US3498015A - Poured gypsum roof structure with lower vent means for removing excess moisture - Google Patents

Poured gypsum roof structure with lower vent means for removing excess moisture Download PDF

Info

Publication number
US3498015A
US3498015A US594502A US3498015DA US3498015A US 3498015 A US3498015 A US 3498015A US 594502 A US594502 A US 594502A US 3498015D A US3498015D A US 3498015DA US 3498015 A US3498015 A US 3498015A
Authority
US
United States
Prior art keywords
sheet
sheets
apertures
wicking
excess moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US594502A
Inventor
Paul A Seaburg
Donald A Green
James M Galloway
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DONALD A GREEN
JAMES M GALLOWAY
Original Assignee
DONALD A GREEN
JAMES M GALLOWAY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DONALD A GREEN, JAMES M GALLOWAY filed Critical DONALD A GREEN
Application granted granted Critical
Publication of US3498015A publication Critical patent/US3498015A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/17Ventilation of roof coverings not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/16Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
    • E04D13/1606Insulation of the roof covering characterised by its integration in the roof structure
    • E04D13/1668Insulation of the roof covering characterised by its integration in the roof structure the insulating material being masses or granules applied in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D7/00Roof covering exclusively consisting of sealing masses applied in situ; Gravelling of flat roofs

Definitions

  • This invention relates to a roof construction and more particularly to backing sheets and a method of using such sheets as permanent forms for constructing roof slabs of settable cementitious material.
  • a roof for a commercial or industrial building is commonly constructed by fastening a plurality of rectangular backing sheets to the tops of horizontal supporting girders such as joists or purlins. Several inches of a settable cementitious mixture are then poured on top of the backing sheets and the mixture is left to set and harden. After a period of time ranging from a few minutes to several days depending on the type of mixture used, the slab will have hardened sufficiently to permit walking on the surface thereof for the installation of a waterproof wearing surface.
  • the wearing surface placed on top of such slabs is usually the well-known built-up type of roofing membrane comprising layers of builders felt and hot asphalt with a final topping of gravel.
  • the installation of the waterproof wearing surface must often be delayed until the excess moisture in the slab has had an opportunity to evaporate if the sheets are made of a non-porous material such as metal. Otherwise, this moisture remains trapped between the impervious backing sheets and the waterproof wearing surface where it may cause blistering of the membrane, corrosion in the case of metal backing sheets or deterioration of the slab.
  • gypsum Mixtures containing gypsum are often preferred by some contractors for roof slabs because gypsum sets within a few minutes to form a slab hard enough to walk upon, thereby permitting in many cases, the waterproof wearing surface to be laid the same day that the slab is poured.
  • Such gypsum mixtures usually contain considerable excess moisture that continues to evaporate from the slab long after the slab has taken its ini ial set. For this reason prior to our invention, contractors could only use gypsum mixtures with porous backing sheets of fiberboard or smiliar material through which the excess moisture could pass into the atmosphere below.
  • porous low strength backing sheets require a dense high strength gypsum mixture and also require special precautions to prevent them from being a safetv hazard du i g the construction of the roof due to their light weight and inability to support the weight of a workman.
  • FIGURE 1 is a perspective view, partially in section, of a roof constructed according to our invention.
  • FIGURE 2 is a graph illustrating the effect on the drying rate of a roof slab using a corrugated metal backing sheet according to our invention.
  • horizontal girders 1 may consist of open-web joists as shown or any other suitable structural members, spaced at proper intervals.
  • the backing sheets 2 are supported by and secured to girders 1 by self-tapping screws, clips or by welding.
  • the sheets 2 are preferably corrugated and made of galvanized steel for high strength and long life since they remain as a permanent part of the roof structure. Adjacent sheets usually overlap one another slightly at the ends and the sides.
  • the corrugated backing sheets 2 are usually placed so that corrugations are perpendicular to the girders 1 and overlap each other at the ends directly over a supporting girder 1.
  • the valleys 3 of the corrugated metal sheets 2 are provided with a series of apertures 4 punched or otherwise formed therein during the manufacture of the sheet. While we have illustrated a single row of relatively large diameter round apertures 4 in each valley, o her arrangements are possible according to this invention provided the total area of the openings is sufiicient to remove the excess moisture trapped in the overlying slab.
  • a thin layer of absorbent wicking material 5 such as a highly absorbent paper, fabric or felt, is bonded to the top surface of the corrugated metal sheet 2 with an adhesive 6 and covers the apertures 4.
  • the wicking 5 is preferably cemented to the sheet 2 during the manufacture of the sheet with the adhesive 6 applied directly to the metal sheet rather than to the wicking to avoid sealing the surface of the wicking where it covers the apertures 4.
  • a layer of settable cementitious material 7 such as a gypsum mixture or a low density concrete is poured on top of the metal backing sheets 2 and the wicking 5.
  • This layer is usually thick enough to provide an insulating cover above the crests of the corrugated sheets and usually averages from 2 to 4 inches in depth, measured to the bottom of the valleys.
  • the top surface of the mix is screeded to form a smooth surface and then left to set and harden.
  • the resulting slab 7 has hardened sufliciently to permit walking on the surface thereof for the installation of the waterproof wearing surface 8, such as a built-up roofing membrane comprising alternate layers of roofing felt and hot asphalt with a final topping of gravel.
  • the waterproof wearing surface 8 such as a built-up roofing membrane comprising alternate layers of roofing felt and hot asphalt with a final topping of gravel.
  • the high strength corrugated metal sheet 2 acts as the structural supporting element and eliminates the need for any wire mesh reinforcing or sub-purlins as frequently had been required heretofore with low strength porous backing sheets.
  • the number of apertures 4 in the sheets 2 are insufficient to appreciably affect the load carrying capac ity of the sheet.
  • a single row of open ings /2 inch in diameter and 1 inch on centers in the valleys of the sheet and constituting approximately 6% of the surface area of the sheet provides a satisfactory drying rate for mixtures of settable cementitious mixtures containing considerable excess moisture such as gypsum mixtures.
  • the thin sheet of wicking covering the apertures 4 not only prevents the settable cementitious material from leaking through the apertures but also serves as a wick whereby excess moisture in the slab is drawn by capillary attraction to one of the apertures 4 where it is then dis sipated to the atmosphere.
  • the wicking preferably ought to be capable of absorbing two or three or more times its own weight in Water in one hour. I have found an unsaturated builders felt 0.04 inch thick bonded to the top surface of the sheet 2 with a rubber base adhesive, provided the necessary wicking action to remove the excess moisture from the slab 7.
  • FIGURE 2 illustrates some of the results of a series of drying tests made over a 21 month period.
  • the test specimens consisted of 2 inch thick slabs of a gypsum mixture poured over 16 inch by 3 inch galvanized steel forms.
  • the gypsum mix for the specimens was proportioned one part water to one part gypsum by weight.
  • Each specimen was poured in a mold which was removed immediately after the initial set of the gypsum.
  • the entire specimen, excluding the apertures in the metal sheet was wrapped in layers of metal foil, tape and then coated with paraffin. With this arrangement the excess moisture could escape only through the apertures in the metal sheet.
  • the specimens were allowed to dry at room temperatures and were weighed during the test at two week intervals with the weight loss indicating the amount of moisture lost during the interval between weighings.
  • FIGURE 2 we have shown the test results of two specimens to illustrate the effect of the apertures and paper wicking on the drying rate of the specimens.
  • Both specimens used a corrugated galvanized steel sheet having a single row of /2 inch diameter holes punched on 1 inch centers in the valleys giving a total open area of approximately 6.1% of the surface area of the sheet.
  • Curve A illustrates the drying rate for the specimen using the perforated sheet without an overlying covering of wicking material.
  • Curve B illustrates the drying rate of the specimen using the perforated sheet with an overlying covering of wicking material. It can easily be seen that a considerable increase in the drying rate is obtained by using the wicking material over the apertures in the corrugated metal backing sheet according to our invention.
  • corrugated metal backing sheet having rounded crests
  • our invention can also be used with other high strength impervious materials such as fiberglass and certain plastics and with any of the other well known shapes for backing sheets such as corrugations of the channel-shaped or dove-tailed varieties.
  • a roof construction in combination, a plurality of substantially rigid rectangular corrugated backing sheets, said sheets having a series of apertures formed therein, a layer of pliant wicking covering said apertures and bonded to the upper surface of said sheets in substantially full contact therewith, a layer of settable cementitious material on top of said sheets and said wicking and a waterproof wearing surface covering said cementitious material.
  • a method of constructing a roof comprising the steps of securing a plurality of substantially rigid corrugated sheets to the tops of horizontal roof girders, said sheets having a series of apertures formed in the valleys thereof and a layer of pliant wicking covering said apertures and bonded to the upper surface of said sheets in substantially full contact therewith, pouring a layer of settable cementitious material on top of said sheets and said wicking to fill said valleys and completely cover the crests of said sheets, allowing said cementitious material to set and harden, and covering cementitious material with a waterproof wearing surface.
  • a method of accelerating the drying of a settable cementitious material cast in situ on a corrugated sheet metal form comprising forming a plurality of apertures in the valleys of said sheet metal form, applying an adhesive to the top surface of said sheet metal form and covering said apertures and said adhesive with a layer of pliant wicking in substantially full contact with said top surface prior to the pouring of settable cementitious material on said form.
  • a backing for receiving and supporting settable cementitious material comprising a rectangular substantially rigid corrugated sheet having apertures formed therein and constituting approximately 6% of the sur face area of said sheet and a layer of pliant wicking bonded to and in substantially full contact with the upper surface of said sheet and covering said apertures.
  • a backing for receiving and supporting settable cementitious material comprising a substantially rigid corrugated rectangular metal sheet having apertures formed in the valleys thereof and a layer of pliant wicking bonded to and in substantially full contact with the upper surface of said sheet and covering said apertures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)

Description

March 3, 1970 p. A, g u ETAL 3,498,015
POURED GYPSUM ROOF STRUCTURE WITH LOWER VENT MEANS FOR REMOVING EXCESS MOISTURE Filed Nov. 15, 1966 2 Sheets-Sheet 1 I NV E N TORS Haul A. Seaburg Dona/d4. Green James M. Gal/away March 3, 1970 Filed Nov. 15, 1966 TOTAL WEIGHT LOSS POUNDS P. A. SEA'BURG ETAL 3,498,015
POURED GYPSUM ROOF STRUCTURE WITH LOWER VENT MEANS FOR l I l l l I o 5 I5 20 25 so 45 so 15 TIME AFTER POURING WEEKS INVENTORS Pau/A, Seaburg Dona/aAGreen JamesM Gal/away United States Patent 3,498,015 POURED GYPSUM ROOF STRUCTURE WITH LOWER VENT MEANS FOR REMOVING EXCESS MOISTURE Paul A. Seaburg, 11621 N. Bobolink Lane 30 W., Mequon, Wis. 53092; Donald A. Green, 3460 Catherine Drive, Allentown, Pa. 18103; and James M. Galloway, 1131 Kimberly Road, Bethlehem, Pa. 18018 Filed Nov. 15, 1966, Ser. No. 594,502 Int. Cl. E04b 1/16; E04c 2/24, 5/04 US. Cl. 52-310 8 Claims ABSTRACT OF THE DISCLOSURE This invention relates to a roof construction and more particularly to backing sheets and a method of using such sheets as permanent forms for constructing roof slabs of settable cementitious material.
A roof for a commercial or industrial building is commonly constructed by fastening a plurality of rectangular backing sheets to the tops of horizontal supporting girders such as joists or purlins. Several inches of a settable cementitious mixture are then poured on top of the backing sheets and the mixture is left to set and harden. After a period of time ranging from a few minutes to several days depending on the type of mixture used, the slab will have hardened sufficiently to permit walking on the surface thereof for the installation of a waterproof wearing surface. The wearing surface placed on top of such slabs is usually the well-known built-up type of roofing membrane comprising layers of builders felt and hot asphalt with a final topping of gravel.
The installation of the waterproof wearing surface must often be delayed until the excess moisture in the slab has had an opportunity to evaporate if the sheets are made of a non-porous material such as metal. Otherwise, this moisture remains trapped between the impervious backing sheets and the waterproof wearing surface where it may cause blistering of the membrane, corrosion in the case of metal backing sheets or deterioration of the slab.
Mixtures containing gypsum are often preferred by some contractors for roof slabs because gypsum sets within a few minutes to form a slab hard enough to walk upon, thereby permitting in many cases, the waterproof wearing surface to be laid the same day that the slab is poured. Such gypsum mixtures usually contain considerable excess moisture that continues to evaporate from the slab long after the slab has taken its ini ial set. For this reason prior to our invention, contractors could only use gypsum mixtures with porous backing sheets of fiberboard or smiliar material through which the excess moisture could pass into the atmosphere below. The porous low strength backing sheets require a dense high strength gypsum mixture and also require special precautions to prevent them from being a safetv hazard du i g the construction of the roof due to their light weight and inability to support the weight of a workman.
It is therefore an object of our invention to provide a roof construction having a high strength backing sheet with a built-in venting feature for removing excess moisture from a roof slab.
It is a further object of our invention to provide a backing sheet for supporting, strengthening and receiving a settable cementitious material which is capable of removing excess moisture from the cementitious material after installation.
It is a still further object of our invention to provide a method of using backing sheets for constructing roof slabs from cementitious mixtures.
The foregoing objects, and other objects, and the means whereby they are accomplished pursuant to this invention can be attained by using a backing sheet of metal or other high strength material having a series of apertures with a thin layer of wicking material covering the apertures and bonded to the upper surface of the sheet, in the manner more particularly described below.
FIGURE 1 is a perspective view, partially in section, of a roof constructed according to our invention.
FIGURE 2 is a graph illustrating the effect on the drying rate of a roof slab using a corrugated metal backing sheet according to our invention.
Referring to FIGURE 1, horizontal girders 1 may consist of open-web joists as shown or any other suitable structural members, spaced at proper intervals. The backing sheets 2 are supported by and secured to girders 1 by self-tapping screws, clips or by welding. The sheets 2 are preferably corrugated and made of galvanized steel for high strength and long life since they remain as a permanent part of the roof structure. Adjacent sheets usually overlap one another slightly at the ends and the sides. The corrugated backing sheets 2 are usually placed so that corrugations are perpendicular to the girders 1 and overlap each other at the ends directly over a supporting girder 1.
The valleys 3 of the corrugated metal sheets 2 are provided with a series of apertures 4 punched or otherwise formed therein during the manufacture of the sheet. While we have illustrated a single row of relatively large diameter round apertures 4 in each valley, o her arrangements are possible according to this invention provided the total area of the openings is sufiicient to remove the excess moisture trapped in the overlying slab.
A thin layer of absorbent wicking material 5 such as a highly absorbent paper, fabric or felt, is bonded to the top surface of the corrugated metal sheet 2 with an adhesive 6 and covers the apertures 4. The wicking 5 is preferably cemented to the sheet 2 during the manufacture of the sheet with the adhesive 6 applied directly to the metal sheet rather than to the wicking to avoid sealing the surface of the wicking where it covers the apertures 4. We prefer to lay individual strips of the wicking 5 in the valleys 3 of the sheet rather than covering the entire sheet, for reasons of economy and ease of installation. Tests, using a gypsum mixture, have shown that there is little difference in drying rates between the two arrangements.
Once the backing sheets 2 are in place a layer of settable cementitious material 7 such as a gypsum mixture or a low density concrete is poured on top of the metal backing sheets 2 and the wicking 5. This layer is usually thick enough to provide an insulating cover above the crests of the corrugated sheets and usually averages from 2 to 4 inches in depth, measured to the bottom of the valleys. The top surface of the mix is screeded to form a smooth surface and then left to set and harden. After a period of time ranging from a few minutes for a gypsum mixture to several days for other mixtures, the resulting slab 7 has hardened sufliciently to permit walking on the surface thereof for the installation of the waterproof wearing surface 8, such as a built-up roofing membrane comprising alternate layers of roofing felt and hot asphalt with a final topping of gravel.
In the roof structure according to our invention the high strength corrugated metal sheet 2 acts as the structural supporting element and eliminates the need for any wire mesh reinforcing or sub-purlins as frequently had been required heretofore with low strength porous backing sheets. The number of apertures 4 in the sheets 2 are insufficient to appreciably affect the load carrying capac ity of the sheet. We have found that a single row of open ings /2 inch in diameter and 1 inch on centers in the valleys of the sheet and constituting approximately 6% of the surface area of the sheet provides a satisfactory drying rate for mixtures of settable cementitious mixtures containing considerable excess moisture such as gypsum mixtures.
The thin sheet of wicking covering the apertures 4 not only prevents the settable cementitious material from leaking through the apertures but also serves as a wick whereby excess moisture in the slab is drawn by capillary attraction to one of the apertures 4 where it is then dis sipated to the atmosphere. The wicking preferably ought to be capable of absorbing two or three or more times its own weight in Water in one hour. I have found an unsaturated builders felt 0.04 inch thick bonded to the top surface of the sheet 2 with a rubber base adhesive, provided the necessary wicking action to remove the excess moisture from the slab 7.
FIGURE 2 illustrates some of the results of a series of drying tests made over a 21 month period. The test specimens consisted of 2 inch thick slabs of a gypsum mixture poured over 16 inch by 3 inch galvanized steel forms. The gypsum mix for the specimens was proportioned one part water to one part gypsum by weight. Each specimen was poured in a mold which was removed immediately after the initial set of the gypsum. The entire specimen, excluding the apertures in the metal sheet, was wrapped in layers of metal foil, tape and then coated with paraffin. With this arrangement the excess moisture could escape only through the apertures in the metal sheet.
The specimens were allowed to dry at room temperatures and were weighed during the test at two week intervals with the weight loss indicating the amount of moisture lost during the interval between weighings.
In FIGURE 2, we have shown the test results of two specimens to illustrate the effect of the apertures and paper wicking on the drying rate of the specimens. Both specimens used a corrugated galvanized steel sheet having a single row of /2 inch diameter holes punched on 1 inch centers in the valleys giving a total open area of approximately 6.1% of the surface area of the sheet. Curve A illustrates the drying rate for the specimen using the perforated sheet without an overlying covering of wicking material. Curve B illustrates the drying rate of the specimen using the perforated sheet with an overlying covering of wicking material. It can easily be seen that a considerable increase in the drying rate is obtained by using the wicking material over the apertures in the corrugated metal backing sheet according to our invention.
While we have shown in the drawings a corrugated metal backing sheet having rounded crests, our invention can also be used with other high strength impervious materials such as fiberglass and certain plastics and with any of the other well known shapes for backing sheets such as corrugations of the channel-shaped or dove-tailed varieties.
We claim:
1. In a roof construction, in combination, a plurality of substantially rigid rectangular corrugated backing sheets, said sheets having a series of apertures formed therein, a layer of pliant wicking covering said apertures and bonded to the upper surface of said sheets in substantially full contact therewith, a layer of settable cementitious material on top of said sheets and said wicking and a waterproof wearing surface covering said cementitious material.
2. The roof construction of claim 1 wherein the backing sheets are metal and the apertures constitute approximately 6% of the surface area of the sheet.
3. The roof construction of claim 1 wherein the layer of wicking is in the form of elongated rectangular strips laid solely in the valleys of said rectangular corrugated backing sheets.
4. The roof construction of claim 1 wherein the layer of settable cementitious material is a mixture containing gypsum.
5. A method of constructing a roof comprising the steps of securing a plurality of substantially rigid corrugated sheets to the tops of horizontal roof girders, said sheets having a series of apertures formed in the valleys thereof and a layer of pliant wicking covering said apertures and bonded to the upper surface of said sheets in substantially full contact therewith, pouring a layer of settable cementitious material on top of said sheets and said wicking to fill said valleys and completely cover the crests of said sheets, allowing said cementitious material to set and harden, and covering cementitious material with a waterproof wearing surface.
6. A method of accelerating the drying of a settable cementitious material cast in situ on a corrugated sheet metal form comprising forming a plurality of apertures in the valleys of said sheet metal form, applying an adhesive to the top surface of said sheet metal form and covering said apertures and said adhesive with a layer of pliant wicking in substantially full contact with said top surface prior to the pouring of settable cementitious material on said form.
7. A backing for receiving and supporting settable cementitious material comprising a rectangular substantially rigid corrugated sheet having apertures formed therein and constituting approximately 6% of the sur face area of said sheet and a layer of pliant wicking bonded to and in substantially full contact with the upper surface of said sheet and covering said apertures.
8. A backing for receiving and supporting settable cementitious material comprising a substantially rigid corrugated rectangular metal sheet having apertures formed in the valleys thereof and a layer of pliant wicking bonded to and in substantially full contact with the upper surface of said sheet and covering said apertures.
References Cited UNITED STATES PATENTS Re. 26,141 1/1967 Hickman 52310 X 407,376 7/1889 Smith 52338 1,501,850 7/1924 Karstens et al. 52-662X 2,121,789 6/1938 Davey 52305 X 3,193,971 7/1965 Galloway 52336 X 3,203,146 8/1965 Carter 52-328 3,276,171 10/1966 Brown 52-336 X ALFRED C. PERHAM, Primary Examiner US. 01. X.R. 52-302, 328, 336, 66.2, 674, 74
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No 3 ,498 ,015 March 3, 1970 Paul A. Seaburg et :11.
It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:
Column 1, line 8, the following words have been omitted I-)lass1gn0rs to Bethlehem Steel Corporation, a corporation of e aware Signed and sealed this 25th day of August 1970.
(SEAL) Attest:
WILLIAM E. SCHUYLEIL JR.
Commissioner of Patents Edward M. Fletcher, Jr.
Attesting Officer
US594502A 1966-11-15 1966-11-15 Poured gypsum roof structure with lower vent means for removing excess moisture Expired - Lifetime US3498015A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US59450266A 1966-11-15 1966-11-15

Publications (1)

Publication Number Publication Date
US3498015A true US3498015A (en) 1970-03-03

Family

ID=24379142

Family Applications (1)

Application Number Title Priority Date Filing Date
US594502A Expired - Lifetime US3498015A (en) 1966-11-15 1966-11-15 Poured gypsum roof structure with lower vent means for removing excess moisture

Country Status (1)

Country Link
US (1) US3498015A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668811A (en) * 1970-04-09 1972-06-13 Kenneth Lloyd Pollard Coping and fascia trim
US3884009A (en) * 1973-10-26 1975-05-20 Grace W R & Co Method of ventilating a roof system
US4114335A (en) * 1974-04-04 1978-09-19 Carroll Research, Inc. Sheet metal structural shape and use in building structures
US4189886A (en) * 1974-07-01 1980-02-26 W. R. Grace & Co. Ventilated insulated roofing system
US4365451A (en) * 1980-01-08 1982-12-28 Nelson Lynn S Poured adobe building construction and method of forming same
US4411113A (en) * 1980-03-21 1983-10-25 Claudius Peters Ag Prefabricated aeration block for silo bases
US4506482A (en) * 1983-02-10 1985-03-26 Pracht Hans J Prefabricated panel for building wall construction and method of making same
US5317852A (en) * 1991-11-27 1994-06-07 Howland Koert R Roof construction for leak detection
EP0976885A1 (en) * 1998-07-27 2000-02-02 Mats-Ola Nilsson Mold for constructing a concrete floor
US6640502B2 (en) * 2002-02-26 2003-11-04 Stephen M. Mueller Ceiling leak capture and drainage system
US20040255533A1 (en) * 2003-06-18 2004-12-23 Koester John H. Moisture drainage product, wall system incorporating such product and method therefore
US20050028455A1 (en) * 2003-08-07 2005-02-10 York Manufacturing Inc. Combination flashing and drainage system
US20050246987A1 (en) * 2004-04-01 2005-11-10 Michael Hatzinikolas Moisture control strip
US20070000199A1 (en) * 2005-06-29 2007-01-04 Siefken John R Method to bond concrete slab to metal
US20070125041A1 (en) * 2005-09-13 2007-06-07 Harvey Misbin Wallboard system and methods of installation and repair
US20100043307A1 (en) * 2008-08-21 2010-02-25 Masonry Technology, Inc. Weep Screed with Weep Screed Deflector and Method of Using Same
US20100043326A1 (en) * 2008-08-21 2010-02-25 Masonry Technology, Inc. Wall Structure with Moisture Diverter and Method of Making Same
US20100287865A1 (en) * 2009-05-15 2010-11-18 Michael Hatzinikolas Pre-cast rain screen wall panel
US20120233947A1 (en) * 2004-08-06 2012-09-20 York Manufacturing Inc. Combination flashing and drainage device
US8661742B1 (en) * 2000-02-18 2014-03-04 Christopher M. Hunt Moisture and runoff removal system
US9879414B2 (en) * 2015-05-12 2018-01-30 Power Solutions International, Inc. Three dimensional structural frames and enclosures
US10184253B1 (en) * 2017-11-03 2019-01-22 Kevin Patrick Ryan Concrete roof deck ventilation ducts
US11391048B2 (en) * 2019-05-08 2022-07-19 Mechanically Attached Stone Systems Llc Panelized lath and drainage plane system for building exteriors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US407376A (en) * 1889-07-23
US1501850A (en) * 1921-12-31 1924-07-15 Karstens Hugo Jacob Combined form and reenforcement for cement
US2121789A (en) * 1937-01-18 1938-06-28 Herbert W Davey Roof construction
US3193971A (en) * 1961-04-20 1965-07-13 Bethlehem Steel Corp Concrete forms
US3203146A (en) * 1962-08-28 1965-08-31 Johns Manville Wall construction
US3276171A (en) * 1965-05-18 1966-10-04 Donn Prod Inc Self-supporting paneled structure and method of constructing same
USRE26141E (en) * 1967-01-10 Side lap vapor vent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US407376A (en) * 1889-07-23
USRE26141E (en) * 1967-01-10 Side lap vapor vent
US1501850A (en) * 1921-12-31 1924-07-15 Karstens Hugo Jacob Combined form and reenforcement for cement
US2121789A (en) * 1937-01-18 1938-06-28 Herbert W Davey Roof construction
US3193971A (en) * 1961-04-20 1965-07-13 Bethlehem Steel Corp Concrete forms
US3203146A (en) * 1962-08-28 1965-08-31 Johns Manville Wall construction
US3276171A (en) * 1965-05-18 1966-10-04 Donn Prod Inc Self-supporting paneled structure and method of constructing same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668811A (en) * 1970-04-09 1972-06-13 Kenneth Lloyd Pollard Coping and fascia trim
US3884009A (en) * 1973-10-26 1975-05-20 Grace W R & Co Method of ventilating a roof system
US4114335A (en) * 1974-04-04 1978-09-19 Carroll Research, Inc. Sheet metal structural shape and use in building structures
US4189886A (en) * 1974-07-01 1980-02-26 W. R. Grace & Co. Ventilated insulated roofing system
US4365451A (en) * 1980-01-08 1982-12-28 Nelson Lynn S Poured adobe building construction and method of forming same
US4411113A (en) * 1980-03-21 1983-10-25 Claudius Peters Ag Prefabricated aeration block for silo bases
US4506482A (en) * 1983-02-10 1985-03-26 Pracht Hans J Prefabricated panel for building wall construction and method of making same
US5317852A (en) * 1991-11-27 1994-06-07 Howland Koert R Roof construction for leak detection
EP0976885A1 (en) * 1998-07-27 2000-02-02 Mats-Ola Nilsson Mold for constructing a concrete floor
US8661742B1 (en) * 2000-02-18 2014-03-04 Christopher M. Hunt Moisture and runoff removal system
US7017313B1 (en) * 2002-02-26 2006-03-28 Mueller Stephen M Ceiling leak capture and drainage system
US6640502B2 (en) * 2002-02-26 2003-11-04 Stephen M. Mueller Ceiling leak capture and drainage system
US6990775B2 (en) * 2003-06-18 2006-01-31 Masonry Technology, Inc. Moisture drainage product, wall system incorporating such product and method therefore
US20040255533A1 (en) * 2003-06-18 2004-12-23 Koester John H. Moisture drainage product, wall system incorporating such product and method therefore
US8201361B2 (en) * 2003-08-07 2012-06-19 York Manufacturing, Inc. Combination flashing and drainage system
US20050028455A1 (en) * 2003-08-07 2005-02-10 York Manufacturing Inc. Combination flashing and drainage system
US7900404B2 (en) * 2003-08-07 2011-03-08 York Manufacturing, Inc. Combination flashing and drainage system
US20050246987A1 (en) * 2004-04-01 2005-11-10 Michael Hatzinikolas Moisture control strip
US7367165B2 (en) * 2004-04-01 2008-05-06 Michael Hatzinikolas Moisture control strip
US8776447B2 (en) * 2004-08-06 2014-07-15 York Manufacturing, Inc. Combination flashing and drainage device
US20120233947A1 (en) * 2004-08-06 2012-09-20 York Manufacturing Inc. Combination flashing and drainage device
US20070000199A1 (en) * 2005-06-29 2007-01-04 Siefken John R Method to bond concrete slab to metal
US20070125041A1 (en) * 2005-09-13 2007-06-07 Harvey Misbin Wallboard system and methods of installation and repair
US20100043326A1 (en) * 2008-08-21 2010-02-25 Masonry Technology, Inc. Wall Structure with Moisture Diverter and Method of Making Same
US20100043307A1 (en) * 2008-08-21 2010-02-25 Masonry Technology, Inc. Weep Screed with Weep Screed Deflector and Method of Using Same
US20100287865A1 (en) * 2009-05-15 2010-11-18 Michael Hatzinikolas Pre-cast rain screen wall panel
US9010050B2 (en) 2009-05-15 2015-04-21 Michael Hatzinikolas Pre-cast rain screen wall panel
US9879414B2 (en) * 2015-05-12 2018-01-30 Power Solutions International, Inc. Three dimensional structural frames and enclosures
US10392796B2 (en) 2015-05-12 2019-08-27 Power Solutions International, Inc. Three dimensional structural frames and enclosures
US10184253B1 (en) * 2017-11-03 2019-01-22 Kevin Patrick Ryan Concrete roof deck ventilation ducts
US11391048B2 (en) * 2019-05-08 2022-07-19 Mechanically Attached Stone Systems Llc Panelized lath and drainage plane system for building exteriors

Similar Documents

Publication Publication Date Title
US3498015A (en) Poured gypsum roof structure with lower vent means for removing excess moisture
US4090336A (en) Insulated roofing structure
US4189886A (en) Ventilated insulated roofing system
US4719723A (en) Thermally efficient, protected membrane roofing system
US3884009A (en) Method of ventilating a roof system
US4492064A (en) Insulated roof construction
US4114335A (en) Sheet metal structural shape and use in building structures
US3496691A (en) Concrete forms
JPH05508203A (en) How to build a plaza deck
US2329585A (en) Double shell dry speed wall
US2031249A (en) Waterproof and fireproof floor construction
US2619920A (en) Roof construction
US1670557A (en) Reenforced building element
CA1193822A (en) Vented insulation system
KR20080068832A (en) Composite cement-foam panel and roof deck system
US2037007A (en) Concrete construction
US2121789A (en) Roof construction
US3193971A (en) Concrete forms
US10184253B1 (en) Concrete roof deck ventilation ducts
US2855869A (en) Roofs of buildings
US2037573A (en) Concrete construction
US1694588A (en) Method of curing concrete
SU977639A1 (en) Floor slab
US1947134A (en) Roofing
US3241275A (en) Arched roof structure