US3394134A - Process for the manufacture of 4, 6-dichloro-1, 3, 5-triazine derivatives - Google Patents

Process for the manufacture of 4, 6-dichloro-1, 3, 5-triazine derivatives Download PDF

Info

Publication number
US3394134A
US3394134A US51220565A US3394134A US 3394134 A US3394134 A US 3394134A US 51220565 A US51220565 A US 51220565A US 3394134 A US3394134 A US 3394134A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
chloride
cyanuric
temperature
triazine
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Duennenberger Max
Biland Hans Rudolf
Luethi Christian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Schweiz AG
Original Assignee
BASF Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/16Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom
    • C07D251/20Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom with no nitrogen atoms directly attached to a ring carbon atom

Description

United States Patent PROCESS FDR THE MANUFACTURE OF 4,6-DI- CI-ILOR0-1,3,5-TRIAZINE DERIVATIVES Max Duennenberger, Frenkendorf, Hans Rudolf Biland,

Basel, and Christian Luethi, Munchenstein, Switzerland, assignors to Ciba Limited, Basel, Switzerland, a company of Switzerland No Drawing. Filed Dec. 7, 1965, Ser. No. 512,205 Claims priority, application Switzerland, Dec. 21, 1964, 16,413/64 6 Claims. (Cl. 260248) ABSTRACT OF THE DISCLOSURE A new process is provided for selectively manufacturing Z-substituted 4,6-dichlorotriazines of the formula in which A stands for either a halogen group, especially chlorine or phenyl. In applicants process, cyanuric chloride is reacted with the compound of the formula where A has the above-assigned meaning in the presence of a Friedel-Crafts catalyst, preferably aluminum chloride, at a temperature of at least 70 C.

The reaction of cyanuric chloride with certain aromatic compounds in the presence of aluminum chloride is known. However, this known process gives only in exceptional cases rise to unitary monosubstituted or disubstit'uted derivatives of cyanuric chloride. Even when the aromatic compound and cyanuric chloride are reacted in molecular proportions (1:1), the result is in general a mixture which contains mono-, diand tri-substituted products and in addition unreacted cyanuric chloride. It is therefore easy to realize why for the manufacture of unitary monosubstituted dichlorotriazines and disubstituted monochlorotriazines other routes were used in which cyanuric chloride was not used as starting material and the triazine ring was synthesized by different methods.

It has now been found that 4,6-dichlorotriazine derivatives of the formula where A represents a halogen atom or a phenyl group, can be obtained in a surprisingly smooth and unitary form without any appreciable competitive side reactions by reacting cyanuric chloride at an elevated temperature with a compound where A has the above meaning, in the presence of a Friedel-Crafts catalyst.

The present process is especially significant when, if A stands for halogen, it represents a chlorine atom. Thus, one variant of the invention consists in the manufacture of 2-(4-chlorophenyl)-4,6-dichloro-1,3,5-triazine by reacting preferably cyanuric chloride with an excess of chlorobenzene in the presence of aluminum chloride in an aqueous medium at a temperature of at least 120 C.

Another important variant consists in preparing 2-[diphenylyl-(4')]-4,-6-dichloro-1,3,5-triazine by reacting cyanuric chloride in an identical manner with diphenyl in an aqueous medium in the presence of a Friedel-Crafts catalyst, preferably aluminum chloride, in a dichlorobenzene.

It could certainly not have been expected that in this reaction a substantially unitary yield of the monosubstitution product would be obtained and, more especially, that this should even be the case when, for example, in the manufacture of 2-(4'-chlorophenyl)-4,6-dichloro-l,3, S-triazine a large excess of chlorobenzene is used. As recently as in the year 1962 Letters Patent were applied for a process, which has been published in the meantime, in which 2-(4-chlorophenyl)-4,6-dichloro-1,3,5-triazine is manufactured by a complicated route from 4-chlorobenzamidine hydrochloride and trichloromethyl isocyanide dichloride (German Auslegeschrif-t l, 178,. 437).

For the manufacture of 2-(4-chlorophenyl)-4,6-dichloro-l,3,5-triazine an excess of chlorobenzene, or if desired or required the addition of an inert organic solvent, is advantageous for operational reasons, because this expedient ensures'that the reaction mixture remains thinly liquid and easy to stir. The reaction is advantageously carried out at a temperature which is at least C. and is within the range from 120 C. to the boiling point of the reaction mixture. If the reaction is performed with a substantial excess of chlorobenzene, it is advantageous to maintain the reaction mixture at the boil, while providing reflux cooling to allow the chlorobenzene which has passed over to return to the reaction mixture and ensuring a continuous removal of the hydrochloric acid gas formed.

A preferred Friedel-Crafts catalyst is; aluminum chloride, used, for example, in an amount of 0.7 to 1.5 mols for every mol of cyanuric chloride. The reaction mixture can be worked up in the usual manner, for example by allowing it to cool, pouring it over ice, removing a possible excess of chlorobenzene by steam distillation, separating the solidified residue from the aqueous phase and dis-tilling the 2-(4'-chlorophenyl)-4,6-dichloro-1,3,5-triazine under reduced pressure.

The other variant of the process of this invention, namely the reaction of cyanuric chloride with diphenyl in the presence of a Friedel-Crafts catalyst at an elevated temperature is advantageously performed in the presence of an inert organic solvent, such as dichlorobenzene. In this case the reaction temperature is advantageously at least 70 C. and may range from 70 C. to the boiling temperature of the reaction mixture. A preferred Friedel- Crafts catalyst is here likewise aluminum chloride in an amount of 0.7 to 1.5 mols for every mol of cyanuric chloride. The reaction mixture is worked up in the same manner as described above.

Parts in the following examples are by weight.

Example 1 A mixture of 55.5 parts of cyanuric chloride, 44 parts of anhydrous aluminum chloride and 1500 parts of chlorobenzene is heated to -132" C. and stirred and heated at this temperature for 5 0 hours, The batch is then cooled to room temperature, poured over 300 parts of ice and subjected to a steam distillation, to yield 2-(4'-chlorophenyl)-4, 6-'dichloro-l,3,5-triazine of the formula in the form of brown crystals melting at 143 148" C.

3 The yield amounts to 64 to 68 parts. On distillation under vacuum, this product yields 60 to 65 parts of a pure, colorless product melting at i148-149 C. and boiling at 153154 C. under 0.2 mm. Hg pressure.

Example 2 A mixture of 185 parts of cyanuric chloride, 154 parts of diphenyl and 600 parts of dichlorobenzene is stirred for 30 minutes at 1822 C., and then 147 parts of anhydrous aluminum chloride are added in portions. Immediately following, the temperature is raised to 130 C. After stirring for 4 hours at 130 C., the dark solution is poured over 2000 parts of a mixture of ice and water, the organic phase is freed from acid by decantation, and the dichlorobenzene is expelled by steam distillation. On suctioning and drying there are obtained about 252 parts of the crude product of the formula I Cl l N -A where A represents a member selected from the group consisting of a halogen atom and a phenyl group, wherein cyanuric chloride is reacted with a compound of the formula (where A has the indicated meaning) in the presence of a Friedel-Crafts catalyst at a temperature of at least C.

2. Process according in claim 1 for the manufacture of 2 (4' chlorophenyl) 4,6 dichloro 1,3,5 triazine, wherein cyanurie chloride is reacted with chlorobenzene in the presence of a Friedel-Crafts catalyst at a temperature of at least C.

3. Process according to claim 2 for the manufacture of 2 (4' chlorophenyl) 4,6 dichloro 1,3,5 triazine, wherein cy-anuric chloride is reacted with excess chlorobenzene in the presence of aluminum chloride in an anhydrous medium at a temperature of at least 120 C.

4. Process according to claim 1 for the manufacture of 2 [diphenylyl (4')] 4,6 dichloro 1,3,5 triazine, wherein cyanuric chloride is reacted with diphenyl in the presence of a Friedel-Crafts catalyst in an anhydrous medium at a temperature of at least 70 C.

5. Process according to claim 4, wherein the reaction is carried out in the presence of an inert organic solvent, preferably of a dichlorobenzene.

6. Process according to claim 4, wherein aluminum chloride is used as Friedel-Crafts catalyst.

References Cited UNITED STATES PATENTS 1,897,428 2/ 1933 Hentrich et al. 260248 2,232,871 2/1941 Schmidt et al. 260248 2,325,803 8/1943 Schmidt et al. 260248 2,691,020 10/1954 Gadea et al. 2 60-248 3,259,627 7/1966 Duennenberger et al. 260248 OTHER REFERENCES Koopman, Nieuwe Herbicide 1,3,5-Triazine Derivaten, University of Groningen, Netherlands (-1957) pp.

JOHN D. RANDOLPH, Primary Examiner.

J. M, FORD, Assistant Examiner.

US3394134A 1964-12-21 1965-12-07 Process for the manufacture of 4, 6-dichloro-1, 3, 5-triazine derivatives Expired - Lifetime US3394134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH1641364 1964-12-21

Publications (1)

Publication Number Publication Date
US3394134A true US3394134A (en) 1968-07-23

Family

ID=4417144

Family Applications (1)

Application Number Title Priority Date Filing Date
US3394134A Expired - Lifetime US3394134A (en) 1964-12-21 1965-12-07 Process for the manufacture of 4, 6-dichloro-1, 3, 5-triazine derivatives

Country Status (5)

Country Link
US (1) US3394134A (en)
BE (1) BE674049A (en)
DE (1) DE1545719A1 (en)
GB (1) GB1073290A (en)
NL (1) NL6516594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632944B2 (en) 2001-06-22 2003-10-14 Cytec Technology Corp. Process for isolation of monophenolic-bisaryl triazines
US6710177B2 (en) 1998-11-17 2004-03-23 Cytec Technology Corp. Process for making triazine UV absorbers using Lewis acids and reaction promoters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1897428A (en) * 1930-02-20 1933-02-14 Gen Aniline Works Inc Vat dyestuffs of the anthraquinone cyanuric series
US2232871A (en) * 1936-08-06 1941-02-25 Gen Aniline & Film Corp Coloring of hydrocarbons
US2325803A (en) * 1943-08-03 Condensation products
US2691020A (en) * 1953-04-10 1954-10-05 American Cyanamid Co Triazine vat dyes
US3259627A (en) * 1963-02-18 1966-07-05 Ciba Ltd Furyl and thienyl hydroxyaryl-1, 3, 5-triazines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2325803A (en) * 1943-08-03 Condensation products
US1897428A (en) * 1930-02-20 1933-02-14 Gen Aniline Works Inc Vat dyestuffs of the anthraquinone cyanuric series
US2232871A (en) * 1936-08-06 1941-02-25 Gen Aniline & Film Corp Coloring of hydrocarbons
US2691020A (en) * 1953-04-10 1954-10-05 American Cyanamid Co Triazine vat dyes
US3259627A (en) * 1963-02-18 1966-07-05 Ciba Ltd Furyl and thienyl hydroxyaryl-1, 3, 5-triazines

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710177B2 (en) 1998-11-17 2004-03-23 Cytec Technology Corp. Process for making triazine UV absorbers using Lewis acids and reaction promoters
US6632944B2 (en) 2001-06-22 2003-10-14 Cytec Technology Corp. Process for isolation of monophenolic-bisaryl triazines
EP2280005A1 (en) 2001-06-22 2011-02-02 Cytec Technology Corp. Process for isolation of monophenolic bisaryl triazines
EP2289884A1 (en) 2001-06-22 2011-03-02 Cytec Technology Corp. Process for isolation of monophenolic bisaryl triazines
EP2835368A1 (en) 2001-06-22 2015-02-11 Cytec Technology Corp. Process for Isolation of Monophenolic-Bisaryl Triazines

Also Published As

Publication number Publication date Type
BE674049A (en) grant
GB1073290A (en) 1967-06-21 application
NL6516594A (en) 1966-06-22 application
DE1545719A1 (en) 1969-06-26 application

Similar Documents

Publication Publication Date Title
US3476747A (en) Manufacture of 1,2-bis(aryl)ethylenes
US3823240A (en) Fungicidal hydantoin derivatives
US3740348A (en) Esters of cyanic acid
US4069252A (en) Process for the preparation of certain acyl cyanide compounds
Dudley et al. Cyanuric chloride derivatives. III. Alkoxy-s-triazines
US4386213A (en) Di- and Oligo-1,2,4-triazolidine-3,5-diones and processes for their production
US3321464A (en) 3-carbo hydrocarbonoxy amino crotonamides and process for the preparation of uracils therefrom
US3882142A (en) 1,2-Dialkyl-3,5-diphenyl pyrazolium salts
US3049544A (en) Method for the preparation of
US3865814A (en) Process for preparing n-substituted lactams
US3075979A (en) Preparation of trialkyl isocyanusates
US3446814A (en) Process for the preparation of substituted oxazolidones
US5106972A (en) 2-methyl-thio-4,6-diaryl-triazines
Grundmann et al. Triazines. IX. 1, 3, 5-Triazine and its Formation from Hydrocyanic Acid1, 2
US3806508A (en) Process for the preparation of a pure aminotriazine derivative
US5726310A (en) Process for the preparation of 2-(2,4-dihydroxylphenyl)-4,6-bis(2,4-dimehylphenyl)-s-triazine
US2724730A (en) Condensation of hexachlorocyclopentadiene
US3577427A (en) Bromination of 2,1,3,-benzothiadiazoles and benzofurazans
US3264318A (en) Process for the production of substituted oxadiazoles
Aichaoui et al. Regioselectivity in the C-acylation of 2 (3H)-benzoxazolones
US3250798A (en) 2,3,4,5,6-pentachloro-benzylidene malononitrile
US6225468B1 (en) Process for making 2-(2,4,-dihydroxyphenyl) or 2-(2,4-dialkoxyphenyl)-4,6-bisaryl-1,3,5-triazines
Haruki et al. Some Reactions of N-Haloamidines
US3910918A (en) 1,2-Dihydroquinolines and process and apparatus for the obtention thereof
Ottmann et al. Chlorination of isothiocyanates. VIII. Reaction of S‐chloroisothiocarbamoyl chlorides with aliphatic and cycloaliphatic ketones