US3522558A - Microwave phase shift device - Google Patents

Microwave phase shift device Download PDF

Info

Publication number
US3522558A
US3522558A US3522558DA US3522558A US 3522558 A US3522558 A US 3522558A US 3522558D A US3522558D A US 3522558DA US 3522558 A US3522558 A US 3522558A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
phase
input
output
transmission
rollers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Osborne C Stafford
Rudolph W Voelcker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lucent Technologies Inc
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/183Coaxial phase-shifters

Description

i a M@ Z I: 35 Z/ 4/ v g- 1970 o. c. STAFFORD ET AL 3,522,558

MICROWAVE PHASE SHIFT DEVICE Filed Jan. 13, 1969 "HM 1 25 I 36 Q i tl T r 7 2 E a4 Tag 5 4f A5 JFSE W21 5 5 JNVE'NTUES Q C7. C. ST'HFF'UE'D 5 .1.0. VDE'LC'KEF? United States Patent Office 3,522,558 Patented Aug. 4, 1970 York Filed Jan. 13, 1969, Ser. No. 790,562 Int. Cl. H03h 7/30; H01p 1/18 U.S. Cl. 333-31 6 Claims ABSTRACT OF THE DISCLOSURE A microwave phase shifter wherein a carriage is movably mounted within an outer housing which has input and output connectors fixed to opposite walls thereof. A first flexible, conductive tape extends from the input connector around a series of guide rollers and onto a takeup spool mounted on the carriage. Similarly, a second flexible, conductive tape extends from the output connector around a second series of guide rollers and onto a second takeup spool. Two of the guide rollers are spring biased toward one another so that the two tapes are held into contact with one another to form a complete transmission line between the input and output connectors. Movement of the carriage in one direction within the housing unrolls portions of the tapes from their respective takeup spools and increase the effective lengths of the transmission line and hence change the phase shift between the input and output connectors. Movement of the carriage in the opposite direction provides the opposite effect. Additionally, a pair of resilient contact clips are provided to ground the trailing ends of the tapes one quarter wavelength from the contact point between the tapes to isolate the trailing tapes from the line.

GOVERNMENT CONTRACT The invention herein claimed was made in the course of, or under contract with the United States Army.

BACKGROUND OF THE INVENTION Field of the invention The invention relates to a mechanical device for shifting the phase of a microwave signal. In certain circuit applications, it is necessary to provide a precise amount of phase shift between an input and an output terminal; for example, in the balancing of a phase-sensitive bridge or in phasing a plurality of microwave antennas. Concurrently, the phase shifter should not introduce losses or attenuation into the circuit.

Description of the prior art In the past, a number of different mechanical phase shifting devices have been devised, most of which employ a movable contact which may be physically displaced along a section of transmission line connected between an input and an output terminal. The movable contact enables signals of varying phases to be extracted from different points of varying displacement along the line. However, most of these prior art adjustable transmission lines have proven unsatisfactory in that the movable contact invariably becomes noisy and erratic in operation after a period of use.

SUMMARY OF THE INVENTION In one embodiment of the invention, a microwave phase shifter is contemplated wherein a pair of flexible conductors extend from input and output terminals, respectively, to separate takeup spools. The two conductors are in adjustable conductive engagement so that the length of the transmission path formed between the terminals may be varied to shift the phase of microwave signal from input to output. More particularly, means are also provided for grounding the conductors at a distance of one quarter wavelength, at the frequency of operation, from the point of conductive engagement to isolate the trailing ends of the conductors from the transmission path.

BRIEF DESCRIPTION OF THE DRAWING The nature of the present invention and its various advantages will appear more fully by referring to the following detailed description in conjunction with the appended drawing, in which:

FIG. 1 is a top view of a mechanical phase shifter constructed in accordance with the invention;

FIG. 2 is a sectional view taken along the lines 22 of FIG. 1; and

FIGS. 30 and 3b are schematic representations of the electrical characteristics of the phase shifter shown in FIG. 1.

DETAILED DESCRIPTION Referring to FIG. 1, the phase shifter includes a metal outer housing 11 having an input coaxial connector 12 and an output coaxial connector 13 mounted on opposite sides thereof. The connectors 12 and 13 are of the standard coaxial, bayonet type and have their outer conductors electrically joined to the housing 11. When input and output coaxial transmission lines are coupled, respectively, to the connectors 12 and 13, the outer conductors of the transmission lines are electrically joined through the metal housing 11. The housing and outer conductors of the transmission lines are usually electrically grounded.

The opposed inner walls of the housing 11 carry a pair of inwardly projecting tongue portions 14 and 15 extending the length of the walls. A movable metal carriage 16 is slidably mounted within the housing 11 by a pair of grooves along its edge (not shown) which mate with the tongues 14 and 15. A threaded shaft 17 is rotatably attached to the carriage 16 at one end by a joint 18 and extends through and threadably engages one wall of the housing 11. The threads of the shaft engage threads in the housing so that rotation of the shaft 17 by means of a handle 19 reciprocates the carriage 16 along the tongue guideways 14 and 15 of the housing 11.

The movable carriage 16 has rotatably mounted, within recessed portions thereof, two sets of primary tape guide rollers 21, 22, and 23, 24. The carriage also rotatably mounts two pairs of secondary tape guide rollers 25, 26 and 27, 28, two bottom rollers 36 and 38 and two tape takeup spools 31 and 32. Each of the rollers is preferably made of an insulative material such as nylon" or Teflon.

The inner conductor of the input connector 12 is connected to one end of a first flexible conductor which may comprise a conductive solid metal tape 33. However, because of the difliculty in finding a solid metal tape which is both strong and ver flexible, the tape preferably comprises a strip of flexible insulative material such as polyethyleneterephthalate, sold under the trade name Mylar, both surfaces of which are covered with a conductive layer of metal foil. The conductive layer is electrically continuous on both sides of the tape. The tape 33 is passed from the inner conductor of the connector 12 through a block of insulating material 35, around the two primary guide rollers 21 and 22, over the bottom roller 36, around the two secondary guide rollers 26 and 25 and is fastened to the takeup spool 31. The takeup spool 31 is spring biased (by means not shown) to maintain a constant, uniform tension on the tape 33 and hold it in engagement with the guide rollers regardless of the position of the carriage 16 within the housing 111. Similarly, a second tape 34, identical in construction to the first tape 33, is connected from the inner conductor of the output connector 13 through an insulator 37 around the primary guide rollers 24 and 23, the bottom roller 38, over the secondary guide rollers 27 and 28 and around the takeup spool 32 to which it is fastened. The takeup spool 32 is also spring biased to maintain a constant tension on the second tape 34.

The two innermost primary guide rollers 22 and 23 are additionally spring biased toward one another so that the adjacent conductive surfaces of the two tapes 33 and 34 are held in constant electrical contact with one another. A pair of resilient, metal grounding clips 41 and 42 are constructed to be removably inserted into selected ones of a plurality of receiving grooves 43, 44 which are formed in the recessed channel in the carriage 16 through which the tapes 33 and 34 extend. The clips 41 and 42 are resiliently biased toward one another to press the adjacent conductive surfaces of the tapes 33 and 34 into engagement with one another and electrically connect the tapes at that point to ground through the metal body of the housing 11. The exact function of these clips will be explained below.

FIG. 2 shows a sectional view looking along the sectional line 22 of FIG. 1, and shows how the conductive tape 34 is passed over the primary guide roller 23 across the conductive clip 42 and around the guide roller 38.

In operation, the effective electrical length of the transmission line connected between the input connector 12 and the output connector 13 is the length of the tape 33 from the inner conductor of the input connector 12 to the point of electrical contact between the tape 33 and the tape 34 (between primary guide rollers 22 and 23) plus the length of the tape 34 from the contact point to the inner conductor of the output connector 13. By rotating the handle 19 and turning the threaded shaft 17, the carriage 16 is reciprocated within the housing 11. Movement of the carriage 16 in a direction away from the handle 19 lengthens the total effective electrical length of the transmission line connected between the input connector 12 and the output connector 13 because as the carriage moves, the tapes 33 and 34 are unrolled from the takeup spools 31 and 32, respectively. Likewise, movement of the carriage 16 toward the handle 18 decreases the effective electrical length of the transmission line because the tapes withdraw onto their respective takeup spools. Variations in line length, of course, serves to shift the phase of the signal between the input and output terminals.

At first glance, a problem is presented by all of the excessive conductive tape extending from between the point of contact between rollers 22 and 23 onto the takeup spools 31 and 32. Due to the capacitive coupling between the tapes and the grounded metal framework of the carriage 16 as well as the inductive effect of the coiled tapes on the takeup spools, an electrical load 45 is placed upon the transmission line as illustrated in FIG. 3a. This load is effectively isolated from the remainder of the transmission line by positioning the resilient metal clips 41 and 42 within the slots 43 and 44 so that the distance between the contact point of the tapes 33 and 34 between the clips and the contact point between the rollers 22 and 23 is exactly one quarter of a wavelength at the frequency of operation. As is well known in the art, a shorted or grounded stub which is a quarter wavelength long is electrically an open circuit and does not provide either a loading impedance or a phase shift in the circuit to which it is coupled. Practically, the position of the clips 41 and 42 may sometimes vary slightly from a quarter of a wavelength from the contact point depending upon other factors of the phase shifter.

The electrical characteristics of the phase shifter shown in FIG. 1, is illustrated in FIGS. 3a and 3b. FIG. 3a shows how the phase shifter is basically two series connected variable length transmission lines, which are ganged together in operation, connected between the input connector 12 and the output connector 13. The parallel LC circuit 45, connected between the junction of the two transmission lines and ground illustrates the loading effect which the excess conductive tapes would have upon the variable transmission lines. FIG. 3b illustrates how the transmission lines are isolated from a ground by an open circuit when the grounding clips 41 and 42 are positioned so that the parallel circuit to ground connected to the transmission line is one quarter wavelength. The clips 41 and 42 may be moved to various ones of the slots 43 and 44 in order to make the distance thereto from the point of contact of the tapes 33 and 34 between rollers 22 and 23 approximately one quarter wavelength. This distance will vary, of course, depending upon the frequency of operatlon.

It is to be understood that the above-described embodiments are simply illustrative of the invention and that many other embodiments can be devised without departing from the scope and spirit of the invention.

What is claimed is:

1. A microwave phase shifter comprising:

an input terminal;

an output terminal;

a first flexible conductor having one end connected to said input terminal and the other connected to a first takeup spool;

a second flexible conductor having one end connected to said output terminal and the other connected to a second takeup spool, said second conductor being in physical, conductive engagement with said first conductor at a point between the respective terminals and takeup spools to form a conductive signal transmission path between said terminals; and

means for varying the point of engagement of said first and second conductors to vary the length of the conductive signal transmission path between said input terminal and said output terminal and shift the phase of microwave signals placed upon said input terminal.

2. A microwave phase shifter as set forth in claim 1, also including:

first and second non-conductive guide rollers rotatably mounted contiguous to one another and spring biased toward one another to bring their respective surfaces into contact; and

wherein said first and second conductors extend from their respective terminals, over said first and second guide rollers, respectively, to their respective takeup spools, said spring biased rollers urging said first and second conductors into physical, conductive engagement to form the conductive signal transmission path between said terminals.

3. A microwave phase shifter as set forth in claim 1, also including: means for grounding both of said conductors between their point of engagement and said takeup spools, said ground point being spaced from said point of engagement a distance of one quarter wavelength at the selected frequency of operation to isolate the remainder of said conductors from said signal transmission path.

4. A device for shifting the phase of a microwave signal between an input coaxial terminal and an output coaxial terminal, comprising:

a metal housing mounting said input and output coaxial terminals, the outer conductors of said coaxial terminals being in electrical contact with the body of said housing;

a metal carriage movably mounted within said housing;

a pair of non-conductive guide rollers rotatably mounted on said carriage, one roller of said pair being spring biased toward the other to bring their respective surfaces into contact;

first and second takeup spools rotatably mounted on said carriage, said spools being spring biased in one rotation direction to maintain a tension thereon;

a first flexible conductor extending from the inner conductor of the input coaxial terminal over a first roller of said pair of rollers and having the trailing end thereof Wound upon said first takeup spool in a direction to maintain tension upon said conductor;

a second flexible conductor extending from the inner conductor of the output coaxial terminal over the second roller of said pair of rollers and having the trailing end thereof wound upon said second takeup spool in a direction to maintain tension upon said conductor, said spring biased rollers urging said first and second conductors into physical engagement to form a conductive signal transmission path between said input and output terminals; and

means for reciprocating said carriage within said housing to vary the point of physical engagement between said first and second conductors and thereby vary the length of the conductive signal transmission path between said input and output terminals to shift the phase of a microwave signal between said input and output terminals.

5. A device for shifting the phase of a microwave signal as set forth in claim 4 which also includes: means con- References Cited UNITED STATES PATENTS 7/1946 Pickles 3333l 10/1968 Wendolkowski 3333l X HERMAN KARL SAALBACH, Primary Examiner M. NUSSBAUM, Assistant Examiner US. Cl. X.R. 33384, 97

US3522558A 1969-01-13 1969-01-13 Microwave phase shift device Expired - Lifetime US3522558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US79056269 true 1969-01-13 1969-01-13

Publications (1)

Publication Number Publication Date
US3522558A true US3522558A (en) 1970-08-04

Family

ID=25151078

Family Applications (1)

Application Number Title Priority Date Filing Date
US3522558A Expired - Lifetime US3522558A (en) 1969-01-13 1969-01-13 Microwave phase shift device

Country Status (1)

Country Link
US (1) US3522558A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113750A1 (en) * 1994-11-04 2002-08-22 Heinz William Emil Antenna control system
US20040209572A1 (en) * 2001-10-22 2004-10-21 Thomas Louis David Antenna system
US20040246175A1 (en) * 2001-10-22 2004-12-09 Thomas Louis David Apparatus for steering an antenna system
US20040252055A1 (en) * 2001-11-14 2004-12-16 Thomas Louis David Antenna system
US20060192711A1 (en) * 2003-04-02 2006-08-31 Haskell Philip E Phased array antenna system with variable electrical tilt
US20060208944A1 (en) * 2003-05-17 2006-09-21 Quintel Technology Limited Phased array antenna system with adjustable electrical tilt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2404399A (en) * 1942-05-12 1946-07-23 Standard Telephones Cables Ltd Adjustable transmission line
US3405373A (en) * 1964-05-08 1968-10-08 Devices Corp Comp Variable delay line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2404399A (en) * 1942-05-12 1946-07-23 Standard Telephones Cables Ltd Adjustable transmission line
US3405373A (en) * 1964-05-08 1968-10-08 Devices Corp Comp Variable delay line

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113750A1 (en) * 1994-11-04 2002-08-22 Heinz William Emil Antenna control system
US8558739B2 (en) 1994-11-04 2013-10-15 Andrew Llc Antenna control system
US7224246B2 (en) 2001-10-22 2007-05-29 Quintel Technology Limited Apparatus for steering an antenna system
US7365695B2 (en) 2001-10-22 2008-04-29 Quintel Technology Limited Antenna system
US20040209572A1 (en) * 2001-10-22 2004-10-21 Thomas Louis David Antenna system
US20040246175A1 (en) * 2001-10-22 2004-12-09 Thomas Louis David Apparatus for steering an antenna system
US20040252055A1 (en) * 2001-11-14 2004-12-16 Thomas Louis David Antenna system
US7230570B2 (en) 2001-11-14 2007-06-12 Quintel Technology Limited Antenna system
US20110102262A1 (en) * 2003-04-02 2011-05-05 Philip Edward Haskell Phased array antenna system with variable electrical tilt
US20060192711A1 (en) * 2003-04-02 2006-08-31 Haskell Philip E Phased array antenna system with variable electrical tilt
US7400296B2 (en) 2003-04-02 2008-07-15 Quintel Technology Limited Phased array antenna system with variable electrical tilt
US7868823B2 (en) 2003-04-02 2011-01-11 Quintel Technology Limited Phased array antenna system with variable electrical tilt
US8174442B2 (en) 2003-04-02 2012-05-08 Quintel Technology Limited Phased array antenna system with variable electrical tilt
US7450066B2 (en) 2003-05-17 2008-11-11 Quintel Technology Limtied Phased array antenna system with adjustable electrical tilt
US20060208944A1 (en) * 2003-05-17 2006-09-21 Quintel Technology Limited Phased array antenna system with adjustable electrical tilt

Similar Documents

Publication Publication Date Title
Oltman The compensated balun
US3320556A (en) Impedance transformer
Nicholson Microwave Rotary Joints for X-, C-, and S-band
US3599122A (en) Filter network including at least one tapped electromagnetic delay line
US3303439A (en) Strip transmission line interboard connection
US5966097A (en) Antenna apparatus
US2769147A (en) Wave propagation in composite conductors
US3656179A (en) Microwave stripline phase adjuster
US2921276A (en) Microwave circuits
US3289117A (en) Surge arrestor utilizing quarter wave stubs
US4486758A (en) Antenna element for circularly polarized high-frequency signals
US3586757A (en) Flexible stripline transmission line
US3227975A (en) Fixed coaxial line attenuator with dielectric-mounted resistive film
US2423390A (en) Reflectometer for transmission lines and wave guides
US3106713A (en) Slot antenna having short radiating slots and long nonradiating distributed capacitance tuning slot
US3725829A (en) Electrical connector
US3319194A (en) Variable attenuator employing internal switching
Das et al. Impedance of a radiating slot in the ground plane of a microstripline
US2387783A (en) Transmission line
US2207845A (en) Propagation of waves in a wave guide
US2926317A (en) Transmission line
US2628311A (en) Multiple slot antenna
US4495505A (en) Printed circuit balun with a dipole antenna
US4745377A (en) Microstrip to dielectric waveguide transition
US5512910A (en) Microstrip antenna device having three resonance frequencies

Legal Events

Date Code Title Description
AS Assignment

Owner name: AT & T TECHNOLOGIES, INC.,

Free format text: CHANGE OF NAME;ASSIGNOR:WESTERN ELECTRIC COMPANY, INCORPORATED;REEL/FRAME:004251/0868

Effective date: 19831229