sunscreen compositions which both deposit and lather well
US6280757B1 (en) 1997-05-22 2001-08-28 The Procter & Gamble Company Cleansing articles for skin or hair
EP1137397A1 (en) 1998-12-10 2001-10-04 Unilever Plc Washing compositions
WO2001094516A1 (en) * 2000-06-06 2001-12-13 Basf Aktiengesellschaft Use of cationically modified, particle-shaped, hydrophobic polymers as addition agents in textile rinsing or care products and as addition agents in detergents
US6338855B1 (en) 1996-10-25 2002-01-15 The Procter & Gamble Company Cleansing articles for skin and/or hair which also deposit skin care actives
US6362146B1 (en) 1998-06-05 2002-03-26 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Personal washing compositions
US6372708B1 (en) * 1997-11-21 2002-04-16 The Procter & Gamble Company Liquid detergent compositions comprising polymeric suds enhancers
US20020102228A1 (en) * 1999-05-03 2002-08-01 Dunlop David Scott Shampoos providing a superior combination anti-dandruff efficacy and condition
US6451300B1 (en) 1999-05-03 2002-09-17 The Procter & Gamble Company Anti-dandruff and conditioning shampoos containing polyalkylene glycols and cationic polymers
US6616641B2 (en) 1993-12-22 2003-09-09 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Impregnated matrix and method for making same
US20030195137A1 (en) * 2002-01-09 2003-10-16 Croda, Inc. Mixtures of quaternary compounds
US20030195135A1 (en) * 2000-06-06 2003-10-16 Dieter Boeckh Use of cationically modified, particulate, hydrophobic polymers as an additive for rinsing, cleaning and impregnating agents for hard surfaces
WO2003088940A1 (en) * 2002-04-22 2003-10-30 The Procter & Gamble Company Shampoo containing a cationic polymer and anti-dandruff particles
WO2003091371A1 (en) * 2002-04-26 2003-11-06 Nof Corporation Novel polymeric surfactant and cosmetic material
US6649155B1 (en) 1999-05-03 2003-11-18 The Procter & Gamble Company Anti-dandruff and conditioning shampoos containing certain cationic polymers
US20030228352A1 (en) * 2002-06-07 2003-12-11 The Procter & Gamble Company Cleansing articles for skin or hair
US20030228351A1 (en) * 2002-06-07 2003-12-11 The Procter & Gamble Company Cleansing articles for skin or hair
WO2004022685A1 (en) * 2002-09-09 2004-03-18 The Procter & Gamble Company Using cationic celluloses to enhance delivery of fabric care benefit agents
US20040077517A1 (en) * 2000-06-06 2004-04-22 Dieter Boeckh Use of cationically modified, particle-shaped, hydrophobic polymers as addition agents in rinsing, care, detergent and cleaning products
US20040121929A1 (en) * 2002-02-28 2004-06-24 The Procter & Gamble Company Using cationic celluloses to enhance delivery of fabric care benefit agents
US20040121930A1 (en) * 2002-02-28 2004-06-24 The Procter & Gamble Company Using cationic celluloses to enhance delivery of fabric care benefit agents
EP1443089A1 (en) * 2003-01-31 2004-08-04 Bj Services Company Acid diverting system containing quaternary amine
US20040171515A1 (en) * 2001-06-15 2004-09-02 Christoph Hamers Treatment method, which promotes the removal of dirt, for the surfaces of textiles and non-textiles
US20040250354A1 (en) * 2001-06-15 2004-12-16 Christoph Hamers Method for treating surfaces of textiles and non-textiles, in such a way as to stimulate the detachment of dirt
WO2005048963A1 (en) * 2003-11-19 2005-06-02 Wella Ag Hair treatment agent containing thickened water glass
US6903057B1 (en) 2004-05-19 2005-06-07 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Personal product liquid cleansers stabilized with starch structuring system
US6906016B1 (en) 2004-05-19 2005-06-14 Unilever Home & Personal Care Usa, A Division Of Conopco, Inc. Personal product liquid cleansers comprising combined fatty acid and water soluble or water swellable starch structuring system
US20050153865A1 (en) * 2002-04-09 2005-07-14 Detering Juergen Cationically modified, anionic polyurethane dispersions
US20070072780A1 (en) * 2005-09-29 2007-03-29 Reddy Kiran K Encapsulated liquid cleanser
WO2010033745A1 (en) * 2008-09-19 2010-03-25 The Procter & Gamble Company Dual character polymer useful in fabric care products
US20100075878A1 (en) * 2008-09-19 2010-03-25 The Procter & Gamble Company Modified Lignin Biopolymer Useful in Cleaning Compositions
US20100075879A1 (en) * 2008-09-19 2010-03-25 The Procter & Gamble Company Detergent Composition Containing Suds Boosting and Suds Stabilizing Modified Biopolymer
US20100075880A1 (en) * 2008-09-19 2010-03-25 The Procter & Gamble Company Dual Character Biopolymer Useful in Cleaning Products
WO2012138710A2 (en) 2011-04-07 2012-10-11 The Procter & Gamble Company Personal cleansing compositions with increased deposition of polyacrylate microcapsules
US9540596B2 (en) 2013-08-26 2017-01-10 The Procter & Gamble Company Compositions comprising alkoxylated polyamines having low melting points
EP2694016B1 (en) 2011-04-07 2017-05-24 The Procter and Gamble Company Shampoo compositions with increased deposition of polyacrylate microcapsules
EP3187576A1 (en) * 2015-12-29 2017-07-05 The Dial Corporation Bar soap with cationic agent
US9968537B2 (en) 2013-09-06 2018-05-15 Jubilant Life Sciences Limited Anti-dandruff compositions and hair care formulations containing zinc pyrithione and quaternary ammonium salt
EP3466401A1 (en) * 2017-10-06 2019-04-10 Coty, Inc. Hair styling method and kit thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT330930B (en) * 1973-04-13 1976-07-26 Henkel & Cie Gmbh PROCESS FOR THE PRODUCTION OF SOLID, SPILLABLE DETERGENTS OR CLEANING AGENTS WITH A CONTENT OF CALCIUM BINDING SUBSTANCES
CA1016464A (en) * 1973-06-22 1977-08-30 Terry Gerstein Shampoo conditioner formulations
US4237016A (en) 1977-11-21 1980-12-02 The Procter & Gamble Company Textile conditioning compositions with low content of cationic materials
DE2905257A1 (en) * 1979-02-12 1980-08-21 Wella Ag HAIR TREATMENT
US4393886A (en) 1980-09-05 1983-07-19 Ciba-Geigy Corporation Mixtures of quaternary, polymeric, high molecular weight ammonium salts, which are based on acrylic compounds, and surfactants, their preparation, and their use in cosmetics
US5417965A (en) * 1991-06-24 1995-05-23 Helene Curtis, Inc. Stable conditioning shampoo having a high foam level containing a silicone conditioner, a cationic quaternary acrylate copolymer, an anionic surfactant and polyethyleneimine
JP4907805B2 (en) * 2001-08-23 2012-04-04 東邦化学工業株式会社 Cationic polymers that provide conditioning effects
JP2004107319A (en) * 2002-07-22 2004-04-08 Kao Corp Skin cleansing composition
BRPI0508763A (en) * 2004-03-31 2007-08-28 Unilever Nv liquid cleaning composition and method of deposition of an optical modifier
US7442674B2 (en) * 2004-03-31 2008-10-28 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Beauty wash product compositions delivering enhanced visual benefits to the skin with specific optical attributes
JP2006097010A (en) * 2004-08-31 2006-04-13 Toho Chem Ind Co Ltd Cation-modified soy polysaccharide and cosmetic composition containing the same
JP4970762B2 (en) * 2004-09-27 2012-07-11 東邦化学工業株式会社 Cation-modified psyllium seed gum and cosmetic composition containing the substance
JP2007009092A (en) * 2005-06-30 2007-01-18 Toho Chem Ind Co Ltd Cationically modified gellan gum and cosmetic composition containing the same
JP2007063446A (en) * 2005-08-31 2007-03-15 Toho Chem Ind Co Ltd Cation-modified xanthan gum and cosmetic composition comprising the same
JP4901166B2 (en) * 2005-09-20 2012-03-21 東邦化学工業株式会社 Cosmetic composition comprising low viscosity cationically modified cellulose
JP4975996B2 (en) * 2005-09-30 2012-07-11 東邦化学工業株式会社 Cation-modified pectin and cosmetic composition containing the substance
DE102005050201B3 (en) * 2005-10-18 2007-04-26 Henkel Kgaa Preparation of aqueous polymer solution exhibiting cationic amino group, useful for coagulating aqueous emulsion, comprises introducing the solution over filtration membrane and adding halide free inorganic or organic acid to retentate
DE102008001770A1 (en) * 2008-05-13 2009-11-19 Beiersdorf Ag Cosmetic preparations for dandruff
JP5883636B2 (en) * 2011-12-16 2016-03-15 Dsp五協フード&ケミカル株式会社 Cationized xanthan gum and emulsified composition containing the same

Cited By (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876760A (en) * 1969-10-23 1975-04-08 Bristol Myers Co Hair dressing compositions containing a hair substantive quaternary resin
US3912808A (en) * 1970-02-25 1975-10-14 Gillette Co Hair waving and straightening process and composition containing water-soluble amino and quaternary ammonium polymers
US4166845A (en) * 1970-11-16 1979-09-04 Colgate-Palmolive Company Antidandruff shampoo compositions containing an aminopolyureylene resin
US3940482A (en) * 1971-04-21 1976-02-24 Colgate-Palmolive Company Solubilization of the zinc salt of 1-hydroxy-2-pyridinethione
US3862310A (en) * 1971-12-22 1975-01-21 Gillette Co Cosmetic compositions containing formylated polyethylene polyamine
US3986825A (en) * 1972-06-29 1976-10-19 The Gillette Company Hair coloring composition containing water-soluble amino and quaternary ammonium polymers
US3959463A (en) * 1972-07-10 1976-05-25 Bristol-Myers Company Hair dressing compositions containing a hair substantive quaternary resin
US3950510A (en) * 1972-08-01 1976-04-13 Lever Brothers Company Conditioning shampoo containing a water-insoluble hair cosmetic agent
US4009256A (en) * 1973-11-19 1977-02-22 National Starch And Chemical Corporation Novel shampoo composition containing a water-soluble cationic polymer
US3964500A (en) * 1973-12-26 1976-06-22 Lever Brothers Company Lusterizing shampoo containing a polysiloxane and a hair-bodying agent
US3962150A (en) * 1974-04-10 1976-06-08 Richardson-Merrell Inc. Foam producing cleansing compositions
US4101456A (en) * 1975-04-18 1978-07-18 Colgate-Palmolive Company Light duty liquid detergent
US4027008A (en) * 1975-05-14 1977-05-31 The Gillette Company Hair bleaching composition containing water-soluble amino and quaternary ammonium polymers
US4089945A (en) * 1975-06-30 1978-05-16 The Procter & Gamble Company Antidandruff shampoos containing metallic cation complex to reduce in-use sulfide odor
FR2355497A1 (en) * 1976-06-21 1978-01-20 Unilever Nv CONDITIONING SHAMPOO FOR HAIR
DE2727255A1 (en) * 1976-06-21 1977-12-29 Unilever Nv SHAMPOO
US4272515A (en) * 1976-06-21 1981-06-09 Lever Brothers Company Hair conditioning shampoo
US4061602A (en) * 1976-08-03 1977-12-06 American Cyanamid Company Conditioning shampoo composition containing a cationic derivative of a natural gum (such as guar) as the active conditioning ingredient
US4069066A (en) * 1976-11-10 1978-01-17 The Procter & Gamble Company Method and composition for cleaning polished surfaces
US4220548A (en) * 1977-04-15 1980-09-02 The Lion Fat And Oil Co., Ltd. Shampoo composition comprising calcium or magnesium anionic surfactants and quaternary nitrogen-containing cellulose ethers
JPS5415912A (en) * 1977-06-24 1979-02-06 Lion Corp Shampoo composition
JPS5943519B2 (en) * 1977-06-24 1984-10-22 ライオン株式会社 Shampoo - Composition
DE2833013A1 (en) * 1977-07-28 1979-02-15 Oreal NEW ALUMINUM-SULFUR COMPOUND, METHOD OF MANUFACTURING IT, AND MEANS OF CONTAINING THIS COMPOUND
US4206196A (en) * 1978-06-06 1980-06-03 The Procter & Gamble Company Hair conditioning article and a method of its use
US4206195A (en) * 1978-06-06 1980-06-03 The Procter & Gamble Company Hair conditioning article and a method of its use
EP0007704A2 (en) * 1978-07-28 1980-02-06 Beecham Group Plc Method of preparing a hair conditioning product
EP0007704A3 (en) * 1978-07-28 1980-02-20 Beecham Group Plc Method of preparing a hair conditioning product
US4289642A (en) * 1979-03-26 1981-09-15 Henkel Kommanditgesellschaft Auf Aktien Detergent composition having a sizing effect comprising nonionic and/or zwitterionic tensides and polysaccharide amino esters
DE2911857A1 (en) * 1979-03-26 1980-10-16 Henkel Kgaa APPEARING TEXTILE DETERGENT
DE3040362C1 (en) * 1980-10-25 1982-06-09 Blendax-Werke R. Schneider Gmbh & Co, 6500 Mainz Foam and shower bath composition
US4938951A (en) * 1980-12-30 1990-07-03 Union Carbide Chemicals And Plastics Company Inc. Potentiation of topical compositions wherein a uniform microdispersion of active agent is formed
EP0060611A2 (en) * 1981-01-31 1982-09-22 Beecham Group Plc Medicated hair conditioner
EP0060611A3 (en) * 1981-01-31 1983-06-22 Beecham Group Plc Medicated hair conditioner
GB2122214A (en) * 1982-04-30 1984-01-11 Unilever Plc Particle depositing washing compositions
US5037818A (en) * 1982-04-30 1991-08-06 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Washing composition for the hair
US4557928A (en) * 1982-07-06 1985-12-10 Amway Corporation Anti-dandruff cream rinse conditioner
US4631187A (en) * 1982-09-29 1986-12-23 S.C. Johnson & Son, Inc. Hair treating composition containing a quaternary ammonium compound containing an erucyl group
US4661288A (en) * 1982-12-23 1987-04-28 The Procter & Gamble Company Zwitterionic compounds having clay soil removal/anti/redeposition properties useful in detergent compositions
US4551506A (en) * 1982-12-23 1985-11-05 The Procter & Gamble Company Cationic polymers having clay soil removal/anti-redeposition properties useful in detergent compositions
US4664848A (en) * 1982-12-23 1987-05-12 The Procter & Gamble Company Detergent compositions containing cationic compounds having clay soil removal/anti-redeposition properties
US4676921A (en) * 1982-12-23 1987-06-30 The Procter & Gamble Company Detergent compositions containing ethoxylated amine polymers having clay soil removal/anti-redeposition properties
US4659802A (en) * 1982-12-23 1987-04-21 The Procter & Gamble Company Cationic compounds having clay soil removal/anti-redeposition properties useful in detergent compositions
US4548744A (en) * 1983-07-22 1985-10-22 Connor Daniel S Ethoxylated amine oxides having clay soil removal/anti-redeposition properties useful in detergent compositions
US4997454A (en) * 1984-05-21 1991-03-05 The University Of Rochester Method for making uniformly-sized particles from insoluble compounds
US4832950A (en) * 1984-08-29 1989-05-23 Kao Corporation Antimicrobial suspensions and antimicrobial hair treatment compositions
US4783484A (en) * 1984-10-05 1988-11-08 University Of Rochester Particulate composition and use thereof as antimicrobial agent
US4837007A (en) * 1985-12-11 1989-06-06 Lever Brothers Company Fluoridating oral cavity
US4806263A (en) * 1986-01-02 1989-02-21 Ppg Industries, Inc. Fungicidal and algicidal detergent compositions
US4830784A (en) * 1986-03-01 1989-05-16 Henkel Kommanditgesellschaft Auf Aktien Laundry detergents and cleaners with reduced requirement for conventional chemicals
US5186928A (en) * 1989-02-20 1993-02-16 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Shampoo composition
US5100658A (en) * 1989-08-07 1992-03-31 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5104646A (en) * 1989-08-07 1992-04-14 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5100657A (en) * 1990-05-01 1992-03-31 The Procter & Gamble Company Clean conditioning compositions for hair
US5106609A (en) * 1990-05-01 1992-04-21 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5855878A (en) * 1991-03-19 1999-01-05 The Procter & Gamble Company Cosmetic compositions containing hydrophobically modified nonionic polymer and unsaturated quaternary ammonium surfactant
US5843418A (en) * 1991-03-19 1998-12-01 The Procter & Gamble Co. Cosmetic compositions containing hydrophobically modified nonionic polymer and unsaturated quaternary ammonium surfactant
US5277899A (en) * 1991-10-15 1994-01-11 The Procter & Gamble Company Hair setting composition with combination of cationic conditioners
US5861367A (en) * 1993-08-04 1999-01-19 Colgate Palmolive Company Cleaning and disinfecting composition in microemulsion/liquid crystal form comprising aldehyde and mixture of partially esterified, fully esterified and non-esterified polyhydric alcohols
US5731281A (en) * 1993-08-04 1998-03-24 Colgate-Palmolive Company Microemulsion liquid crystal cleaning compositions comprising esterified and non-esterfied ethoxylated glycerol mixture and sulfoxy anionic surfactant
US5741760A (en) * 1993-08-04 1998-04-21 Colgate-Palmolive Company Aqueous cleaning composition which may be in microemulsion form comprising polyalkylene oxide-polydimethyl siloxane
US5759983A (en) * 1993-08-04 1998-06-02 Colgate-Palmolive Co. Aqueous cleaning composition which may be in microemulsion form comprising polyalkylene oxide -polydimethyl siloxane and ethoxylated secondary alcohol
US5807543A (en) * 1993-08-27 1998-09-15 The Procter & Gamble Co. Cosmetic compositions containing hydrophobically modified nonionic polymer and unsaturated quaternary ammonium surfactant
US5441664A (en) * 1993-11-15 1995-08-15 Colgate Palmolive Co. Gelled hard surface cleaning composition
US6616641B2 (en) 1993-12-22 2003-09-09 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Impregnated matrix and method for making same
US5543074A (en) * 1994-02-18 1996-08-06 Chesebrough-Pond's Usa Co., Div. Of Conopco, Inc. Personal washing compositions
US5565145A (en) * 1994-05-25 1996-10-15 The Procter & Gamble Company Compositions comprising ethoxylated/propoxylated polyalkyleneamine polymers as soil dispersing agents
US5723112A (en) * 1995-07-14 1998-03-03 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Pyrithione containing hair treatment composition
WO1997045525A1 (en) * 1996-05-24 1997-12-04 Unilever Plc System for delivery of function ingredients
US5804538A (en) * 1996-06-20 1998-09-08 The Procter & Gamble Company Perfume delivery systems in liquid personal cleansing compositions
US5843875A (en) * 1996-06-20 1998-12-01 The Procter & Gamble Company Perfume delivery systems in liquid personal cleansing
US5665689A (en) * 1996-09-04 1997-09-09 Colgate-Palmolive Co. Cleaning compositions comprising mixtures of partially esterified full esterified and non-esterfied ethoxylated polyhydric alcohols and N-alkyl aldonamides
US5972361A (en) * 1996-10-25 1999-10-26 The Procter & Gamble Company Cleansing products
US5980931A (en) * 1996-10-25 1999-11-09 The Procter & Gamble Company Cleansing products having a substantially dry substrate
US6063397A (en) * 1996-10-25 2000-05-16 The Procter & Gamble Company Disposable cleansing products for hair and skin
US6074655A (en) * 1996-10-25 2000-06-13 The Procter & Gamble Company Cleansing products
US6338855B1 (en) 1996-10-25 2002-01-15 The Procter & Gamble Company Cleansing articles for skin and/or hair which also deposit skin care actives
US5780415A (en) * 1997-02-10 1998-07-14 Colgate-Palmolive Company Stable microemulsion cleaning composition
US6132746A (en) * 1997-05-22 2000-10-17 The Procter & Gamble Company Cleansing products with improved moisturization
US20030113364A1 (en) * 1997-05-22 2003-06-19 The Procter & Gamble Company Cleansing articles for skin or hair
US20050075255A1 (en) * 1997-05-22 2005-04-07 The Procter & Gamble Company Methods of cleansing skin or hair with cleansing articles
US6280757B1 (en) 1997-05-22 2001-08-28 The Procter & Gamble Company Cleansing articles for skin or hair
US6955817B2 (en) 1997-05-22 2005-10-18 The Procter & Gamble Company Cleansing articles for skin or hair
US7348018B2 (en) 1997-05-22 2008-03-25 The Procter & Gamble Company Methods of cleansing skin or hair with cleansing articles
US5951991A (en) * 1997-05-22 1999-09-14 The Procter & Gamble Company Cleansing products with improved moisturization
US6495151B2 (en) 1997-05-22 2002-12-17 The Procter & Gamble Company Cleansing articles for skin or hair
US6190678B1 (en) 1997-09-05 2001-02-20 The Procter & Gamble Company Cleansing and conditioning products for skin or hair with improved deposition of conditioning ingredients
US6153208A (en) * 1997-09-12 2000-11-28 The Procter & Gamble Company Cleansing and conditioning article for skin or hair
US6372708B1 (en) * 1997-11-21 2002-04-16 The Procter & Gamble Company Liquid detergent compositions comprising polymeric suds enhancers
US6362146B1 (en) 1998-06-05 2002-03-26 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Personal washing compositions
EP1137397A1 (en) 1998-12-10 2001-10-04 Unilever Plc Washing compositions
EP1716844A1 (en) 1999-04-05 2006-11-02 Unilever Plc Liquid compositions comprising skin benefit agent
US6126954A (en) * 1999-04-05 2000-10-03 Unilever Home & Personal Care Usa, Division Of Conopco Liquid compositions comprising stable emulsion of small particle skin benefit agent
US6399045B1 (en) 1999-04-23 2002-06-04 Unilever Home & Personal Care Usa A Division Of Conopco, Inc. Liquid sunscreen compositions which both deposit and lather well
US6224852B1 (en) 1999-04-23 2001-05-01 Unilever Home & Personal Care Usa Liquid sunscreen compositions which both deposit and lather well
US6451300B1 (en) 1999-05-03 2002-09-17 The Procter & Gamble Company Anti-dandruff and conditioning shampoos containing polyalkylene glycols and cationic polymers
US20020102228A1 (en) * 1999-05-03 2002-08-01 Dunlop David Scott Shampoos providing a superior combination anti-dandruff efficacy and condition
US6649155B1 (en) 1999-05-03 2003-11-18 The Procter & Gamble Company Anti-dandruff and conditioning shampoos containing certain cationic polymers
US6974569B2 (en) 1999-05-03 2005-12-13 The Procter & Gamble Company Shampoos providing a superior combination anti-dandruff efficacy and condition
US6911054B2 (en) 2000-06-06 2005-06-28 Basf Aktiengesellschaft Use of cationically modified, particle-shaped, hydrophobic polymers as addition agents in rinsing, care, detergent and cleaning products
WO2001094516A1 (en) * 2000-06-06 2001-12-13 Basf Aktiengesellschaft Use of cationically modified, particle-shaped, hydrophobic polymers as addition agents in textile rinsing or care products and as addition agents in detergents
US20030171246A1 (en) * 2000-06-06 2003-09-11 Dieter Boeckh Use of cationically modified, particle-shaped, hydrophobic polymers as addition agents in textile rinsing or care products and as addition agents in detergents
US20040077517A1 (en) * 2000-06-06 2004-04-22 Dieter Boeckh Use of cationically modified, particle-shaped, hydrophobic polymers as addition agents in rinsing, care, detergent and cleaning products
US20030195135A1 (en) * 2000-06-06 2003-10-16 Dieter Boeckh Use of cationically modified, particulate, hydrophobic polymers as an additive for rinsing, cleaning and impregnating agents for hard surfaces
US6908490B2 (en) 2000-06-06 2005-06-21 Basf Aktiengesellschaft Use of cationically modified, particle-shaped, hydrophobic polymers as addition agents in textile rinsing or care products and as addition agents in detergents
US20040171515A1 (en) * 2001-06-15 2004-09-02 Christoph Hamers Treatment method, which promotes the removal of dirt, for the surfaces of textiles and non-textiles
US7074750B2 (en) * 2001-06-15 2006-07-11 Basf Aktiengesellschaft Treatment method, which promotes the removal of dirt, for the surfaces of textiles and non-textiles
US20040250354A1 (en) * 2001-06-15 2004-12-16 Christoph Hamers Method for treating surfaces of textiles and non-textiles, in such a way as to stimulate the detachment of dirt
US20030195137A1 (en) * 2002-01-09 2003-10-16 Croda, Inc. Mixtures of quaternary compounds
US20040121930A1 (en) * 2002-02-28 2004-06-24 The Procter & Gamble Company Using cationic celluloses to enhance delivery of fabric care benefit agents
US7056880B2 (en) 2002-02-28 2006-06-06 The Procter & Gamble Company Using cationic celluloses to enhance delivery of fabric care benefit agents
US7056879B2 (en) 2002-02-28 2006-06-06 The Procter & Gamble Company Using cationic celluloses to enhance delivery of fabric care benefit agents
US20040121929A1 (en) * 2002-02-28 2004-06-24 The Procter & Gamble Company Using cationic celluloses to enhance delivery of fabric care benefit agents
US20050153865A1 (en) * 2002-04-09 2005-07-14 Detering Juergen Cationically modified, anionic polyurethane dispersions
WO2003088940A1 (en) * 2002-04-22 2003-10-30 The Procter & Gamble Company Shampoo containing a cationic polymer and anti-dandruff particles
US20030202952A1 (en) * 2002-04-22 2003-10-30 The Procter & Gamble Company Shampoo containing a cationic polymer and anti-dandruff particles
WO2003091371A1 (en) * 2002-04-26 2003-11-06 Nof Corporation Novel polymeric surfactant and cosmetic material
US20030228352A1 (en) * 2002-06-07 2003-12-11 The Procter & Gamble Company Cleansing articles for skin or hair
US20030228351A1 (en) * 2002-06-07 2003-12-11 The Procter & Gamble Company Cleansing articles for skin or hair
US7115551B2 (en) 2002-06-07 2006-10-03 The Procter & Gamble Company Cleansing articles for skin or hair
WO2004022685A1 (en) * 2002-09-09 2004-03-18 The Procter & Gamble Company Using cationic celluloses to enhance delivery of fabric care benefit agents
EP2210933A1 (en) * 2002-09-09 2010-07-28 The Procter & Gamble Company Using cationic celluloses to enhance delivery of fabric care benefit agents
WO2004022686A1 (en) * 2002-09-09 2004-03-18 The Procter & Gamble Company Using cationic celluloses to enhance delivery of fabric care benefit agents
EP1443089A1 (en) * 2003-01-31 2004-08-04 Bj Services Company Acid diverting system containing quaternary amine
US20040152604A1 (en) * 2003-01-31 2004-08-05 Qi Qu Acid diverting system containing quaternary amine
US20050037928A1 (en) * 2003-01-31 2005-02-17 Qi Qu Method of using viscoelastic vesicular fluids to enhance productivity of formations
US7115546B2 (en) 2003-01-31 2006-10-03 Bj Services Company Acid diverting system containing quaternary amine
US7144844B2 (en) 2003-01-31 2006-12-05 Bj Services Company Method of using viscoelastic vesicular fluids to enhance productivity of formations
US20070087940A1 (en) * 2003-01-31 2007-04-19 Bj Services Company Method of using viscoelastic vesicular fluids to enhance productivity of formations
WO2005048963A1 (en) * 2003-11-19 2005-06-02 Wella Ag Hair treatment agent containing thickened water glass
US20070224145A1 (en) * 2003-11-19 2007-09-27 Andrea Walter Thickened Hair-Treatment Agent Containing Water Glass
US6903057B1 (en) 2004-05-19 2005-06-07 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Personal product liquid cleansers stabilized with starch structuring system
US6906016B1 (en) 2004-05-19 2005-06-14 Unilever Home & Personal Care Usa, A Division Of Conopco, Inc. Personal product liquid cleansers comprising combined fatty acid and water soluble or water swellable starch structuring system
US7485609B2 (en) 2005-09-29 2009-02-03 Kimberly-Clark Worldwide, Inc. Encapsulated liquid cleanser
US20070072780A1 (en) * 2005-09-29 2007-03-29 Reddy Kiran K Encapsulated liquid cleanser
US8383572B2 (en) 2008-09-19 2013-02-26 The Procter & Gamble Company Detergent composition containing suds boosting and suds stabilizing modified biopolymer
US8383573B2 (en) 2008-09-19 2013-02-26 The Procter & Gamble Company Dual character biopolymer useful in cleaning products
US20100075887A1 (en) * 2008-09-19 2010-03-25 The Procter & Gamble Company Attention: Chief Patent Counsel Dual Character Polymer Useful in Fabric Care Products
US20100075880A1 (en) * 2008-09-19 2010-03-25 The Procter & Gamble Company Dual Character Biopolymer Useful in Cleaning Products
US20100075878A1 (en) * 2008-09-19 2010-03-25 The Procter & Gamble Company Modified Lignin Biopolymer Useful in Cleaning Compositions
US8075637B2 (en) 2008-09-19 2011-12-13 The Procter & Gamble Company Modified lignin biopolymer useful in cleaning compositions
US20100075879A1 (en) * 2008-09-19 2010-03-25 The Procter & Gamble Company Detergent Composition Containing Suds Boosting and Suds Stabilizing Modified Biopolymer
WO2010033745A1 (en) * 2008-09-19 2010-03-25 The Procter & Gamble Company Dual character polymer useful in fabric care products
US8383571B2 (en) 2008-09-19 2013-02-26 The Procter & Gamble Company Dual character polymer useful in fabric care products
WO2012138710A2 (en) 2011-04-07 2012-10-11 The Procter & Gamble Company Personal cleansing compositions with increased deposition of polyacrylate microcapsules
EP2694016B1 (en) 2011-04-07 2017-05-24 The Procter and Gamble Company Shampoo compositions with increased deposition of polyacrylate microcapsules
US9540596B2 (en) 2013-08-26 2017-01-10 The Procter & Gamble Company Compositions comprising alkoxylated polyamines having low melting points
US9540595B2 (en) 2013-08-26 2017-01-10 The Procter & Gamble Company Compositions comprising alkoxylated polyalkyleneimines having low melting points
US9968537B2 (en) 2013-09-06 2018-05-15 Jubilant Life Sciences Limited Anti-dandruff compositions and hair care formulations containing zinc pyrithione and quaternary ammonium salt
EP3187576A1 (en) * 2015-12-29 2017-07-05 The Dial Corporation Bar soap with cationic agent
EP3466401A1 (en) * 2017-10-06 2019-04-10 Coty, Inc. Hair styling method and kit thereof
WO2019071194A1 (en) * 2017-10-06 2019-04-11 Coty, Inc. Hair styling method and kit thereof
CN111670026A (en) * 2017-10-06 2020-09-15 科蒂公司 Hair styling method and kit therefor
US11110050B2 (en) 2017-10-06 2021-09-07 Wella Operations Us, Llc Hair styling method and kit thereof

Also Published As

Publication number Publication date
FR1588952A (en) 1970-03-16
IT1046452B (en) 1980-06-30
DE1792618B2 (en) 1977-07-07
AT310905B (en) 1973-10-25
NL6813826A (en) 1969-03-31
JPS4720635B1 (en) 1972-06-12
BE721384A (en) 1969-03-25
SE353738B (en) 1973-02-12
DE1792618C3 (en) 1978-03-02
CH531041A (en) 1972-11-30
GB1195158A (en) 1970-06-17
DE1792618A1 (en) 1971-11-25
BR6802634D0 (en) 1973-01-02

Similar Documents

Publication Publication Date Title
US3580853A (en) Detergent compositions containing particle deposition enhancing agents
US3723325A (en) Detergent compositions containing particle deposition enhancing agents
US3761418A (en) Detergent compositions containing particle deposition enhancing agents
US3489686A (en) Detergent compositions containing particle deposition enhancing agents
US3761417A (en) Detergent compositions containing particle deposition enhancing agents
US3726815A (en) Compositions containing amino-polyureylene resin
EP0557423B1 (en) Mild skin cleansing toilet bar with silicone skin mildness/moisturizing aid
US4312855A (en) Compositions containing aminopolyureylene resin
AU722621B2 (en) Low static conditioning shampoo
AU699741B2 (en) Ultramild aqueous cleansing compositions
EP0936898B2 (en) Perfume delivery systems in liquid personal cleansing compositions
US3753916A (en) Detergent compositions containing particle deposition enhancing agents
US6338842B1 (en) Cosmetic composition comprising an anionic surfactant, an amphoteric surfactant, a polyolefin, a cationic polymer and a salt or an alcohol which is water-soluble, use and process
US6113892A (en) Compositions for cleansing, conditioning and moisturizing hair and skin
NZ237582A (en) Aqueous personal cleanser containing surfactant and viscosity-enhancing polymer packaged in a squeeze foamer container
IE66000B1 (en) Hair conditioning shampoo compositionsw with silicone conditioning agent
NZ239050A (en) Liquid hair-, fibre- or skin-treating composition stabilised by a long chain alcohol
CA1331551C (en) Mild skin cleansing soap bar with hydrated cationic polymer
US4876034A (en) Secondary amidoamino acid based detergent composition
EP2473153B1 (en) Surface modified pigment
JPH04108724A (en) Detergent composition
CA1165659A (en) Surfactant compositions
US3697452A (en) Shampoo
US4440743A (en) Hair care compositions
JPH0759714B2 (en) Hypoallergenic detergent composition