Connect public, paid and private patent data with Google Patents Public Datasets

Method of metal coating and electrically heating a subterranean earth formation

Download PDF

Info

Publication number
US3547192A
US3547192A US3547192DA US3547192A US 3547192 A US3547192 A US 3547192A US 3547192D A US3547192D A US 3547192DA US 3547192 A US3547192 A US 3547192A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
formation
metal
earth
well
borehole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Edmond L Claridge
Michael Prats
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Oil Co
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity

Description

United States Patent Inventors Elmond L. Claridge;

Michael Prats, Houston, Tex.

Appl. No. 813,502 Filed Patented Assignee April 4, 1969 Dec. l5, 1970 Shell Oil Company New York, N.Y. a corporation of Delaware METHOD OFMETAL COATING AND ELECTRICALLY HEATING A SUBTERRANEAN `[56] References Cited UNITED STATES PATENTS 2,118,669 5/1938 Grebe 166/248 2,267,683 12/1941 l66/292X 2,818,118 12/1957 166/248 3,137,347 6/1964 166/248 3,141,504 7/1964 Sarapuu 166/248 3,149,672 9/1964 Orkiszewski et al. 166/248 3,393,737 7/1968 Richardson 166/292 Prirmzry- Examner-jan A` Calvert Attorneys-Louis J. Bovasso and J. H. Mc Carthy ABSTRACT: A method of electrically heating a subterranean EARTH FORMATION l0 Claims, 2 Drawing Figs. earth formation by metallizing a portion of the formation and electrically connecting a source of electrical energy to the U.S. CI 166/248, metallized portion. The formation may be metallized by elec- 166/272, 166/292, 166/302 trOless metal plating and/or by introducing liquid metal. An lnt.Cl E2lb 33/138, amount of electrical current sufficient to produce heat is E21b43/20,E2lb43/24 flowed through the metallized portion of the subterranean Field of Search .i 166/248, earth formation. Fluid may be injected while the current is 272, 292, 302, 65 being applied.

*- ISV\ v V T 2? Lf' efr* l. 24 I9 2e 2o TTL-I 1.-.' i l vl, v, v', vl v( v v Pmmiufmsmm 3541192 .f w f^ INVENTORS: Y FIG 2 EDMOND L. CLARIDGE MICHAEL PRATS THEIR ATTORNEY METHOD F METAL COATING AND ELECTRICALLY HEATING A SUBTERRANEAN EARTH FORMATION BACKGROUND OF THE INVENTION l. Field of the Invention I This invention relates to the recovery of solid, liquid and gaseous carbonaceous fuels; and, more particularly, to a method of utilizing electric current to heat a subterranean earth formation.

2. Description ofthe Prior Art It is well known to apply electrical current to oil horizons and other subsurface formations to aid oil or mineral production and achieve related purposes therein. Thus, subsurface and formation heating by electrical means, electrolytic migration of subsurface fluids, linking of electrodes in subsurface formations, physically linking such electrodes bycarbonized channels, circumferential wellbore carbonization, wellbore fracturing by electrical means, etc., have all been described in the prior art, as for example in U.S. Pat. Nos. 2,795,279, 2,889,882, 3,137,347, 3,141,504, and 2,3,21 1,220. The typical complete well installations utilized in practicing such processes contemplate spaced well boreholes with discrete solid metal electrodes or electrode analogs` embedded in an earth formation or in the fluids of such an earth formation, or yet in gravel packs communicating with an earth formation whereby to transfer electrical energy to the formation or fluids thereof.

However, discrete solid metal electrodes used in such prior art processes tend to undergo localized overheating, electrode polarization, etc., that soon render them inefficient or ineffective in respect to transmitting current into the earth formations.

SUMMARY OF THE INVENTION lt is an object of this invention to provide an improved method for heating a subterranean earth formation by flowing an electric current therethrough.

lt is a further object of this invention to provide a method of controlling the electrical fracturing of a subterranean earth formation. v

lt is a still further object of this invention to-provide an improved method of consolidating an incompetentearth formation by metallizing the formation utilizing an electrical current in the process in conjunction with heating the formation.

These and other objects are preferably carried out by metallizing or metal-permeating a permeable portion of the earth formation with an electrically conductive body of metal and connecting a source of electrical energy to themetallized portion. An amount of electric current sufficient to produce heat is then flowed through the metallized portion of the subterranean earth formation.

BRIEF DESCRIPTION OF THE DRAWING FIG. l is a vertical sectional, partly schematic, view of a preferred embodiment for carrying out theconcepts of our invention; and

FIG. 2 is a vertical sectional, partly schematic, view of a method for producing hydrocarbon from a formation heated in accordance with the teachings of our invention.

DESCRIPTION of THE PREFERRED EMBODIMENT Although our invention will be described herenbelow with respect to a rubbled permeable zone within a normally impermeable subterranean earth formation, it is to be understood that the metal-permeated portion to be described may comprise either a normally permeable portion of an earth formation that is encountered by the borehole of a well, such as a reservoir sand, or a fracture-permeated or rubbled region within a normally impermeable formation. such as an oil shale.

Referring now to the drawing, FIG. 1 shows a well borehole extending into communication with a normally impermeable subterranean earth formation 11. Earth formation 1l is overlaid by an overlying earth formation 12. A rubbled area of permeable zone 13 may be formed in formation 11 surrounding the well borehole l0 by any means known in the art, such as detonating a relatively high energy explosive device in formation 11 thereby creating a chimney of rubble so as to render the formation l1 permeable. Well borehole 10 is preferably cased at casing 14 with casing 14 cemented therein, as is well known in the art. A plurality of perforations 25 are shown disposed in casing 14, thereby communicating well borehole 10 with the permeable zone 13. Obviously, the number of perforations depends on the extent of the perrneable zone 13. l

A tubing string 16 is disposed in well borehole 10 packed off from casing 14 at packing means 17. An insulated cable 18 extends through tubing string 16 and has an electrode i9 disposed at its lowermost end. Cable 18 extends out of tubing string 176 16 and is electrically connected, at its upper end, to a power source 20 for supplying electric current to electrode 19.

Electrode 19 preferably extends, at its lowermost end, into communication with a metal-permeated portion of the permeable zone 13, as for example, into a pool 21 of liquid metal. Further, formation 11 may be additionallyl metallized, as will be discussed further hereinbelow, at least within the exposed permeable portions thereof. Obviously, the particular locations for metallizing the permeable zone 13 may be selected in accordance with a predetermined schedule for heating and/or fracturing formation 11. Such metallized areas may be in the form of either liquid metal, metal plating or both.

In all embodiments of our invention, however, at least a portion of the particular earth formation being treated, such as earth formation 11, is permeated with metal. As discussed hereinabove, the permeating metal may be inthe form of a liquid that penetrates into at least the surface of the earth formation 11, such as pool 21, or metal plating 22 that is deposited on either the surfaces of the grains or the walls of the pores of a permeable zone 13. In the preferred embodiment illustrated in FIG. l, the electrical connection between power source 20 and the metal-permeated earth formation 11 is supplemented by metal plating the formation 11 (as atmetal plating 22) in addition to permeating it with liquid metal (as at pool 21).

The permeable zone 13 is preferably metal plated by circulating a metal-depositing solution through annulus outlet 23, down the annulus between tubing string 16 and casing 14, out of perforations l5 and into formation 1l, thus forming metal plating 22. Liquid metal may be introduced through tubing outlet 24, down tubing string 16 and into the' bottom of borehole 10, thus forming liquid metal pool 21. Casing 14 may be grounded as at ground 25, as is known inthe electrical art. A switch 26, for opening and closing the electrical circuit, is preferably interposed between electrode 19 and power source 20. A ground 27 completes the circuit between power source 20 and electrode 19 as illustrated in FIG. 1.

ln operation, upon actuation of switch 26, the circuit is closed and electric current flows from power source 20 through electrode 19 and into pool 21. The dashed lines in FIG. l indicate the flow path of electric current from pool 21 through the metal plating 22 to casing 14. An amount of current is flowed sufficient to produce heat and thus increase the permeability of permeable zone 13 for subsequent production of hydrocarbons therefrom.

Where the natural formation is impermeable as illustrated in FIG. 1, the metal-plating solution may be spotted and held in the rubbled portion of the formation to be plated. Suitable metal-deposition solutions are described in U.S. Pat. No. 3,393,737 to Richardson, directed to an electroless metal deposition process. In such a situation, a first portion of the metal-plating solution may be kept static for a time sufficient to become depleted and then displaced with a fresh batch of solution in the lmanner described in a copending application to Richardson Ser. No. 692,726, filed Dec. 22, 1967 now U.S. Pat. No. 3,500,926.

-Where the earth formation is normally permeable and no ceation of a permeable zone is required, the electroless metal-plating technique disclosed in the Richardson patent is preferred. In such a situation, the permeable zone would be similar to zone 13 of FIG. l, but would be permeated by fluids that flow radially in the manner described in the aforementioned Richardson patent.

."A'Where an electroless metal-plating process is used, a highly conductive metal plating, such as a copper plating, is preferred. Where a liquid metal is used, it may comprise substantially any metal or metallic alloy which is liquid in the environment of the subsurface earth formation being treated. It may be spotted in the bottom of the well borehole, as illus- (rated in FIG. l, and injected into the rubbled portion of an impermeable earth formation, also as illustrated in FIG. l, by pressuring the tubing string I6 while allowing liquid metal solution to enter the annulus through annulus outlet 23 at a point above packing means 17 A metallic substance such as a metal or metallic alloy that has both a relatively low melting point and a relatively high boiling point, for example a metal such as gallium, is particularly suited for use in the carrying outpf the concepts of our invention. The density contrast between a liquefied metal and a fluid such as water, which would normally be used in conventional fluid injection processes for displacing our solution into formation Il surrounding well borehole l0, ensures the deposition of the liquefied metal as discussed hereinabove.

Y, Where the earth formation being treated is normally permeable,` and a liquid metal is used, the pressure within the tubing string 17 is preferably maintained within general limits. Duringljlthe electrical-heating operation, the pressure in tubing siting' 17 is preferably maintained too low to displace all of the liquefied metal out of well borehole l and into earth formation' vl l, and too high to allow the formation pressure to back flowenough of the metal into the well borehole l0 to establish a contact between it and a metal conduit that has a lower voltage potential.

The heating of permeable zone 13 serves to solidify loose sandl grain particles disposed in permeable zone 13. Thus, the techniques of our invention may be applied to the consolidation of loose or incompetent subsurface earth formations.

/Referring now to FIG. 2, wherein like numerals'refer to like parts of FIG. l, a second well borehole 28 is illustrated spaced from well borehole and extending into communication with formation '11. Well borehole 28 is casedat casing 29 with the casing cemented therein as is well known in the art. A tubing strinfg 30'is disposed in well borehole 28 and packed off at packing means 3l. A plurality of perforations 32 are provided in'lcasing 29 in the manner discussed hereinabove with respect to, fperforations l5. An annulus outlet 33 is provided at the u r end of casing 29; a tubing string outlet 34 is similarly ded at the upper end of tubing string 30. Both outlets 33 34 are coupled to suitable conduits (not shown) for in- -cing fluids into and flowing fluids out of formation Il, as

,Y 'iquid metal pool 35 is shown disposed at the lower end of w borehole 28. Pool 35 is similar to pool 2l of well borehole formed in the manner discussed hereinabove with respect to powcil21. ln like manner, metal plating 36, similar to metal platl2, is shown previously formed in the permeable zone 37 ofiij'ell borehole 28, all in the manner discussed hereinabove, with respect to well borehole l0.

flii'order to produce fluids from formation i l, both permeaones 13 and 37 are extended until they intersect as illustrated on FIG. 2. This may be accomplished by electrically heating both zones in the manner disclosed hereinabove until such intersection is obtained. The respective pools 2l and 35, andmetal plating 22 and 36, also intersect at this point. For convenience of illustration, it is to be understood that metal plating 22 is extended tofintersect with plating 36 in such a manner that the regions between well boreholes It) and 28 are suitably metal-platedflnt'his manner, the loose sand grain parthe well boreholes l0 and 28, while electricity is also passed into the formation via the electrodes 22, 36. High current densities (amperes per square centimeter of borehole area or of external electrode area) can thus be achieved without overheating of the rock or sand formation Il in the vicinity of the electrode 22, 36. vThe injected fluid, preferably water of any convenient composition, carries the excess heat away from the vicinity of the wellbores 10 and 28. Besides this, the injected fluid thus heated will warm and transport oil or other valuable material from a first well borehole towards a second wellbore used for recovery of these materials. The attainment Iof high current densities permits the heating, at an appreciable rate, of oil or other valuable material at a significant distance away from the wellbore. For example, with a current density of 1A; ampere per square centimeter at the outer surface of a porous, metallized sand electrode l meter in radius (such as metal plating 22 and 36), a typical rock formation can be electrically heated at a rate of about l C./day at a radius of 100 meters from the well. Such current density could not be maintained without cooling, as the temperature rise around the perimeter of the electrode would otherwise be about 1 C./second.

A similar process may be carried out in wellbore 10 of FIG. l by injecting fluid throughfmetal plating 2l and 22 while flowing electricity therethrough. f

The electrification of both zones 13 and 37 (FIG. 2) may be l stopped and formation fluids may be flowed from formation 11 through perforations 32, up the annulus formed between tubing string 30 and casing 29 of well borehole 28, and out of annulus outlet 33. Suitable valves (not shown) may be provided for decreasing the overburden pressure so that fluids are recovered from formation 11, all in the `manner well-known in the art. Hydrocarbons may then be separated from the recovered formation fluids by passing such fluids through suitable separation means as illustrated in FIG. 2.

We claim:

l.. A method of electrically heating a subterranean earth formation comprising the steps'of:

providing on a permeable portion of said subterranean earth formation a coating of electrically conductive body of metal; thereafter,

electrically connecting a source of electrical energy to the metal coated portion of said subterranean earth forma tion; and

flowing an amount of electric current sufficient to produce heat through said metal-coated portion of said subterranean earth formation.

2. The method of claim 1 including the step of first extending a well borehole into communication with said earth formation; and wherein the step of metal-coating portion of said earth formation includes the step of injecting a permeating liquid metal down said well borehole and into contact with said formation.

3. The method of' claim 2 wherein the step of metal-coating a portion of said earth formation includes the step of injecting a liquid metal-plating solution into the formation.

d. The method of claim 3 wherein the step of injecting a liquid metal-plating solution includes the step'of injecting a metal-plating solution containing a highly conductive metal into the formation.

5. The'method of claim 2 wherein the step of injecting a per meating liquid metal includes the step of injecting sufficient liquid metal to form a pool that penetrates into at least a portion of said earth formation.

6. The method of claim 5 wherein the step of injecting liquid fmetal to form a pool includes the step of injecting a metallic metal-coated portion.

9. The method of claim l wherein the step of electrically connecting a source of electric energy includes the step of providing an electrode extending from the surface of the earth into contact with the metal-coated portion of said earth formation.

10. The method of claim l including the step of heating said formation by injecting fluid through said metal-coated portion while electric current is being flowed therethrough.

US3547192A 1969-04-04 1969-04-04 Method of metal coating and electrically heating a subterranean earth formation Expired - Lifetime US3547192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US81350269 true 1969-04-04 1969-04-04

Publications (1)

Publication Number Publication Date
US3547192A true US3547192A (en) 1970-12-15

Family

ID=25212569

Family Applications (1)

Application Number Title Priority Date Filing Date
US3547192A Expired - Lifetime US3547192A (en) 1969-04-04 1969-04-04 Method of metal coating and electrically heating a subterranean earth formation

Country Status (1)

Country Link
US (1) US3547192A (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620300A (en) * 1970-04-20 1971-11-16 Electrothermic Co Method and apparatus for electrically heating a subsurface formation
US3931856A (en) * 1974-12-23 1976-01-13 Atlantic Richfield Company Method of heating a subterranean formation
US3946809A (en) * 1974-12-19 1976-03-30 Exxon Production Research Company Oil recovery by combination steam stimulation and electrical heating
US3958636A (en) * 1975-01-23 1976-05-25 Atlantic Richfield Company Production of bitumen from a tar sand formation
US3973627A (en) * 1971-10-18 1976-08-10 Sun Oil Company (Delaware) Wellbore gravel pack method
US4030549A (en) * 1976-01-26 1977-06-21 Cities Service Company Recovery of geothermal energy
US4401162A (en) * 1981-10-13 1983-08-30 Synfuel (An Indiana Limited Partnership) In situ oil shale process
US4415034A (en) * 1982-05-03 1983-11-15 Cities Service Company Electrode well completion
US4466484A (en) * 1981-06-05 1984-08-21 Syminex (Societe Anonyme) Electrical device for promoting oil recovery
US4572582A (en) * 1982-06-04 1986-02-25 Ryeczek John J Method of mining metals located in the earth
US4884634A (en) * 1985-12-03 1989-12-05 Industrikontakt Ing. O. Ellingsen & Co. Process for increasing the degree of oil extraction
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
WO1999001640A1 (en) * 1997-07-01 1999-01-14 Alexandr Petrovich Linetsky Method for exploiting gas and oil fields and for increasing gas and crude oil output
US6199634B1 (en) 1998-08-27 2001-03-13 Viatchelav Ivanovich Selyakov Method and apparatus for controlling the permeability of mineral bearing earth formations
US6499536B1 (en) * 1997-12-22 2002-12-31 Eureka Oil Asa Method to increase the oil production from an oil reservoir
WO2005103444A1 (en) * 2004-04-23 2005-11-03 Shell Internationale Research Maatschappij B.V. Inhibiting effects of sloughing in wellbores
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US20090071647A1 (en) * 2003-04-24 2009-03-19 Vinegar Harold J Thermal processes for subsurface formations
US20090283257A1 (en) * 2008-05-18 2009-11-19 Bj Services Company Radio and microwave treatment of oil wells
US7640987B2 (en) 2005-08-17 2010-01-05 Halliburton Energy Services, Inc. Communicating fluids with a heated-fluid generation system
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7831133B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US20110036575A1 (en) * 2007-07-06 2011-02-17 Cavender Travis W Producing resources using heated fluid injection
US20110124228A1 (en) * 2009-10-09 2011-05-26 John Matthew Coles Compacted coupling joint for coupling insulated conductors
US20110132661A1 (en) * 2009-10-09 2011-06-09 Patrick Silas Harmason Parallelogram coupling joint for coupling insulated conductors
US20110134958A1 (en) * 2009-10-09 2011-06-09 Dhruv Arora Methods for assessing a temperature in a subsurface formation
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8485256B2 (en) 2010-04-09 2013-07-16 Shell Oil Company Variable thickness insulated conductors
US8586866B2 (en) 2010-10-08 2013-11-19 Shell Oil Company Hydroformed splice for insulated conductors
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9048653B2 (en) 2011-04-08 2015-06-02 Shell Oil Company Systems for joining insulated conductors
US9080409B2 (en) 2011-10-07 2015-07-14 Shell Oil Company Integral splice for insulated conductors
US9080917B2 (en) 2011-10-07 2015-07-14 Shell Oil Company System and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US9226341B2 (en) 2011-10-07 2015-12-29 Shell Oil Company Forming insulated conductors using a final reduction step after heat treating
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations

Cited By (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620300A (en) * 1970-04-20 1971-11-16 Electrothermic Co Method and apparatus for electrically heating a subsurface formation
US3973627A (en) * 1971-10-18 1976-08-10 Sun Oil Company (Delaware) Wellbore gravel pack method
US3946809A (en) * 1974-12-19 1976-03-30 Exxon Production Research Company Oil recovery by combination steam stimulation and electrical heating
US3931856A (en) * 1974-12-23 1976-01-13 Atlantic Richfield Company Method of heating a subterranean formation
US3958636A (en) * 1975-01-23 1976-05-25 Atlantic Richfield Company Production of bitumen from a tar sand formation
US4030549A (en) * 1976-01-26 1977-06-21 Cities Service Company Recovery of geothermal energy
US4466484A (en) * 1981-06-05 1984-08-21 Syminex (Societe Anonyme) Electrical device for promoting oil recovery
US4401162A (en) * 1981-10-13 1983-08-30 Synfuel (An Indiana Limited Partnership) In situ oil shale process
US4415034A (en) * 1982-05-03 1983-11-15 Cities Service Company Electrode well completion
US4572582A (en) * 1982-06-04 1986-02-25 Ryeczek John J Method of mining metals located in the earth
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4884634A (en) * 1985-12-03 1989-12-05 Industrikontakt Ing. O. Ellingsen & Co. Process for increasing the degree of oil extraction
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
USRE35696E (en) * 1992-06-12 1997-12-23 Shell Oil Company Heat injection process
WO1999001640A1 (en) * 1997-07-01 1999-01-14 Alexandr Petrovich Linetsky Method for exploiting gas and oil fields and for increasing gas and crude oil output
US6499536B1 (en) * 1997-12-22 2002-12-31 Eureka Oil Asa Method to increase the oil production from an oil reservoir
US6199634B1 (en) 1998-08-27 2001-03-13 Viatchelav Ivanovich Selyakov Method and apparatus for controlling the permeability of mineral bearing earth formations
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20090071647A1 (en) * 2003-04-24 2009-03-19 Vinegar Harold J Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US20050269091A1 (en) * 2004-04-23 2005-12-08 Guillermo Pastor-Sanz Reducing viscosity of oil for production from a hydrocarbon containing formation
WO2005103444A1 (en) * 2004-04-23 2005-11-03 Shell Internationale Research Maatschappij B.V. Inhibiting effects of sloughing in wellbores
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
CN1946918B (en) 2004-04-23 2010-11-03 国际壳牌研究有限公司 Inhibiting effects of sloughing in wellbores
US20050269095A1 (en) * 2004-04-23 2005-12-08 Fairbanks Michael D Inhibiting reflux in a heated well of an in situ conversion system
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US7831133B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7640987B2 (en) 2005-08-17 2010-01-05 Halliburton Energy Services, Inc. Communicating fluids with a heated-fluid generation system
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US9133697B2 (en) 2007-07-06 2015-09-15 Halliburton Energy Services, Inc. Producing resources using heated fluid injection
US20110036575A1 (en) * 2007-07-06 2011-02-17 Cavender Travis W Producing resources using heated fluid injection
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090283257A1 (en) * 2008-05-18 2009-11-19 Bj Services Company Radio and microwave treatment of oil wells
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US20110124223A1 (en) * 2009-10-09 2011-05-26 David Jon Tilley Press-fit coupling joint for joining insulated conductors
US20110132661A1 (en) * 2009-10-09 2011-06-09 Patrick Silas Harmason Parallelogram coupling joint for coupling insulated conductors
US8257112B2 (en) 2009-10-09 2012-09-04 Shell Oil Company Press-fit coupling joint for joining insulated conductors
US8485847B2 (en) 2009-10-09 2013-07-16 Shell Oil Company Press-fit coupling joint for joining insulated conductors
US8356935B2 (en) 2009-10-09 2013-01-22 Shell Oil Company Methods for assessing a temperature in a subsurface formation
US20110124228A1 (en) * 2009-10-09 2011-05-26 John Matthew Coles Compacted coupling joint for coupling insulated conductors
US20110134958A1 (en) * 2009-10-09 2011-06-09 Dhruv Arora Methods for assessing a temperature in a subsurface formation
US8816203B2 (en) 2009-10-09 2014-08-26 Shell Oil Company Compacted coupling joint for coupling insulated conductors
US9466896B2 (en) 2009-10-09 2016-10-11 Shell Oil Company Parallelogram coupling joint for coupling insulated conductors
US8967259B2 (en) 2010-04-09 2015-03-03 Shell Oil Company Helical winding of insulated conductor heaters for installation
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8502120B2 (en) 2010-04-09 2013-08-06 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8859942B2 (en) 2010-04-09 2014-10-14 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US8485256B2 (en) 2010-04-09 2013-07-16 Shell Oil Company Variable thickness insulated conductors
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8732946B2 (en) 2010-10-08 2014-05-27 Shell Oil Company Mechanical compaction of insulator for insulated conductor splices
US9755415B2 (en) 2010-10-08 2017-09-05 Shell Oil Company End termination for three-phase insulated conductors
US8586867B2 (en) 2010-10-08 2013-11-19 Shell Oil Company End termination for three-phase insulated conductors
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8586866B2 (en) 2010-10-08 2013-11-19 Shell Oil Company Hydroformed splice for insulated conductors
US9337550B2 (en) 2010-10-08 2016-05-10 Shell Oil Company End termination for three-phase insulated conductors
US9048653B2 (en) 2011-04-08 2015-06-02 Shell Oil Company Systems for joining insulated conductors
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9226341B2 (en) 2011-10-07 2015-12-29 Shell Oil Company Forming insulated conductors using a final reduction step after heat treating
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9080409B2 (en) 2011-10-07 2015-07-14 Shell Oil Company Integral splice for insulated conductors
US9080917B2 (en) 2011-10-07 2015-07-14 Shell Oil Company System and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor

Similar Documents

Publication Publication Date Title
US3559737A (en) Underground fluid storage in permeable formations
US3507330A (en) Method and apparatus for secondary recovery of oil
US3565171A (en) Method for producing shale oil from a subterranean oil shale formation
US3303883A (en) Thermal notching technique
US3205946A (en) Consolidation by silica coalescence
US3170517A (en) Fracturing formation and stimulation of wells
US3346044A (en) Method and structure for retorting oil shale in situ by cycling fluid flows
US3139928A (en) Thermal process for in situ decomposition of oil shale
US3593789A (en) Method for producing shale oil from an oil shale formation
US3605888A (en) Method and apparatus for secondary recovery of oil
US3106244A (en) Process for producing oil shale in situ by electrocarbonization
US5339904A (en) Oil recovery optimization using a well having both horizontal and vertical sections
US6189611B1 (en) Radio frequency steam flood and gas drive for enhanced subterranean recovery
US7331385B2 (en) Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US5058676A (en) Method for setting well casing using a resin coated particulate
US5005645A (en) Method for enhancing heavy oil production using hydraulic fracturing
US6918444B2 (en) Method for production of hydrocarbons from organic-rich rock
US3057404A (en) Method and system for producing oil tenaciously held in porous formations
US3149672A (en) Method and apparatus for electrical heating of oil-bearing formations
US5511616A (en) Hydrocarbon recovery method using inverted production wells
US2818118A (en) Production of oil by in situ combustion
US6776238B2 (en) Single trip method for selectively fracture packing multiple formations traversed by a wellbore
US2217857A (en) Process for the removal of mud sheaths
US5131471A (en) Single well injection and production system
US4303128A (en) Injection well with high-pressure, high-temperature in situ down-hole steam formation