US3426652A - Rotary hydraulic actuator with locking means - Google Patents

Rotary hydraulic actuator with locking means Download PDF

Info

Publication number
US3426652A
US3426652A US3426652DA US3426652A US 3426652 A US3426652 A US 3426652A US 3426652D A US3426652D A US 3426652DA US 3426652 A US3426652 A US 3426652A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
rotor
actuator
pressure
means
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
William L Blake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WILLIAM BLAKE AND CO Inc
Original Assignee
WILLIAM BLAKE AND CO Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3232Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip having two or more lips
    • F16J15/3236Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip having two or more lips with at least one lip for each surface, e.g. U-cup packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVO-MOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith characterised by the construction of the motor unit
    • F15B15/12Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVO-MOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/26Locking mechanisms
    • F15B15/262Locking mechanisms using friction, e.g. brake pads

Description

1959 w. L. BLAKE 3,426,652

ROTARY HYDRAULIC ACTUA TOR WITH LOCKING MEANS Original Filed Feb. 2, 1965 Sheet of 5 INVENTOR. WILLIAM L. BLAKE ATTORNEYS Sheet 3 INVENTOR.

Feb. 11, 1969 w. BLAKE ROTARY HYDRAULIC ACTUATOR WITH LOCKING MEANS Original Filed Feb. 2, 1965 til WILLIAM L. BLAKE BYM ATTORNEYS.

Feb. 11,1969 W. L. BLAKE 3,426,652

ROTARY HYDRAULIC ACTUATOR WITH LOCKING MEANS Original Filed Feb. 2, 1965 Sheet 5 of 5 WHJJAM L BLAKE BMW ATTOR EYS w. L. BLAKE 3,426,652 ROTARY HYDRAULIC ACTUATOR WITH LOCKING MEANS Feb. 11, 1969 Sheet Original Filed Feb. 2, 1965 INVENTOR. WILLIAM L. BLAKE /1 TTOR N15 YS,

W. L. BLAKE 7 Feb. 11, 1969 Original Filed Feb.

United States Patent 3,426,652 ROTARY HYDRAULIC ACTUATOR WITH LOCKING MEANS William L. Blake, Franklin Lakes, N.J., assignor to W lliam Blake and Company Incorporated, Franklin Lakes, NJ.

Original application Feb. 2, 1965, Ser. No. 429,773, now Patent No. 3,318,201, dated May 9, 1967. Divided and this application Apr. 12, 1967, Ser. No. 649,383

US. Cl. 9227 5 Claims Int. Cl. FlSb 15/26; F01b 19/00; F01c 9/00 ABSTRACT OF THE DISCLOSURE A rotary fluid actuator in which a rotor is mounted coaxially within a pressure cylinder with an annular pressure chamber extending around the rotor and d1v1ded into subchambers by vanes rigidly mounted on the rotor and cylinder. A fail-safe locking means carried by the rotor automatically locks the rotor against rotation with n the cyclinder upon the absence of fluid pressure within the annular pressure chamber. Application of fluid pressure tending to rotate the rotor releases the locking means.

This application is a division of my copending application Ser. No. 429,733, filed Feb. 2, 1965, now Patent No. 3,318,201.

This invention relates generally to fluid motors, and more particularly to an improved rotary hydraulic actuator.

While the utility of rotary hydraulic actuators in various applications has long been recognized, the extent of their actual use has been seriously limited by a number of problems, which, in the past, have been considered inherent in this type of device. Among these problems has been that of intervane leakage under high pressure which is generally the result of distortion of the elements under load, and of misalignment of the rotor and stator of the actuator caused either by loads resulting from the direct application of hydraulic pressure to the interior of the actuator or by external loads encountered during operation of the device. Although various attempts have been made to solve this problem by providing different sealing arrangements for the pressure chambers, these sealing arrangements have not proven entirely satlsfactory. Further, the only effective means of accommodating the misalignment problem has been to mount the actuator with a flexible torque coupling to permit the actuator to shift as a unit, within limits, upon the application of either internal or external loads. This solution to the misalignment problem is not satisfactory in those applications in which a rigidly coupled high pressure actuator is necessary as for example, in the operation of a marine stabilizer or a heavy duty machine tool such as a plate brake or the like.

Other problems inherent in the prior devices include the tendency of the actuators to hunt, or shift position under conditions of varying load, and the tendency of the actuator to creep, or shift its position under conditions of constant load over extended periods of time. Further, it has not heretofore been possible to maintain an actuator at a predetermined setting under load without the constant application of fluid pressure to maintain the actuator in its preselected position. Thus, in the event of failure of hydraulic pressure, the actuators would be driven by the load, thereby creating a condition which could result in property damage or injury to personnel.

It is therefore an object of this invention to provide 3,426,652 Patented Feb. 11, 1969 an improved rotary hydraulic actuator which is suitable for use in rigid coupling high pressure installations.

Another object of the invention is to provide a rotary hydraulic actuator having improved means for maintaining the alignment between the rotor and stator under varying conditions of load and pressure.

Another object of this invention is to provide an improved rotary hydraulic actuator having means maintaining the actuator in any desired position of rotation.

It is another object of this invention to provide an improved construction for rotary hydraulic actuator which minimizes machining operations for interfitting the parts.

Another object of this invention is to provide an improved rotary hydraulic actuator having means for automatically locking the rotor Within the stator upon failure of hydraulic pressure.

The foregoing and other objects are attained in an actuator according to the present invention in which the stator is provided with a cylindrical bore extending therethrough and the rotor is provided with a cylindrical hub portion positioned coaxially within the cylindrical bore. A pair of radially extending flanges are formed one on each end of said cylindrical hub, with the diameter of the flanges being equal to the diameter of the cylindrical bore. The annular space between the cylindrical hub and the inner surface of the cylindrical bore is divided into a plurality of chambers by one or more radially extending vanes mounted on the cylindrical hub and extending between the flanges, and a like number of radial vanes mounted on and spaced around the inner circumference of the cylindrical bore and extending between the radial flanges. An improved headed fastener having a combined oil seal and locking insert formed around the outer periphery of the enlarged head portion is provided to attach the vanes to the rotor and stator respectively.

Also, each of the respective vanes has an axially extending groove formed along its inner and/or outer surface and a generally radially extending groove along each end thereof for receiving an improved seal means for preventing leakage of pressure between the chambers. This improved seal means includes an elongated soft metallic seal element which is resiliently urged toward the outer edge of the groove into sealing engagement with the adjacent rotor or stator surface. Also, a fluid pressure seal is provided between each of the radially extending flanges and a cylindrical surface on the inner periphery of the stator to prevent leakage from the pressure chamber axially and circumferentially along the cylindrical bore of the stator.

The rotor is supported for rotation, within limits defined by the position of the vanes, within the stator by a precision roller bearing on each end of the actuator, With the roller bearings having a diameter at least as great as the diameter of the cylindrical hub, and positioned closely adjacent the ends of the stator.

If desired, one of the vanes may be provided with means for automatically locking the actuator against rotation in the event of failure of fluid pressure. Preferably, the locking means also includes means for manually releasing the actuator which has been locked as a result of pressure failure.

Other objects and features of the invention will become apparent by reference to the following specification and to the drawings.

In the drawings:

FIG. 1 is a plan view, partially in section, of a marine stabilizer operated by a fluid actuator according to the present invention;

FIG. 2 is an elevation view of a number of actuators according to the present invention illustrating the manner in which a plurality of units may be utilized as necessary to perform a particular job;

FIG. 3 is a plan view of an actuator according to the present invention, with parts broken away to more clearly show other parts;

FIG. 4 is a sectional view taken on line 4-4 of FIG. 3;

FIG. 5 is a sectional view taken on line 55 of FIG. 3;

FIG. 6 is an enlarged fragmentary section view show ing the seal between the rotor and stator;

FIG. 7 is a fragmentary view taken on line 7-7 of FIG. 6;

FIG. 8 is a fragmentary section plan view of an alternate construction of the invention;

FIG. 9 is a sectional view taken on line 99 of FIG. 8;

FIG. 10 is a fragmentary sectional view similar to FIG. 9, with some of the parts shown in an alternate position; and,

FIG. 11 is an enlarged fragmentary view similar to FIG. 4 showing another embodiment of the invention.

Referring now to the drawings in detail, the actuator, indicated by the numeral 1, includes a rotor assembly 2 rotatably mounted within a cylindrical bore extending axially through the housing 3 of a stator assembly 4 which is provided with a plurality of feet 6 for mounting the actuator on a suitable mounting surface. Rotor assembly 2 is formed with a pair of flanges 8 which extend radially from the ends of cylindrical hub 10 to terminate adjacent the inner cylindrical surface 12 of stator 4.

The opposed surfaces of radial flanges 8, in cooperation with cylindrical surface 10 and cylindrical bore 12 define the boundaries of an annular working chamber which, in turn, is divided into subchambers 14, 16 by a fixed vane (or vanes, as in FIGS. 8-10) 18 mounted on the cylindrical surface 12 of the stator 4 and a movable vane (or vanes) 20 mounted on the outer cylindrical surface of rotor hub 10. Vanes 18, 20 are retained on their respective cylindrical mounting surfaces by headed, screwthreaded fastener members 22 having round heads 24 adapted to be received within a countersink 25, and a peripheral groove 26 formed around the head receives and retains suitable plastic insert 28' dimensioned to fit tightly within the countersink. Insert 28 acts as a locking device to retain the fastening member against working loose, and as an oil seal to prevent leakage of the fluid pressure past the head of the fastener.

A fluid seal, such as resilient element within groove 42 provides a fluid seal between cylindrical surface 2 and the outer surface of vane 18. Similarly, a fluid seal consisting of a resilient element 44 and a soft metallic bar 46 disposed within a groove 48 provides a fluid seal between the inner surface of vane 18 and the cylindrical surface of hub 10. Corresponding seals may be provided along the ends of vanes 18, 20 between the vanes and flanges 8.

Referring particularly to FIGS. 3 and 4 of the drawings, it is seen that the movable vane 20 may be pro vided with means for locking the stator against rotation in the event of failure of hydraulic pressure. This locking means includes a shoulder 49 formed along each longitudinal side the vane, with a generally wedge shaped member 50 slidably positioned thereon. Members 50 have an outer surface 51 complementary to and normally in slidable engagement with cylindrical surface 12 of stator 4. Leaf spring members 52 mounted in vane 20 and extending the full length thereof resiliently urge members 50 laterally along shoulder 48 to normally maintain member 50 in contact with surface 12. As seen in FIGS. 3 and 4, a rigid central portion 54 of vane 20 remains in contact with surface 12. Each of the wedge members 50 have a surface 56 extending substantially parallel to the radial sides of vane 20 so that, when fluid pressure is applied to one of the subchambers 14 or 16, the fluid pressure acting on surface 56 will depress leaf spring 52 to thereby relieve the wedging action between member 50 and the cylindrical surface 12 to permit rotation of the rotor within the stator. It is seen that, upon the application of fluid pressure to one of the subchambers tending to rotate the rotor in one direction, the other of the wedge members will slide freely along the cylindrical surface 12. However, upon release of the fluid pressure from within the pressurized chamber any load upon the device tending to rotate the rotor in either direction within the stator will cause one of the wedge members 50 to frictionally engage the cylindrical surface 12, thereby locking the rotor against rotation until fluid pressure is applied to side 56 of the appropriate wedge member 50 to release the wedging action.

When the self-locking type vane described above is employed the actuator cannot be permitted to rotate free, or be driven by an external load, but rather must always be actuated as a result of fluid pressure within the subchambers 14, 16. Also, when the external load is tending to rotate the rotor in the same direction as the pressure within one of the chambers, it may become necessary to apply a back pressure within another of the subchambers, to provide an opposing force to permit control of the actuator with regard to the speed of actuation, and to provide a smooth operating device.

As stated above, the loss of fluid pressure in the subchambers 14, 16 will permit a load on the actuator tending to rotate the rotor, acting with spring 52, to cause movable wedge 50 to firmly engage cylindrical bore 12, thereby locking the rotor within the stator. However, it may be desirable to release the rotor to permit rotation without use of fluid pressure, or in some instances, it may be desirable to operate the actuator without the automatic locking device. This may be accomplished by the structure illustrated in FIG. 11 wherein the spring 52 is mounted on an elongated lever positioned within a channel 121 extending through movable vane 20 and into rotor 2 to intersect drilled passage 64. An elongated rod 122 is rotatably mounted in passage 64 and had a cam portion 123 engaging the end 124 of lever 120. Rod 122 extends outwardly through one end of rotor 2, with suitable seal means, not shown, being provided to assure against loss of fluid pressure. A manually operated handle 125 is rotatably fixed onto rod 122 whereby cam portion 123 may be rotated by movement of handle 125 to move the end 124 of lever 120 in a generally radial direction in rotor 2. Lever 120 is provided with a shoulder portion 126 bearing on the surface of opening 121 so that movement of end 124 will cause the pivotal movement of lever 120 about the shoulder 126 to move spring 52 to apply or release force on wedge 20 to thereby engage or disengage wedge 20 with cylindrical bore 12.

In order to prevent fluid pressure from building up within the cavity between the portions 54 of vane 20 and the sides of wedge members 50 adjacent springs 52, and thereby interfere with the relative sliding movement of member 50 with regard to shoulder 48, a bleed passage is formed in portion 54 of vane 20 and extends between cavities 62 formed between wedge members 50 and portion 54 of vane 20. Bleed 60 is in communication with drain 63 for returning fluid bled from the subchambers 14, 16 back to the hydraulic pressure system pump. If desired, a back pressure may be maintained on the drain 63 to control the rate of flow of the fluid being bled from the pressurized subchambers, thereby maintaining a predetermined pressure in cavity 62.

Fluid under pressure may be directed to the subchambers 14, 16 through drilled passages 64 extending axially through rotor 2, in communication with radially extending drilled passages 66 as shown in FIGS. 25, or, alternatively, the pressurized fluid may be applied through drilled passages 68 extending through the cylindrical wall of stator 4, as shown in FIGS. 810.

Rotor 2 is formed with an integral stub shaft 70 on each end thereof which may be coupled by suitable means such as a conventional rigid shaft coupling, to any suitable shaft to be rotated by the actuator, or alternatively, the stub shaft 70 may be coupled to a suitable shaft or the stub shaft of a second actuator by a clamping ring 72 as illustrated in FIG. 3. When a plurality of actuators are joined as illustrated in FIGS. 2 and 3 by the clamping ring 72, suitable means such as O-rings 74 may be required to permit flow of pressure fluid directly from the drilled passages 64 of one actuator to passage 64 of an adjacent actuator without leakage. A sleeve 76, having shoes 78 rigidly fixed thereon, may be fixed, as 'by key 79, on stub shaft 70 between clamp 72 and bearing ring 98.

In the embodiment illustrated in FIGS. 8-10 of the drawings, wherein there are two fixed vanes '18 and two movable vanes 20 dividing the annular chamber between cylindrical surfaces 10 and 12 into two pairs of working chamber 14, 16, means such as drilled passages 80 may provide fluid communication between the individual subchambers 16 of one pair of chambers so that when fluid pressure is applied to one of the su'bchambers 16 the fluid may flow through passages 80 and the hollow center :portion 82 of rotor 2 to pressurize each of the subchambers 16 simultaneously to cause rotation of the rotor 2 in a counterclockwise direction with respect to stator 4 as viewed in FIG. 2. Similarly, means such as passage 86 may be provided for connecting the individual subchambers 14 of the other pair of subchambers so that application of fluid pressure to one of the subchambers 14 will simultaneously pressurize the other of the subchambers to cause rotation of the rotor in a clockwise direction with respect to stator 4 as viewed in FIG. 2.

As most clearly seen in FIGS. 3 and 8, the rotor 2 is mounted for rotation in stator 4 by precision needle bearings at each end of the actuator. The inner race 92 of the bearing may be formed directly on an enlarged shoulder 94 of the stub shaft of rotor 2, adjacent flange 8, with the outer race 91 being formed on the inner periphery of a bearing ring 98 which, in turn, is mounted directly onto the end of the stator 4 as by cap screws 100 as illustrated in FIG. 3. Alternatively, the outer race of the hearing may be formed directly on the inner periphery of the stator 4 as at 102 (see FIG. 8) with the inner race 104 being formed on the outer periphery of a hearing ring which, in turn, is mounted directly onto the ends of rotor 2 as by cap screws 100. In either of the embodiments, the bearings are of a diameter at least as large as the diameter of the cylindrical hub, which, in combination with the maximum axial spacing of the bearings, provides an actuator of extremely high bearing capacity thereby permitting the actuator to be employed without the necessity of using a flexible coupling even in cases where high lateral bearing loads may be applied to the actuator as in the case of the marine stabilizer 105 illustrated in FIG. 1 of the drawings.

To prevent the flow of pressure fluid axially along the actuator between surface 12 and the outer circumference of flanges 8, to pressurize the bearings 90, a high pressure packing 110 is provided around the outer periphery of flange 8. Since the packing may be subjected to very high pressures, a high quality pressurized packing, such as that sold by the Johns-Manville 00., under the trade name of Uneepac, may be required to provide a satisfactory seal along the axis of the actuator. However, this type of packing may permit excessive leakage past the ends of the vanes 18, to flow from one of the subchambers 14, 16 to the other, depending upon the pressure differential between adjacent subchambers. This leakage around the ends of the vanes is prevented by providing a plurality of dam portions 112 spaced along the innermost layer of packing, as illustrated in FIGS. 6 and 7, with the circumferential spacing of the dam portions 112 being less than the width of a vane, so that each of the vanes will always overlie at least one of the dams, thereby preventing the flow of pressure fluid around the ends of the vanes within the pressure grooves of the packing material. Note in FIG. 6 that the packing 110 has a cross section substantially in the shape of an isosceles trapezoid with a pair of grooves 111 cut into the longer parallel side of the trapezoid. Also a third groove 113 may be formed in the shorter parallel side to facilitate assembly. The packing is axially compressed by a lip 114 on the bearing ring 98.

From the above it can be seen that I have provided a hydraulic rotary actuator which may be manufactured relatively inexpensively, and which requires little or no maintenance. The high bearing capacity of the actuator enables its use as a primary pivot, thereby eliminating the necessity of using the conventional flexible shaft coupling in conjunction with the actuator. The actuator is extremely flexible of application, lending itself readily to be employed as a hinge, couple onto a shaft, or joined to other actuators for increased capacity. The high bearing capacity and the ability of the actuator to be readily coupled with other units makes it ideal for use as a hinge joint, illustrated in FIG. 2, as for example, for use in opening and closing heavy marine hatch. covers which are folded along a line (or lines) intermediate their width for opening and closing.

While I have disclosed a preferred embodiment of my invention I wish it understood that I do not intend to be restricted solely thereto, but that I do intend to cover all embodiments which would be obvious to one skilled in the art and which come within the spirit and scope of my invention.

I claim:

1. A rotary fluid actuator comprising a housing having a cylindrical bore extending therethrough, a rotor rotatably mounted coaxially within said bore, means defining an annular pressure chamber between said rotor and said cylindrical bore, at least one fixed vane mounted on the surface of said cylindrical bore, at least one movable vane mounted on said rotor, said fixed and movable vanes dividing said annular pressure chamber into a plurality of subchambers, fluid passage means for directing fluid under pressure to each of said subchambers selectively to rotate said rotor within said bore, and means automatically locking the rotor against rotation relative to said housing in the absence of fluid pressure within said pressure chamber, said means locking said rotor including a locking element movably mounted on one of said movable vanes, said locking element having a surface complementary to said cylindrical bore, means resiliently urging said complementary surface into frictional contact with said cylindrical bore, a substantially radial surface on said locking element exposed to fluid pressure applied within one of said subchambers, and release means for relieving said frictional contact to permit rotation of said rotor within said bore, said release means including a means for bleeding fluid pressure from the surface of said locking element opposed to said exposed surface whereby fluid pressure applied within said one subchamher will urge said locking element against said resilient means to relieve said frictional contact.

2. A rotary fluid actuator as defined in claim 1 including a pair of said locking elements mounted on said movable vane with said radial surfaces on the respective locking elements being exposed to fluid pressure in the subchamber on opposite sides of said movable: vane.

3. A rotary fluid actuator according to claim 1 further including means mechanically relieving said frictional contact without use of fluid pressure acting on said radial surface.

4. A rotary fluid actuator according to claim 3 wherein said means mechanically relieving said frictional contact includes a movable cam operable to overcome said resilient urging means to move said complementary surface out of contact with said cylindrical bore, and lever means for movably actuating said cam.

5. In a rotary fluid actuator including a housing having a cylindrical bore extending therethrough, a rotor rotatably mounted coaxially within said bore, means defining an annular pressure chamber between said rotor and said cylindrical bore, at least one fixed vane mounted on the surface of said cylindrical bore, at least one movable vane mounted on said rotor, said fixed and movable vanes extending axially of and dividing said annular pressure chamber into a plurality of subchambers, fluid passage means for directing fluid under pressure to each of said subchambers selectively to rotate said rotor within said bore, and locking means for automatically locking the rotor against rotation relative to said housing in the absence of fluid pressure within said pressure chamber, the improvement wherein said locking means comprises, a shoulder formed on said movable vane, a generally Wedge-shaped locking element slidably supported on said shoulder and having an arcuate surface complementary to said cylindrical bore, resilient means carried by said movable vane urging said locking element for sliding movement on said shoulder to frictionally engage said arcuate surface with said cylindrical bore, said resilient means and the frictional contact between said arcuate surface and said cylindrical bore cooperating to resist rotation of said rotor in one direction by urging said locking element for sliding movement on said shoulder to provide a wedging action between said rotor and said cylindrical bore, and a substantially radial surface on said locking element exposed Within one of said subchambers whereby fluid pressure within said one subchamber acting on said substantially radial base will urge said locking element for sliding movement in a direction to relieve said Wedging action.

References Cited UNITED STATES PATENTS 1,974,775 9/1934 Gorsuch et al 92124 X 2,053,668 9/1936 Kinzie et al 92122 X 2,259,815 10/1941 Greeve 92-28 X 2,444,391 6/1948 Whitfield 9l-44 X 2,564,206 8/1951 Johnson 9l-44 3,016,248 1/1962 Lindberg 851 2,032,020 5/ 1962 Sneen 92122 3,033,175 5/1962 Stott 92-21 3,161,400 12/1964 Floyd 9224 X 3,262,522 7/1966 Johnson et al 9228 X 3,286,602 11/1966 Butner et al. 9228 MARTIN P. SCHWADRON, Primary Examiner.

IRWIN C. COHEN, Assistant Examiner.

US. Cl. X.R.

US3426652A 1965-02-02 1967-04-12 Rotary hydraulic actuator with locking means Expired - Lifetime US3426652A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US3318201A US3318201A (en) 1965-02-02 1965-02-02 Rotary hydraulic actuator with improved sealing means
US64938367 true 1967-04-12 1967-04-12

Publications (1)

Publication Number Publication Date
US3426652A true US3426652A (en) 1969-02-11

Family

ID=27028340

Family Applications (1)

Application Number Title Priority Date Filing Date
US3426652A Expired - Lifetime US3426652A (en) 1965-02-02 1967-04-12 Rotary hydraulic actuator with locking means

Country Status (1)

Country Link
US (1) US3426652A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189080A (en) * 1975-02-03 1976-08-04
JPS5263572A (en) * 1975-11-19 1977-05-26 Haruto Okumura Power cylinder by which rotation angle of shaft can be changed
US4192224A (en) * 1976-12-17 1980-03-11 Toyota Jidosha Kogyo Kabushiki Kaisha Rotary master cylinder means
US4492150A (en) * 1983-07-01 1985-01-08 Yates Harlan W Actuator for mechanical apparatus
US4759186A (en) * 1985-12-26 1988-07-26 Sundstrand Corporation Self-powered rotary actuator utilizing rotation-generated centrifugal head
US6113444A (en) * 1999-06-04 2000-09-05 Brunswick Corporation Steering mechanism for an outboard motor
EP1215398A2 (en) * 2000-12-18 2002-06-19 Btm Corporation Actuator for a shot pin
US20060000158A1 (en) * 2004-07-01 2006-01-05 Mark Karow Temporary ground-level member and method for positioning below-ground structures
US20060000157A1 (en) * 2004-07-01 2006-01-05 Mark Karow Temporary ground-level road-edge member and method for positioning below-ground structures
US20100139478A1 (en) * 2008-12-08 2010-06-10 Raytheon Company Pressurized Rotary Actuator
WO2015165685A1 (en) * 2014-04-30 2015-11-05 Siemens Aktiengesellschaft Pressure-operated drive and method for running a pressure-operated drive
US20160032758A1 (en) * 2014-07-31 2016-02-04 The Boeing Company Systems, methods, and apparatus for rotary vane actuators
US9605692B2 (en) 2014-10-01 2017-03-28 Woodward, Inc. Locking rotary actuator
US9897114B2 (en) 2013-08-29 2018-02-20 Aventics Corporation Electro-hydraulic actuator
US10072773B2 (en) 2013-08-29 2018-09-11 Aventics Corporation Valve assembly and method of cooling

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1974775A (en) * 1930-11-08 1934-09-25 Philip Dupre Hydraulic motor
US2032020A (en) * 1934-11-14 1936-02-25 Bartlett Hayward Co Method of expanding pistons
US2053668A (en) * 1933-03-10 1936-09-08 Universal Hydraulic Corp Hydraulic rotor operated butterfly valve
US2259815A (en) * 1938-05-07 1941-10-21 Cleveland Pneumatic Tool Co Locking means for fluid motors
US2444391A (en) * 1943-01-12 1948-06-29 Joseph E Whitfield Fluid motor operated valve
US2564206A (en) * 1946-10-07 1951-08-14 Johnson John Oscillating vane motor with locking means therefor
US3016248A (en) * 1958-03-14 1962-01-09 Peter H Lindberg Tank-thimble attachment mechanism
US3033175A (en) * 1959-09-23 1962-05-08 Albert M Stott Rotary thruster with gas operated and manual unlock
US3161400A (en) * 1963-05-14 1964-12-15 Audco Ltd Fluid control valve
US3262522A (en) * 1964-03-24 1966-07-26 American Mach & Foundry Suspension mechanism
US3286602A (en) * 1963-11-22 1966-11-22 American Mach & Foundry Mechanical actuator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1974775A (en) * 1930-11-08 1934-09-25 Philip Dupre Hydraulic motor
US2053668A (en) * 1933-03-10 1936-09-08 Universal Hydraulic Corp Hydraulic rotor operated butterfly valve
US2032020A (en) * 1934-11-14 1936-02-25 Bartlett Hayward Co Method of expanding pistons
US2259815A (en) * 1938-05-07 1941-10-21 Cleveland Pneumatic Tool Co Locking means for fluid motors
US2444391A (en) * 1943-01-12 1948-06-29 Joseph E Whitfield Fluid motor operated valve
US2564206A (en) * 1946-10-07 1951-08-14 Johnson John Oscillating vane motor with locking means therefor
US3016248A (en) * 1958-03-14 1962-01-09 Peter H Lindberg Tank-thimble attachment mechanism
US3033175A (en) * 1959-09-23 1962-05-08 Albert M Stott Rotary thruster with gas operated and manual unlock
US3161400A (en) * 1963-05-14 1964-12-15 Audco Ltd Fluid control valve
US3286602A (en) * 1963-11-22 1966-11-22 American Mach & Foundry Mechanical actuator
US3262522A (en) * 1964-03-24 1966-07-26 American Mach & Foundry Suspension mechanism

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538525B2 (en) * 1975-02-03 1980-10-04
JPS5189080A (en) * 1975-02-03 1976-08-04
JPS5263572A (en) * 1975-11-19 1977-05-26 Haruto Okumura Power cylinder by which rotation angle of shaft can be changed
US4192224A (en) * 1976-12-17 1980-03-11 Toyota Jidosha Kogyo Kabushiki Kaisha Rotary master cylinder means
US4492150A (en) * 1983-07-01 1985-01-08 Yates Harlan W Actuator for mechanical apparatus
US4759186A (en) * 1985-12-26 1988-07-26 Sundstrand Corporation Self-powered rotary actuator utilizing rotation-generated centrifugal head
US6113444A (en) * 1999-06-04 2000-09-05 Brunswick Corporation Steering mechanism for an outboard motor
EP1215398A2 (en) * 2000-12-18 2002-06-19 Btm Corporation Actuator for a shot pin
EP1215398A3 (en) * 2000-12-18 2003-12-03 Btm Corporation Actuator for a shot pin
US7313889B2 (en) 2004-07-01 2008-01-01 Mark Karow Temporary ground-level road-edge member and method for positioning below-ground structures
US20060000158A1 (en) * 2004-07-01 2006-01-05 Mark Karow Temporary ground-level member and method for positioning below-ground structures
US20060000157A1 (en) * 2004-07-01 2006-01-05 Mark Karow Temporary ground-level road-edge member and method for positioning below-ground structures
US7266926B2 (en) 2004-07-01 2007-09-11 Mark Karow Temporary ground-level member and method for positioning below-ground structures
US20100139478A1 (en) * 2008-12-08 2010-06-10 Raytheon Company Pressurized Rotary Actuator
WO2010068357A1 (en) * 2008-12-08 2010-06-17 Raytheon Company Pressurized rotary actuator
US8240242B2 (en) 2008-12-08 2012-08-14 Raytheon Company Pressurized rotary actuator
US9897114B2 (en) 2013-08-29 2018-02-20 Aventics Corporation Electro-hydraulic actuator
US10072773B2 (en) 2013-08-29 2018-09-11 Aventics Corporation Valve assembly and method of cooling
WO2015165685A1 (en) * 2014-04-30 2015-11-05 Siemens Aktiengesellschaft Pressure-operated drive and method for running a pressure-operated drive
US20160032758A1 (en) * 2014-07-31 2016-02-04 The Boeing Company Systems, methods, and apparatus for rotary vane actuators
US9957831B2 (en) * 2014-07-31 2018-05-01 The Boeing Company Systems, methods, and apparatus for rotary vane actuators
US9605692B2 (en) 2014-10-01 2017-03-28 Woodward, Inc. Locking rotary actuator

Similar Documents

Publication Publication Date Title
US3474710A (en) Cylinder construction using roll pins
US3446120A (en) Oscillating fluid-driven actuator
US3223044A (en) Three-area vane type fluid pressure energy translating devices
US3261266A (en) Valve actuator
US3409305A (en) Rotary air seal device
US3232581A (en) Adjustable turbine inlet nozzles
US6161838A (en) Cartridge seal stack
US3434727A (en) Fluid-tight seals for rotatable shafts and the like
US4558874A (en) Valve stem packing assembly
US2950897A (en) Valve construction
US4113228A (en) Rotary plug valve
US6406065B1 (en) Rotary joint for alternating media
US5160118A (en) Pipeline valve apparatus
US20080110715A1 (en) Fluid actuated overrunning coupling assembly
US3559540A (en) Hydraulic actuator
US2420104A (en) Seal guard ring
US6691981B1 (en) Gate valve
US2493602A (en) Pressure fluid motor
US5447095A (en) Actuator with ring gear and method of manufacturing same
US3738665A (en) Hydraulic seals
US2349170A (en) Sealing device
US4538790A (en) Valve stem packing assembly
US3221665A (en) Hydraulic pump or motor with hydraulic pressure-responsive vane
US4242040A (en) Thrust adjusting means for nozzle clamp ring
US4207802A (en) Hydraulic cylinder with improved dashpot and porting