US3525677A - Electrodeposition of constant-composition thin films - Google Patents

Electrodeposition of constant-composition thin films Download PDF

Info

Publication number
US3525677A
US3525677A US809824A US3525677DA US3525677A US 3525677 A US3525677 A US 3525677A US 809824 A US809824 A US 809824A US 3525677D A US3525677D A US 3525677DA US 3525677 A US3525677 A US 3525677A
Authority
US
United States
Prior art keywords
plating
constant
thin
composition
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US809824A
Other languages
English (en)
Inventor
Herman E Austen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NCR Voyix Corp
National Cash Register Co
Original Assignee
NCR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NCR Corp filed Critical NCR Corp
Application granted granted Critical
Publication of US3525677A publication Critical patent/US3525677A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/26Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids using electric currents, e.g. electroplating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S204/00Chemistry: electrical and wave energy
    • Y10S204/09Wave forms

Definitions

  • Electrodeposition utilizing a plating current that varies in a predetermined manner as a function of time so as to compensate for variation in the composition of electrodeposited thin magnetic nickel-iron films is disclosed.
  • a batch fabrication circuit embodiment and several continuous plating embodiments for supplying the plating current of the present invention are also disclosed.
  • thin films for example, thin magnetic nickel-iron films-which are electrodeposited from an aqueous electrolytic solution vary in composition as the thickness of the electrodeposited thin magnetic nickel-iron film increases.
  • the present invention provides a plating current which has a large initial magnitude and a significantly smaller final magnitude during the plating of the initial portion of the films to a particular thickness, and which is substantially constant at the smaller magnitude during the plating of films of a greater thickness, so as to ,provide constant-composition electrodeposited thin films over a range of thicknesses.
  • the present invention also provides thin magnetic film storage elements, including nickel-iron thin film storage elements, having constant magnetic coercivity properties and a thickness of 1,000 angstroms or less.
  • FIG. 1 is a schematic of a circuit embodiment which is used for batch fabrication of thin films.
  • FIG. 2 is a diagram of a continuous plating embodiment which has an anode of a particular shape.
  • FIG. 3 is a diagram of a continuous plating embodiment which has an anode of another shape.
  • FIG. 4 is a diagram of a continuous plating embodiment which shows a tapered insulator positioned between the anode and the substrate.
  • FIG. 5 is a diagram of a continuous plating embodiment that has an anode with multiple windings which are each supplied with an individually controlled current.
  • the percentage composition of the elements of electrodeposited thin films (that is, films having a thickness of 10,000 angstroms or less) is known to vary to a noticeable extent as a function of the thickness of the films, especially in the first 1,000 angstroms of thickness. For example, if the instantaneous percentage of iron in a typical electrodeposited nickel-iron or nickel-iron-molybdenum film is plotted versus the thickness of the film up 3,525,677 Patented Aug. 25, 1970 to several thousand angstroms, the resulting curve approximates an exponential curve of decreasing magnitude.
  • a constant percentage composition of the elements in an electrodeposited thin film is obtained by the present invention with a plating current which has a large initial magnitude and which, as the thickness of the electrodeposited thin film increases, continually decreases to a smaller final magnitude, so as to compensate for variation in the composition of the elements of the electrodeposited thin film which would otherwise result.
  • a predetermined variation of the magnitude of the plating current as a function of time that exactly corresponds to the variation in composition of the electrodeposited thin film as a function of thickness may be provided, by conventional means known in the art, within the scope of the present invention.
  • an exponentially decreasing plating current will substantially eliminate compositional variations in the initial portion of the film.
  • Constant values for H the coercive force, and H the anisotropy field are obtained, regardless of thickness, when a thin nickel-iron magnetic film storage element is electrodeposited according to the present invention.
  • variable H and B values are obtained when a plating current of a constant magnitude is employed to deposit a variable-composition thin nickel-iron magnetic film storage element from the same electrolytic plating solution. The difference between the two plating methods is especially pronounced when magnetic thin nickel-iron films having a thickness of 200 angstroms, or less, are produced.
  • nickel-iron plating solution which has been successfully employed has the following composition:
  • This electrolytic plating solution is adjusted to a pH of approximately 2.25, and the temperature of this solution is maintained at approximately 25 degrees centigrade.
  • the plating current density may exponentially decrease from approximately 50 milliamperes per square centimeter of plated area to approximately 5 milliamperes per square centimeter of plated area in four or five seconds to produce constant-composition thin nickel-iron films.
  • the electrolytic plating solution is contained in the plating cell 60 of FIG. 1, which has a conventional plating anode electrode 64 and a conventional plating cathode electrode 66.
  • a permanent orienting magnet (not. shown) is positioned around the plating cell 60, in the manner known in the electrodeposition art, so as to provide an orienting magnetic field when thin anisotropic magnetic storage films are produced.
  • the anode electrode 64 is connected to the monitoring resistor 70,
  • the cathode electrode 66 is connected to the positive terminal of the ammeter 74, which is used to monitor constant plating currents.
  • the negative terminal of the ammeter 74 is connected to the anodes of the the diodes 76 and 78, and the cathode of the diode 76 is connected to the variable resistor 80, which is connected to the fixed resistor 82.
  • the resistance of the variable resistor 80 and the resistance of the fixed resistor 82 substantially determine the rate at which the exponentially decreasing plating current is supplied to the plating cell 60 by the capacitor 84.
  • the capacitor 84 When the four-stage gang-coupled switch 86 is in the Bias/Charge position, the capacitor 84 is charged to the voltage of the variable power supply 90 through the current-limiting resistor 88 and sections 86b and 86c of the switch 86. When the switch 86 is in the Plate position, the capacitor 84 is discharged through the plating cell 60, sections 86b, 86c, and 86d of the switch 86, and the resistors 80 and 82.
  • the four-stage gang-coupled switch 92 is in the Capacitor Only position, thin alloy films with a thickness of only 100 angstroms, or even less, may be electrodeposited if the plating current is interrupted, when the desired thickness of the thin alloy film is obtained, by switching the switch 86 to the Bias/ Charge position.
  • a DC. bias voltage is supplied to the anode electrode 64 through the current-limiting resistor 96 and section 86a of the switch 86 to prevent etching of the surface of the cathode electrode 66 due to any reverse electromotive force that may exist between the anode electrode 64 and the cathode electrode 66.
  • the base 104 of the NPN transistor 102 is connected to the bias resistor 98 and to the Zener diode 100.
  • the Zener diode is connected to ground through section 920 of the switch 92 when it is in the Capacitor/Transistor position, and the Zener diode then maintains the base of the transistor 102 at a substantially constant voltage level.
  • the emitter 106 of the transistor 102 is connected to the resistor 110, which is connetced in series with the variable resistor 112.
  • the negative plate of the capacitor 84 is connected to the cathode of the diode 76 through section 86b of the switch 86, and the anodes of the diodes 76 and 78 are then at an initial voltage level that is determined by the potential of the negative plate of the capacitor 84.
  • the positive plate of the capacitor 84 is then connected to the power supply 94 through section 860 of the switch 86 and section 92b of the switch 92.
  • the power supply 94 will now supply a constant positive voltage to the anode electrode 64 of the plating cell 60 through section 92b of the switch 92 and section 86d of the switch 86.
  • the initial plating current that flows through the plating cell 60 will be relatively large in magnitude, and the collector 108 of the transistor 102, which is connected to the cathode of the diode 78 through section 92d of the switch 92, will initially be at a voltage level which will not sustain current through the transistor 102.
  • the capacitor 84 discharges, the voltage level at the anodes of the diodes 76 and 78 will become more positive; however, the transistor 102 will remain in a nonconductive state until a predetermined bias point is reached, as determined by the adjustment of the resistor 112, at which point the transistor 102 will begin to conduct and will maintain a constant plating current through the plating cell 60 as the thickness of the electrodeposited constant-composition alloy film increases.
  • the conductive wire 120 of FIG. 2 for example, a copper or beryllium copper wire-acts as the cathode electrode in a continuous plating process. Electrical connection is made to the conductive wire 120 by the conductive bar 122, Which is held in contact with the conductive wire and with the conductive connection ring 121 by the spring 124.
  • the plating solution is contained in the plating cell 126, and the conventional seals 127 and 128 prevent leakage of the solution from the plating cell 126 as the conductive wire 120 passes through it.
  • the anode electrode coil 129 is so wound that its windings are more closely spaced to each other and to the conductive wire 120 as it approaches the entrance 130 of the plating cell 126.
  • the conductive wire 120 passes through the plating cell 126 of FIG. 2, it will be subjected to a predetermined decreasing plating current density, due to the manner in which the anode electrode coil 120 is wound, which compensates for variation in the composition of the thin alloy film which is electrodeposited onto the conductive wire 120.
  • the conductive wire 120 serves as a cathode electrode in the embodiment of FIG. 3, and the windings of the anode electrode coil 131 of this embodiment are also more closely spaced to each other in the vicinity of the entrance 130 of the plating cell 126 than they are elsewhere.
  • an electrically-insulating material 132 for example, glass or plastic-is positioned between the conductive wire 120 and the anode electrode coil 131 near the entrance 130.
  • the electrically-insulating material is so constructed that it has a tapered surface between the points A and B, which position the electrically-insulating material 132 closer to the conductive wire 120 at the point A than it is at the point B, the taper of the electrically-insulating material 132 between the points A and B being determinative of the desired plating current density.
  • the conductive wire 120 of FIG. 4 again serves as a cathode in the manner previously described, and in this embodiment the anode electrode coil 134 is constructed of a number of electrically conductive members 135, which are so formed that, as they approach the entrance 130 of the plating cell 126, they taper towards the conductive wire 120.
  • the conductive members 135 are connected together at one end by the electrically conductive ring 138 and at the other end by the electrically conductive ring 140. The taper of the conductive members 135 between the points A and B is again determinative of the desired plating current density.
  • the conductive wire 120 of FIG. 5 also is a cathode electrode, and the separate anode electrode coils 152 through 158 of this embodiment are each coupled to one of the variable resistors 142 through 148.
  • the variable resistors 142 through 148 are connected to the resistor 160, which is connected to the terminal 162, which in turn is coupled to a voltage supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
US809824A 1969-03-24 1969-03-24 Electrodeposition of constant-composition thin films Expired - Lifetime US3525677A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80982469A 1969-03-24 1969-03-24

Publications (1)

Publication Number Publication Date
US3525677A true US3525677A (en) 1970-08-25

Family

ID=25202303

Family Applications (1)

Application Number Title Priority Date Filing Date
US809824A Expired - Lifetime US3525677A (en) 1969-03-24 1969-03-24 Electrodeposition of constant-composition thin films

Country Status (6)

Country Link
US (1) US3525677A (fr)
BE (1) BE747852A (fr)
CH (1) CH519584A (fr)
DE (1) DE2013670B2 (fr)
FR (1) FR2035833B1 (fr)
GB (1) GB1238629A (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994694A (en) * 1975-03-03 1976-11-30 Oxy Metal Industries Corporation Composite nickel-iron electroplated article
US4490230A (en) * 1983-03-10 1984-12-25 At&T Technologies, Inc. Electroplating apparatus
US20060270110A1 (en) * 2005-05-11 2006-11-30 Stmicroelectronics S.A. Method for connecting a semiconductor chip onto an interconnection support

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141837A (en) * 1961-11-28 1964-07-21 Rca Corp Method for electrodepositing nickel-iron alloys
DE1188409B (de) * 1961-09-29 1965-03-04 Siemens Ag Verfahren zum elektrolytischen Abscheiden von Legierungsschichten homogener Zusammensetzung
FR1397417A (fr) * 1964-03-09 1965-04-30 Ibm France Nouveaux perfectionnements aux procédés de dépôt d'une couche magnétique par voie électrolytique
US3198716A (en) * 1961-12-21 1965-08-03 Gen Electric Magnetic material and method of preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1188409B (de) * 1961-09-29 1965-03-04 Siemens Ag Verfahren zum elektrolytischen Abscheiden von Legierungsschichten homogener Zusammensetzung
US3141837A (en) * 1961-11-28 1964-07-21 Rca Corp Method for electrodepositing nickel-iron alloys
US3198716A (en) * 1961-12-21 1965-08-03 Gen Electric Magnetic material and method of preparing the same
FR1397417A (fr) * 1964-03-09 1965-04-30 Ibm France Nouveaux perfectionnements aux procédés de dépôt d'une couche magnétique par voie électrolytique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994694A (en) * 1975-03-03 1976-11-30 Oxy Metal Industries Corporation Composite nickel-iron electroplated article
US4490230A (en) * 1983-03-10 1984-12-25 At&T Technologies, Inc. Electroplating apparatus
US20060270110A1 (en) * 2005-05-11 2006-11-30 Stmicroelectronics S.A. Method for connecting a semiconductor chip onto an interconnection support

Also Published As

Publication number Publication date
CH519584A (de) 1972-02-29
GB1238629A (fr) 1971-07-07
DE2013670B2 (de) 1971-07-08
BE747852A (fr) 1970-08-31
FR2035833A1 (fr) 1970-12-24
DE2013670A1 (de) 1970-10-08
FR2035833B1 (fr) 1974-05-24

Similar Documents

Publication Publication Date Title
US3652442A (en) Electroplating cell including means to agitate the electrolyte in laminar flow
US6193860B1 (en) Method and apparatus for improved copper plating uniformity on a semiconductor wafer using optimized electrical currents
US5744019A (en) Method for electroplating metal films including use a cathode ring insulator ring and thief ring
US3141837A (en) Method for electrodepositing nickel-iron alloys
US6554976B1 (en) Electroplating apparatus
US3844909A (en) Magnetic film plated wire and substrates therefor
Haring The mechanism of electrolytic rectification
JP3255145B2 (ja) めっき装置
US3564347A (en) Electrochemical timer
US3525677A (en) Electrodeposition of constant-composition thin films
US4208254A (en) Method of plating an iron-cobalt alloy on a substrate
Dash et al. Electrothinning and electrodeposition of metals in magnetic fields
US3047475A (en) Method for producing magnetic materials
US3282821A (en) Apparatus for making precision resistors
US4345007A (en) Electro-deposition of a nonmagnetic conductive coating for memory wire protection
US3540988A (en) Coating method
US3853717A (en) Plated wire memory
US3642602A (en) Electroplating apparatus
US3869355A (en) Method for making a magnetic wire of iron and nickel on a copper base
US3556954A (en) Method for obtaining circumferential orientation of magnetic films electroplated on wires
US2730491A (en) Method of electroplating cobalt-nickel composition
US3272727A (en) Process for electroplating magnetic alloy onto a platinized chromium substrate
US3240686A (en) Bistable magnetic thin film element and electrolytic process for making same
US20030085131A1 (en) Electro-deposition of high saturation magnetization Fe-Ni-Co films
US3152974A (en) Electroplating magnetic cobalt alloys