US3563007A - Fuel vapor control - Google Patents
Fuel vapor control Download PDFInfo
- Publication number
- US3563007A US3563007A US765505A US3563007DA US3563007A US 3563007 A US3563007 A US 3563007A US 765505 A US765505 A US 765505A US 3563007D A US3563007D A US 3563007DA US 3563007 A US3563007 A US 3563007A
- Authority
- US
- United States
- Prior art keywords
- air
- engine
- fuel
- vapors
- canister
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title abstract description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 31
- 229910052799 carbon Inorganic materials 0.000 abstract description 17
- 238000002485 combustion reaction Methods 0.000 abstract description 8
- 239000002828 fuel tank Substances 0.000 abstract description 7
- 239000003570 air Substances 0.000 description 76
- 239000002245 particle Substances 0.000 description 6
- 238000010926 purge Methods 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000012080 ambient air Substances 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 238000003795 desorption Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
- F02M25/0872—Details of the fuel vapour pipes or conduits
Definitions
- This invention relates, in general, to an internal combustion engine. More particularly, it relates to an apparatus for controlling the emission of fuel vapors from a fuel tank or reservoir.
- One of the objects of the invention is to provide an apparatus that is especially useful during the hot soak cycle of an internal combustion engine to absorb excess fuel vapors that may be produced during this time.
- Another object of the invention is to provide an apparatus that, during the normal running operation of an internal combustion engine, will desorb or purge a device of fuel vapors adsorbed thereby.
- a further object of the invention is to provide an internal combustion engine with a fuel vapor recovery system that includes an activated carbon bed filter associated with the engine air cleaner hot air supply such that, during a hot soak cycle of the engine, excess fuel vapors given off by the carburetor fuel bowl and vehicle gasoline tank are adsorbed by the activated carbon particles and stored thereon until the engine again begins operating, at which time the flow of warm air through the carbon bed desorbs the fuel vapors therefrom and carries them into the air cleaner to be subsequently burned in the engine.
- FIG. 1 is a perspective view, with parts broken away and in section, of an apparatus embodying the invention.
- FIG. 2 is a cross-sectional view of a portion of the FIG. 1 showing.
- FIG. 1 show, schematically, the air inlet air cleaner portion of an internal combustion engine
- FIG. 1 shows the cylindrical-like covered housing of an annular air cleaner 10. It is secured over and to the air horn portion of a conventional downdraft type carburetor 12, in a known manner, by a bail member, not shown, and a wing nut 14.
- the details of construction and operation of the air cleaner per se are not shown since they are known and believed to be unnecessary for an understanding of the invention.
- the air cleaner could be of the conventional dry element type having an annular ring-like filter element through which air taken into the air cleaner through a snorkel l6 flows on its way into the carburetor inlet.
- the snorkel-like inlet 16 is open at its outer end to communicate with ambient air in the engine compartment of the motor vehicle, not shown.
- a flexible duct 18 adapted to contain engine compartment air heated by passage over the engine exhaust manifold.
- a shroud 20 is adapted to closely surround a portion of the engine exhaust manifold, but is spaced sufficiently therefrom to permit the passage of engine compartment air through the space between the two into the hot air duct 18. The air thus is heated as it passes over the manifold. The heated air then passes into the snorkel 16 on its way into the air cleaner proper.
- Snorkel 16 in this case contains a flap valve 22 that is pivotally mounted as shown in FIG. 2 for alternate movement between positions closing the ambient air temperature inlet 24 or the hot air duct 18.
- the door is biased by a spring 26 to the position shown closing inlet 24. It is moved towards the opposite extreme position to close duct 18 either by a thermally sensitive assembly 28 or a vacuum controlled servo 30.
- a temperature responsive, linearly expandable-contractible member 32 is slidably secured to a projection 34 depending from the flapper valve door, as shown.
- the thermostatic element is calibrated so that as the temperature increases, the element 32 elongates to move the door 22 towards a position closing the hot air duct.
- the vacuum controlled motor 30 is an override control.
- -It consists of a known type of vacuum motor having a central flexible diaphragm that is spring biased to the right with a force sufficient to normally urge the lower extension 34 of flapper door 22 against the force of spring 26 to close the hot air duct :18.
- the diaphragm divides the servo housing into an atmospheric pressure chamber, and a vacuum chamber.
- the vacuum chamber is connected to the internal combustion engine intake manifold vacuum by a tube 35 so as to be responsive to the changes thereof. When there is sufficient depression in the intake manifold, corresponding to high load engine operation, the decay in vacuum permits the vacuum motor spring to move the flap door to close hot air duct 18.
- the vacuum in the intake manifold generally is of a level sufficient to maintain the stem of the servo motor withdrawn so as not to affect the operation of the flapper valve.
- the hot air duct 18 in this case contains a cylindrical-like canister 36 containing a bed of activated carbon particles 38, as shown. It is filled, for example, with, say 525 grams of activated carbon that is tightly packed between a pair of steel mesh plates 40.
- the lower portion of the canister is open to the hot air duct 18, and the upper portion, as stated previously, opens into the snorkel 16.
- the fuelvapors from the carburetor fuel bowl and from the gasoline storage tank or reservoir in this case are directed to the carbon canister through a pair of conduits 42 and 44, as shown.
- the fuel vapor conduits are shown as being connected to a central portion of the carbon bed; however, it will be clear that they could be connected to any suitable portion of the bed so long as adequate distribution of the fuel vapors among the carbon particles is provided.
- a thermally sensitive butterfly valve '46 is pivotally mounted in duct 18 between the manifold shroud 20 and canister 36.
- the valve plate would consist of a bimetallic, thermostatic element. Below a predetermined temperature level, the valve would be rotated to open duct 18 and permit the normal passage of fuel vapors from canister 36. If, for some reason, the temperature at shroud 20 should become excessive, the expansion of one of the bimetallic elements of valve 46 at a faster rate than the other would rotate the valve to shut duct 18 and stop the flow of hot air therethrough.
- the increased depression in the snorkel 16 would, in this case, cause an opening of flap door 22 by the air pressure at inlet 24, against the force of spring 26.
- an initial engine start under cold ambient temperature conditions will cause the thermostatic element 28 to move the snorkel flapper door 22 to close the cold or ambient air entrance portion 24 and open wide the hot air duct .18. Accordingly, as soon as the engine is started and air flow occurs past the exhaust manifold shroud 20, hot air in the duct will flow through the canister among the carbon particles and desorb the latter of fuel vapors previously adsorbed by them. This purge flow then passes through the snorkel 16 into the air cleaner proper and from there into the inlet of the carburetor, in a known manner.
- the thermostatic member 28 in this case including a wax element, will cause the flapper door 22 to move to close off the hot air duct and permit substantially all of the air to enter by the ambient air temperature inlet 24. This provides the air cleaner with less restriction to flow than occurs with flow only through the hot air duct. This results in greater air flow, which is desired for maximum engine performance.
- the temperature increase at the carburetor fuel bowl and the vehicle gasoline tank or reservoir may be considerable, causing increased fuel vaporization and increased fuel vapor pressure.
- This causes a flow of fuel vapors through the tubes 42 and 44 to the carbon bed to be adsorbed by the carbon therein. Therefore, during the hot soak cycle, the fuel tank and fuel bowl vapors will not be passed freely into the atmosphere, but are adsorbed in the carbon bed.
- the flapper valve 22 generally will be closed by means of the wax pellet type thermostatic control 28, so that maximum adsorption efiiciency is obtained by the vapors being contained in the hot air duct 18.
- vapors that are given off by the fuel tank or reservoir and the carburetor fuel bowl, and any other fuel vapor source flow into the canister 36 containing the carbon bed and are adsorbed thereby; and, that during the normal operation of the engine, the fuel vapors are desorbed from the canister and passed into the air cleaner and therefrom into the engine.
- the invention provides a simple and economical method of containing fuel vapors vented from the vehicle fuel tank or carburetor fuel bowl. It will also be seen that the invention provides purging of the fuel vapors from the canister containing the carbon granules in a manner that does not interfere with the normal operation of the engine. It will also be seen that loss of engine power due to restriction of air from the carbon bed is eliminated by the function of the manifold vacuum motor 30 bypassing the carbon bed at low manifold vacuum and high volume air intake. It will further be seen that the exhaust manifold heat will optimize desorption of vapors from the activated carbon to maximize the working capacities of the carbon.
- An apparatus for controlling the emission of vapors from the fuel tank and carburetor fuel bowl of a motor vehicle engine having a source of intake manifold vacuum comprising, an engine air cleaner assembly including a casing having an air inlet having branch first and second air inlet portions operatively connected thereto said first portion comprising a duct containing heated air said second portion comprising an ambient temperature air duct, valve means movably associated with said inlet portions for varying the proportionate flow of air from said ducts into said air cleaner as a function of the position of said valve means, engine intake manifold vacuum responsive means connected to and moving said valve means at times in response to the decay of vacuum to a.
- fuel vapor adsorption means in said heated air duct comprising a canister containing activated carbon particles and having an air inlet and outlet at opposite ends thereof, and conduit means containing fuel vapors connected to said vapor adsorption means, the desorption of vapors from said adsorption means into said air cleaner occurring in response to the rise of said vacuum above said predetermined level effecting a movement of said valve means to open said heated air duct.
- An apparatus as in claim 1 including thermostatic means in said heated air duct responsive to a predetermined temperature rise therein for blocking said heated air duct.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US76550568A | 1968-10-07 | 1968-10-07 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3563007A true US3563007A (en) | 1971-02-16 |
Family
ID=25073730
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US765505A Expired - Lifetime US3563007A (en) | 1968-10-07 | 1968-10-07 | Fuel vapor control |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US3563007A (enrdf_load_stackoverflow) |
| DE (1) | DE1945103A1 (enrdf_load_stackoverflow) |
| GB (1) | GB1232528A (enrdf_load_stackoverflow) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3727597A (en) * | 1969-05-28 | 1973-04-17 | Porsche Kg | Device for precipitating fuel from the vapor discharging from the fuel supply system of an internal combustion engine |
| US3763839A (en) * | 1971-11-24 | 1973-10-09 | Phillips Petroleum Co | Fuel system apparatus and method |
| US3782349A (en) * | 1971-10-22 | 1974-01-01 | Nippon Denso Co | Intake air temperature automatic adjusting device and air cleaner with such device for internal combustion engines |
| US3830210A (en) * | 1971-09-21 | 1974-08-20 | Mann & Hummel Filter | Air intake system with temperature-controlled warm air valve |
| US3974808A (en) * | 1975-07-02 | 1976-08-17 | Ford Motor Company | Air intake duct assembly |
| US3990421A (en) * | 1974-11-07 | 1976-11-09 | Grainger Lewis M D | Anti-pollution structure with a fuel economizing fuel feed and exhaust system for an internal combustion engine |
| US4144857A (en) * | 1976-10-18 | 1979-03-20 | Filterwerk Mann & Hummel Gmbh | Device for automatically controlling the intake air temperature of a carburetor-equipped internal combustion engine |
| US4161930A (en) * | 1978-02-14 | 1979-07-24 | Filterwerk Mann & Hummel Gmbh | Device for regulating the intake air temperature of a carburetor-equipped internal combustion engine |
| US4430981A (en) * | 1981-02-17 | 1984-02-14 | Fram Europe Limited | Temperature responsive air induction apparatus |
| US5009686A (en) * | 1988-05-24 | 1991-04-23 | Suzuki Jidosha Kogyo Kabushiki Kaisha | Air cleaner of engine for vehicle |
| US20040182240A1 (en) * | 2003-03-19 | 2004-09-23 | Bause Daniel E. | Evaporative emissions filter |
| US20050016474A1 (en) * | 2003-04-08 | 2005-01-27 | Dopke Russell J. | Intake air and carburetor heating arrangement for V-twin engines |
| US20050145224A1 (en) * | 2003-03-19 | 2005-07-07 | Zulauf Gary B. | Evaporative emissions filter |
| US20060042468A1 (en) * | 2004-08-26 | 2006-03-02 | Smith Robert L | Adsorptive assembly and method of making the same |
| US20060118069A1 (en) * | 2004-12-06 | 2006-06-08 | Snyder Dale D | Carburetor and intake air heating arrangements for V-twin engines |
| CN105888889A (zh) * | 2016-05-26 | 2016-08-24 | 宁波拓普智能刹车系统有限公司 | 一种带有回流功能的汽油蒸汽净化装置 |
-
1968
- 1968-10-07 US US765505A patent/US3563007A/en not_active Expired - Lifetime
-
1969
- 1969-09-05 GB GB1232528D patent/GB1232528A/en not_active Expired
- 1969-09-05 DE DE19691945103 patent/DE1945103A1/de active Pending
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3727597A (en) * | 1969-05-28 | 1973-04-17 | Porsche Kg | Device for precipitating fuel from the vapor discharging from the fuel supply system of an internal combustion engine |
| US3830210A (en) * | 1971-09-21 | 1974-08-20 | Mann & Hummel Filter | Air intake system with temperature-controlled warm air valve |
| US3782349A (en) * | 1971-10-22 | 1974-01-01 | Nippon Denso Co | Intake air temperature automatic adjusting device and air cleaner with such device for internal combustion engines |
| US3763839A (en) * | 1971-11-24 | 1973-10-09 | Phillips Petroleum Co | Fuel system apparatus and method |
| US3990421A (en) * | 1974-11-07 | 1976-11-09 | Grainger Lewis M D | Anti-pollution structure with a fuel economizing fuel feed and exhaust system for an internal combustion engine |
| US3974808A (en) * | 1975-07-02 | 1976-08-17 | Ford Motor Company | Air intake duct assembly |
| US4144857A (en) * | 1976-10-18 | 1979-03-20 | Filterwerk Mann & Hummel Gmbh | Device for automatically controlling the intake air temperature of a carburetor-equipped internal combustion engine |
| US4161930A (en) * | 1978-02-14 | 1979-07-24 | Filterwerk Mann & Hummel Gmbh | Device for regulating the intake air temperature of a carburetor-equipped internal combustion engine |
| US4430981A (en) * | 1981-02-17 | 1984-02-14 | Fram Europe Limited | Temperature responsive air induction apparatus |
| US5009686A (en) * | 1988-05-24 | 1991-04-23 | Suzuki Jidosha Kogyo Kabushiki Kaisha | Air cleaner of engine for vehicle |
| US7344586B2 (en) | 2003-03-19 | 2008-03-18 | Honeywell International, Inc. | Evaporative emissions filter |
| US20080184891A1 (en) * | 2003-03-19 | 2008-08-07 | Zulauf Gary B | Evaporative emissions filter |
| US8216349B2 (en) * | 2003-03-19 | 2012-07-10 | Fram Group Ip Llc | Evaporative emissions filter |
| US20050145224A1 (en) * | 2003-03-19 | 2005-07-07 | Zulauf Gary B. | Evaporative emissions filter |
| US20100101542A1 (en) * | 2003-03-19 | 2010-04-29 | Zulauf Gary B | Evaporative emissions filter |
| US7655166B2 (en) * | 2003-03-19 | 2010-02-02 | Honeywell International Inc. | Evaporative emissions filter |
| US7163574B2 (en) | 2003-03-19 | 2007-01-16 | Honeywell International, Inc. | Evaporative emissions filter |
| US7182802B2 (en) * | 2003-03-19 | 2007-02-27 | Honeywell International, Inc. | Evaporative emissions filter |
| US20040182240A1 (en) * | 2003-03-19 | 2004-09-23 | Bause Daniel E. | Evaporative emissions filter |
| US20050000362A1 (en) * | 2003-03-19 | 2005-01-06 | Bause Daniel E. | Evaporative emissions filter |
| US20050016474A1 (en) * | 2003-04-08 | 2005-01-27 | Dopke Russell J. | Intake air and carburetor heating arrangement for V-twin engines |
| US7377966B2 (en) | 2004-08-26 | 2008-05-27 | Honeywell International, Inc. | Adsorptive assembly and method of making the same |
| US20060042468A1 (en) * | 2004-08-26 | 2006-03-02 | Smith Robert L | Adsorptive assembly and method of making the same |
| US20060118069A1 (en) * | 2004-12-06 | 2006-06-08 | Snyder Dale D | Carburetor and intake air heating arrangements for V-twin engines |
| CN105888889A (zh) * | 2016-05-26 | 2016-08-24 | 宁波拓普智能刹车系统有限公司 | 一种带有回流功能的汽油蒸汽净化装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| DE1945103A1 (de) | 1970-04-09 |
| GB1232528A (enrdf_load_stackoverflow) | 1971-05-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3563007A (en) | Fuel vapor control | |
| CA1151030A (en) | Proportional flow fuel vapor purge control device | |
| US3575152A (en) | Vapor recovery using a plurality of progressively absorbent beds connected in series | |
| US3645098A (en) | Exhaust emission control | |
| US3221724A (en) | Vapor recovery system | |
| US9777676B2 (en) | Systems and methods for fuel vapor canister purging | |
| US3678663A (en) | Air cleaner remote from engine and having integrated fuel vapor adsorption means | |
| US6230693B1 (en) | Evaporative emission canister with heated adsorber | |
| US3913545A (en) | Evaporative emission system | |
| JP3255718B2 (ja) | 蒸発燃料処理装置 | |
| US3540423A (en) | Evaporative emission control system | |
| US5148793A (en) | Compartmental evaporative canister and pressure control valve assembly | |
| US3741179A (en) | Exhaust gas recirculating system control | |
| JP3320722B2 (ja) | 内燃機関の燃料タンクの排気装置 | |
| GB2140084A (en) | Fuel-vapour emmission control system for an automative engine | |
| JP3345007B2 (ja) | 内燃機関の燃料タンクの排気装置 | |
| US20140224225A1 (en) | Purge valve and fuel vapor management system | |
| US9845745B2 (en) | EVAP system with valve to improve canister purging | |
| US3481117A (en) | Engine air supply system | |
| US4886096A (en) | Evaporative emission control system | |
| US3481119A (en) | Air cleaner construction | |
| US3491736A (en) | Exhaust recycle on deceleration with purging system for filter | |
| US3918421A (en) | Induction air temperature control apparatus | |
| US4783962A (en) | Brake booster vapor trap filter and fuel tank vapor trap canister vapor guard system | |
| US3937198A (en) | Roll-over valve and vapor separator |