US3567435A - High strength steel containing chromium and sulfur - Google Patents

High strength steel containing chromium and sulfur Download PDF

Info

Publication number
US3567435A
US3567435A US685486A US3567435DA US3567435A US 3567435 A US3567435 A US 3567435A US 685486 A US685486 A US 685486A US 3567435D A US3567435D A US 3567435DA US 3567435 A US3567435 A US 3567435A
Authority
US
United States
Prior art keywords
sulfur
steels
percent
steel
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US685486A
Inventor
Jacques Monnot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ugine Kuhlmann SA
Original Assignee
Ugine Kuhlmann SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ugine Kuhlmann SA filed Critical Ugine Kuhlmann SA
Application granted granted Critical
Publication of US3567435A publication Critical patent/US3567435A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Rolling Contact Bearings (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

AN IMPROVED STEEL CONTAINING 0.05 TO 0.40 PERCENT SULFUR WHICH HAS A HARDNESS GREATER THAN 50 ROCKWELL C, GOOD MACHINABILITY AND HIGH FATIGUE STRENGTH AND IS PARTICULARLY SUITED FOR BEARINGS, GEARS, ETC. WHICH ARE SUBJECT TO REPEATED STRESSES.

Description

March 2, 1971 J. MQNNOT 3,567,435
HIGH STRENGTH STEEL CONTAINING CHROMIUM AND SULFUR Filed Nov. 24. 1967 v(1| '|o* loo CYCLES. (10) INVENTOR. Jacques Monnot BY w hk fim qokl-smk HIS ATTORNEYS United States Patent 01 see 3,567,435 Patented Mar. 2, 1971 Int. (:1. C22c 39/14 US. Cl. 75-126 4 Claims ABSTRACT OF THE DISCLOSURE An improved steel containing 0.05 to 0.40 percent sulfur which has a hardness greater than 50 Rockwell C, good machinability and high fatigue strength and is particularly suited for bearings, gears, etc. which are subject to repeated stresses.
This invention relates to an improved high strength steel; more particularly it relates to a hard steel containing 0.05 to 0.40 percent sulfur which has an improved fatigue strength and endurance to repeated stresses.
It is well known that intentional alloying additions of sulfur to steels result in a product having improved machinability. Such additions may increase the sulfur level to .1 percent or more. The sulfur forms a sulfide, an oxysulfide, or a combination thereof with iron or with other elements that have been used as alloying additions in the steel. It is believed the various sulfide inclusions act as a lubricating agent for the working tool, drastically reducing the normal friction between the working tool and the steel workpiece, and thereby improving the machinability of the steel. However, such sulfur additions have been used only in steels of low or medium hardness, at least below 50 Rockwell C. In such cases the mechanical properties of the steel have been considered adequate for certain purposes.
It is also well known that nonmetallic inclusions have deleterious effects on the mechanical properties of the product. The nonmetallic inclusions serve as stress risers and often result in incipient cracking initiated from the area in the steel adjacent the inclusion. This effect is especially apparent where the steel product is exposed to repeated stresses. And, as the hardness of the product increases, the deleterious effect of such inclusions increases. For example, below a hardness of about 32 Rockwell C, the fatigue limit of the treated structural steels is about one half of their conventional ultimate tensile strength. However, the ratio of fatigue limit to ultimate tensile strength decreases rapidly as the hardness of the product increases. Many steels are subjected to vacuum degassing and the like in order to appreciably decrease the amount of nonmetallic inclusions.
Specifications for steels in many countries limit the number, the size, and the distribution of nonmetallic inclusions, and particularly sulfide inclusions, for various uses. Such specifications apply to steels which are to receive hardening treatments, either surface treatment or mass treatment, and particularly those steels which are to attain hardnesses of above 50 Rockwell C. This applies whether the hardness treatment be by chemical or thermal methods. Minimum inclusion specifications also apply to high strength steels having high mechanical properties such as steels to be used for ball or roller bearings, structural members, gears, aircraft applicatons, and the like. In general the limiting specifications apply to all hard steels when the product to be made therefrom will be subjected to repeated stresses.
For the above reasons, it is not surprising that in the manufacture of high strength steels, which are subjected to repeated stresses, it has been considered inadvisable to add materials which will create nonmetallic inclusions and particularly sulfur to the steel. Therefore, the sulfur content in such steels has been maintained at its residual level; namely, in amounts up to 0.035 percent. However, we have found that deliberate additions of sulfur to bring the sulfur content to between 0.050 and 0.400 percent, and preferably between 0.050 and 0.150 percent, not only improves the machining properties of the steel bult also greatly improves the mechanical properties of the steel.
In the single figure drawing we have shown compositive results of fatigue tests on a steel within the scope of my invention and a steel of the prior art.
My invention relates to high strength steels for use as bearings, engine parts and structural members in which improved fatigue strength and endurance to repeated stresses are essential. More particularly, my invention relates to steels having a hardness greater than 50 Rockwell C, a hardness which may be obtained by thermal or chemical treatment either in the mass or locally. The steels of this invention are characterized by having a sulfur content of between 0.05 to 0.40 percent by weight. I prefer that the sulfur content be maintained between 0.05 and 0.150 percent by weight.
The source of the sulfur can be any of the commercially available sources known in the art, such as iron pyrites and the like or free sulfur itself. The sulfur is generally added after the refining operation has been completed. The refining procedures well known to those skilled in the art for machining steels may be utilized. The sulfur may be added before or after the other alloying additions although it is preferable to add the sulfur after other additions are made.
I have found that the addition of sulfur to the high hardness steels not only results in the obvious improved machining characteristics, but contrary to the general opinion, certain mechanical properties are also enhanced. Specifically, it has been found that the fatigue limit has been improved when the sulfur content is higher than 0.05 percent, with this improvement being maintained up to sulfur contents of about 0.4 percent.
The general analysis of bearing steel of my invention in percent by weight is as follows:
To demonstrate the improved qualities of the steels of my invention, two 2-ton ingots having the analysis shown in Table I were prepared and tested under identical conditons. Ingot A had a compositio of normal bearing steels while Ingot B had a composition of my novel steel. In Ingot B the additional sulfur content was obtained by the addition of iron sulfide after refining and deoxidation.
TABLE I Ingot A, Ingot B, percent percent 1 1 1. 5 1. 5 Sulfur 008 102 Iron and impurities. B alance Balance Rotary bending fatigue tests in the longitudinal direction were performed on Moore test specimens on samples from both ingots. The test specimens had previously been treated by oil-hardening after a twenty minute soak in a salt bath at 850 C. followed by tempering at 170 C. for one hour. This heat treatment resulted in a hardness of 62 Rockwell C. The results of these tests are shown by the corresponding Wohler curves of the drawing. It should, 5
be noted that the fatigue limit for 10 cycles is appreciably higher for the samples from Ingot B. This improved fa tigue limit is greater than 6 H bar at the various cycles; Comparable improvements have been'observed in transverse test specimens as well as longitudinal test specimens. i i T While I have described my invention in terms of the present preferred embodiments, it should be nnderstood that it may be otherwise embodied within the scope of the following claims.
' I claim:
1. Bearings made from bearing steels consisting essentially of 0.90 to 1.15 percent carbon; up to 1.5 percent manganese; 0.5 to 2.0 percent chromium; up to 0.3 percent molybdenum; up to 0.3 percent vanadium; up to 1.0 percent silicon; 0.05 to 0.40 percent sulfur; and the balance iron and incidental impurities.
2. Bearing steels having high strength and fatigue resistance and a hardness greater than 50 Rockwell C, said bearing steels consisting essentially of 0.90 to 1.15% C; up to 1.5% Mn, 0.5to 2.0% Cr; up to 0.3% Mo; up to 0.3% Va; up to 1.0% Si; 0.05 to 0.40% S, and the balance iron and incidental impurities.
3. The bearing steels of claim 2 wherein the sulphur content is between 0.05 and 0.15% by weight.
fl. The bearings of claim 1 wherein the sulfur content is between 0.05 and 0.15% by weight. 7
References Cited UNITED STATES PATENTS 1 1,252,596 1/1918 McMillin 75-1 26L 1,831,946 11/1931 Breeler 75126L 2,793,947 5/1957 Swanson 75 126 3,144,362 8/1964 Bradd 75126 3,060,016 10/1962 Melloy L 75126 HYLAND BIZOT, Primary Examiner UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 567 435 Dated March 2 1971 Jacques Monnot Inventor(s) It is certified that error appears in the above-identified pater and that said Letters Patent are hereby corrected as shown below:
Column 1 line 65 after "steels" insert or steels Signed and sealed this 15th day of June 1971 (SEAL) Attest:
EDWARD M.FLETCHER,JR. WILLIAM E. SCHUYLER, Attesting Officer Commissioner of Pate
US685486A 1966-11-24 1967-11-24 High strength steel containing chromium and sulfur Expired - Lifetime US3567435A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR84767A FR1509020A (en) 1966-11-24 1966-11-24 Improved steels

Publications (1)

Publication Number Publication Date
US3567435A true US3567435A (en) 1971-03-02

Family

ID=8621486

Family Applications (1)

Application Number Title Priority Date Filing Date
US685486A Expired - Lifetime US3567435A (en) 1966-11-24 1967-11-24 High strength steel containing chromium and sulfur

Country Status (12)

Country Link
US (1) US3567435A (en)
AT (1) AT276460B (en)
BE (1) BE707005A (en)
BR (1) BR6794945D0 (en)
CH (1) CH482838A (en)
DE (1) DE1558685B2 (en)
FR (1) FR1509020A (en)
GB (2) GB1213473A (en)
LU (1) LU54920A1 (en)
NL (1) NL6715791A (en)
PL (1) PL79259B1 (en)
SE (1) SE344079B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100143179A1 (en) * 2007-01-26 2010-06-10 Sandstroem Mattias Lead free free-cutting steel and its use
CN104328250A (en) * 2014-11-27 2015-02-04 王俐帧 Heat treatment process of bearing steel
US10704125B2 (en) 2015-11-09 2020-07-07 Crs Holdings, Inc. Free-machining powder metallurgy steel articles and method of making same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2079907A (en) * 1935-05-11 1937-05-11 Crucible Steel Co America Needle wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100143179A1 (en) * 2007-01-26 2010-06-10 Sandstroem Mattias Lead free free-cutting steel and its use
US8540934B2 (en) * 2007-01-26 2013-09-24 Sandvik Intellectual Property Ab Lead free free-cutting steel and its use
US9238856B2 (en) 2007-01-26 2016-01-19 Sandvik Intellectual Property Ab Lead free free-cutting steel
CN104328250A (en) * 2014-11-27 2015-02-04 王俐帧 Heat treatment process of bearing steel
US10704125B2 (en) 2015-11-09 2020-07-07 Crs Holdings, Inc. Free-machining powder metallurgy steel articles and method of making same

Also Published As

Publication number Publication date
SE344079B (en) 1972-03-27
BR6794945D0 (en) 1973-04-10
PL79259B1 (en) 1975-06-30
CH482838A (en) 1969-12-15
LU54920A1 (en) 1968-02-16
AT276460B (en) 1969-11-25
GB1213473A (en) 1970-11-25
NL6715791A (en) 1968-05-27
BE707005A (en) 1968-04-01
DE1558685A1 (en) 1971-12-30
DE1558685B2 (en) 1971-12-30
GB1215430A (en) 1970-12-09
FR1509020A (en) 1968-01-12

Similar Documents

Publication Publication Date Title
US2109118A (en) Manufacture of articles from steel alloys
US2280283A (en) Deep-hardening boron steels
US3926622A (en) Pitting resisting alloy steels
JPS58207361A (en) Steel for pulverization structure
US2147122A (en) Alloy compositions
US2229065A (en) Austenitic alloy steel and article made therefrom
US3567435A (en) High strength steel containing chromium and sulfur
US3437478A (en) Free-machining austenitic stainless steels
US3424576A (en) Free machining steels
US3392065A (en) Age hardenable nickel-molybdenum ferrous alloys
US3167423A (en) High temperature wear resisting steels
AU603496B2 (en) Corrosion and abrasion resistant alloy
US3859081A (en) High speed steel compositions and articles
US3330652A (en) High speed steel
US2174281A (en) Ferrous alloy
JPH0354173B2 (en)
US3198630A (en) Super strength steel alloy composition and product and process of preparing it
US2955933A (en) Inoculants for cast iron
US1996725A (en) Alloy steel
US2253385A (en) Steel
US2174286A (en) Ferrous alloy
JPH01208437A (en) High chrome-typed roll steel having improved grindability for rolling
US2167301A (en) Alloy cast iron
US2174284A (en) Ferrous alloy
US2575216A (en) Ferrous alloys and articles made therefrom