US3378902A - Hydraulically actuated demountable printing cylinders - Google Patents

Hydraulically actuated demountable printing cylinders Download PDF

Info

Publication number
US3378902A
US3378902A US562764A US56276466A US3378902A US 3378902 A US3378902 A US 3378902A US 562764 A US562764 A US 562764A US 56276466 A US56276466 A US 56276466A US 3378902 A US3378902 A US 3378902A
Authority
US
United States
Prior art keywords
pressure
cylinder
collet
mandrel
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US562764A
Inventor
Hoexter Rolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mosstype Corp
Original Assignee
Mosstype Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mosstype Corp filed Critical Mosstype Corp
Priority to US562764A priority Critical patent/US3378902A/en
Application granted granted Critical
Publication of US3378902A publication Critical patent/US3378902A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F27/00Devices for attaching printing elements or formes to supports
    • B41F27/10Devices for attaching printing elements or formes to supports for attaching non-deformable curved printing formes to forme cylinders
    • B41F27/105Devices for attaching printing elements or formes to supports for attaching non-deformable curved printing formes to forme cylinders for attaching cylindrical printing formes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/08Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
    • F16D1/0805Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping due to deformation of a resilient body or a body of fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/12Chucks or sockets with fluid-pressure actuator
    • Y10T279/1216Jaw is expansible chamber; i.e., bladder type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/12Chucks or sockets with fluid-pressure actuator
    • Y10T279/1241Socket type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49544Roller making
    • Y10T29/49547Assembling preformed components
    • Y10T29/49556Work contacting surface element assembled to end support members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49815Disassembling
    • Y10T29/49822Disassembling by applying force
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/22Joints and connections with fluid pressure responsive component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/70Interfitted members
    • Y10T403/7047Radially interposed shim or bushing
    • Y10T403/7049Biased by distinct radially acting means

Definitions

  • a printing cylinder having a pair of hydraulically-actuated collets mounted concentrically at opposing ends thereof, the mandrel for supporting the cylinder being slidably receivable within the collet and securely locked thereto when hydraulic pressure is applied.
  • Each collet includes a cylindrical sleeve having a thick-walled hub section and a relatively long thin walled pressure section.
  • a broad circumferential channel is cut in the pressure section to form a bendable pressure wall, the pressure section being surrounded by a collar of high tensile strength whose edges are welded to the pressure section to define an annular fluid chamber bounded by the collar and the pressure wall.
  • a pressure cartridge is fitted into a cavity in the hub section, the cartridge communicating with the fluid chamber in the pressure section and including a piston which is advanced inwardly by an adjusting screw.
  • the annular chamber is filled with hydraulic Ifiuid and the piston is advanced inwardly, the resultant hydraulic pressure causes fiexure of the pressure wall, thereby subjecting the mandrel to radially-directed stresses which are uniformly distributed and serve to lock the mandrel to the collet and at the same time to maintain proper con'centricity.
  • This invention relates generally to demountable printing cylinders, and in particular to a hydraulically-actuated locking collet for releasably coupling a printing cylinder to a mandrel.
  • gra-vure printing use is made of a printing cylinder whose surface is etched with cup-like cells which, as the cylinder passes through an ink fountain, pick up and carry the ink. When the cylinder engages an impression roller, the ink is transferred to the surface of the paper running there'between. Flexographic printing uses similar inks, but the ink is picked up by rubber printing plates attached to a cylinder.
  • This procedure involves en-d closures on the cylinder having a relatively high coefiicien t of thermal expansion with respect to the mandrel, and it requires special heating equipment. Not only is the procedure time-consuming, but should axial Ice or side-to-side adjustment of the cylinder on the mandrel be necessary, the heating procedure must be repeated, with a further loss of time.
  • de'rnountable printing cylinders incorporating quick-acting, hydraulically-actuated locking collets having 'a self-contained, piston-controlled fluid supply which is adapted to impose a predetermined amount of pressure on the mandrel, thereby insuring adequate torque resistance.
  • a salient feature of the invention resides in the fact that a locking action is obtained simply by turning a piston screw in a pressure cartridge combined with the collet, and a release action just as easily, by reversing the direction of turn. No external source of hydraulic fi-uid is required and no bleeding is necessary. Thus the hydraulic [fluid is always sealed within the collet, and contamination of the cylinder printing surfaces is avoided.
  • Yet another object of the invention is to provide a locking collet made of a material having an exceptionally high friction factor with respect to the material of the mandrel, thereby aifording increased torque resistance for a given amount of hydraulic locking pressure.
  • an object of the invention is to provide a hydraulically-a ctuated locking collet which may be manufaotured at low cost, which is readily installed on a print ing cylinder and thereafter requires no maintenance, and which is efiicient and reliable in operation.
  • a printing cylinder having a pair of hydraulically-actuated locking collets mounted concentrically at opposing ends thereof, the mandrel for supporting the cylinder being slidably receivable within the collets and being securely locked thereto when hydraulic pressure is applied.
  • Each collet is constituted by a cylindrical sleeve having a thick-walled hub section and a relatively long, thin-Walled pressure section.
  • a broad circumferential channel is cut in the pressure section to form a bendable pressure Wall, the pressure section being surrounded by a collar of high tensile strength whose edges are welded to the pressure section to define an annular fluid chamber bounded by the collar and the pressure wall.
  • a pressure cartridge is fitted into a cavity in the hub section, the cartridge communicating with the fluid chamber in the pressure section and including a piston which is advanced inwardly by an adjusting screw.
  • the annular chamber is filled with hydraulic fluid, and the piston is advanced inwardly, the resultant hydraulic pressure causes flexure of the pressure wall, thereby subjecting the mandrelto radially-directed stresses which are uniformly distributed and serve to lock the mandrel to the collet and at the same time to maintain proper concentricity.
  • FIG. 1 is a longitudinal section taken through a printing cylinder mounted on a mandrel by means of hydraulically-actuated locking collets in accordance with the in vention;
  • FIG. 2 illustrates one of the locking collets in perspective
  • FIG. 3 is a perspective cut-away view of one collet mounted Within the cylinder head
  • FIG. 4 is a section taken through the collet
  • FIG. 5 is a front view of the collet, the hydraulic fitting and the pressure cartridge being separated from the col let;
  • FIG. 6 is an enlarged sectional view of the pressure cartridge
  • FIG. 1 there is shown a standard gravure or flexographic printing cylinder 10, releasably mounted on a mandrel 11 of a printing press, the mandrel being coaxially disposed within the cylinder. While the invention is described in the context of demountable printing cylinders, it will be appreciated that the hydraulically-operated locking collet in accordance with the invention is usable in other applications requiring an efficient, low-cost locking action.
  • Cylinder has a uniform circular cross-section, and is enclosed at opposing ends by head pieces 12 which are welded or otherwise secured to the inner surface of the cylinder.
  • head pieces 12 Received within the central bore of each head piece and bonded thereto, is a hydraulically-actuated collet in accordance with the invention, the collet being generally designated by numeral 13.
  • Mandrel 11 is slidably receivable within the collets, the inner surface of the collets being carefully machined to close tolerances to avoid any play between collet and mandrel.
  • the collets are each provided with a screw-operated pressure cartridge, generally designated by numeral 14, the arrangement being such that when hydraulic pressure is applied by turning the cartridge screw inwardly, the mandrel is firmly locked to the cylinder, and when the screw is reversely turned, pressure is relieved and the mandrel is released.
  • the collet is also provided with a removable hydraulic fitting 15 having a unidirectional check valve to facilitate filling the fluid chamber of the collet with hydraulic fluid.
  • Collet 13 is constituted by a metallic sleeve having a thick-walled front or hub section 13A, and a relatively long, thin-walled rear or pressure section 1313.
  • the total length of the sleeve is 2 /4 inches, of which of an inch is the hub section, the remainder being the pressure section.
  • the inner diameter of the sleeve is 3.5 inches, whereas the outer diameter is five inches at the hub section and four inches at the pressure section, thereby forming a shoulder at the juncture of the two sections.
  • pressure section 13B Cut circumferentially in pressure section 13B is a broad channel forming a relatively thin and bendable pressure wall 13C.
  • a collar 13D Surrounding pressure section 13B is a collar 13D, the edges of which are welded to the pressure section, thereby defining an annular fluid chamber 13E.
  • pressure wall 13C is /s of an inch thick, whereas the collar 13D is A of an inch thick, the depth of the fluid chamber being of an inch. Obviously, these dimensions may be tailored as desired, and the collets may be scaled to meet different requirements.
  • Pressure cartridge 14 is threadably received in a lateral bore in hub section 13A, which communicates internally with pressure chamber 13E through a passage 13F.
  • the lateral bore is constituted by an internally threaded section 13H to receive the cartridge tube, and a cavity section 131 to receive the piston of the pressure cartridge.
  • Fitting 15 is threadably received in another bore in hub section 13A which communicates with the pressure chamber 13E through a passage 136.
  • the face of the hubsection opening is chamfered at 13] to facilitate insertion of mandrel 11.
  • Each collet is telescoped within the bore of the associated head piece, with the collar of the collet permanently bonded by epoxy cement or similar means to the inner surface of the head.
  • the hub section of the collet lies against the outer face of the associated head piece, providing ready access to the projecting pressure cartridge.
  • Pressure cartridge 14 is constituted by an internally-threaded tube 14A, which is screwed in section 13H of the lateral bore, and a piston 14B which is slidably disposed in the cavity section 131 of the lateral bore.
  • an O-ring 14C which is formed of rubber or similar sealing material adapted to prevent leakage of hydraulic fluid.
  • a back-up washer 14D preferably of Teflon.
  • Piston 14B is advanced inwardly in the cavity by means of a headless set-screw 14E which operates within tube 14A of the pressure cartridge.
  • Fitting 15 is simply a tapered and threaded plug which when screwed into the hub of the collet, prevents leakage of hydraulic fluid regardless of the pressure developed in the hydraulic chamber. Fitting 15 incorporates a check valve which permits fluid to be supplied to the fluid chamber, but prevents discharge of the fluid. Thus once the fitting is installed, it need never thereafter be removed.
  • Step A With the screw and piston removed from the pressure cartridge, grease is pumped through fitting 15 until grease begins to fill the cavity 131, thereby indicating that chamber 13B and the passage 13F communicating therewith, are filled with fluid and that the air has been displaced.
  • Step B The excess grease in cavity 131 is Wiped away, the piston 14B is inserted therein, and by turning-in screw 14E, piston 14B is bottomed in the cavity. It this condition, the fluid chamber is filled but is under no pressure.
  • Step C.Grease is now pumped through the fitting into the filled fluid chamber, thereby producing pressure therein.
  • the grease is pumped through a suitable pressure gauge until the desired amount of pressure is attained.
  • Step D.-Screw 14E is turned out to relieve pressure within the chamber, the fluid then entering the cavity to move the piston away from the bottom of the cavity. In this condition, the collet will receive the mandrel.
  • torque is the turning movement exerted by a tangential force acting on the cylinder relative to the mandrel at a distance from the axis of the rotation of the mandrel determined by the radius of the cylinder.
  • the turning moment produced in press operations can be considerable, and substantial pressures are necessary to prevent creepage orslippage between the cylinder and the mandrel.
  • hydraulic collet pressures in the order of 3000 pounds per square inch and higher have been found satisfactory. Obviously, the amount of pressure required depends on the diameter of the cylinder. Hence in Step C, one may feed in that amount of fluid appropriate to the use to which the collet is put.
  • the pressure created within chamber 13E exerts a force both on the pressure wall 13C and on the collar 13D, but since the pressure wall is relatively thin and bendable, this wall is caused to flex and to exert a clamping pressure on the mandrel.
  • the stress imposed radially on the mandrel is a uniformly distributed force, so that the concentricity of the mandrel and cylinder is maintained.
  • the resistance to relative motion between the cylinder and the mandrel depends also on the coeflicient of friction. Friction between the collet and mandrel surfaces is proportional to the force pressing the surface together, and is independent of the area of contact. The constant ratio between the friction and the force pressing the surfaces together, is known as the coetficient of friction.
  • the coefficient of friction between two like materials is not as great as between dissimilar materials, for the chief causes of friction are the interlocking of minute irregularities of the rubbing surfaces and the indentation of the softer by the harder body.
  • the mandrel is generally of steel, it is desirable that the collect be formed of a dissimilar and preferably a softer metal, yet one having high mechanical strength.
  • the collet is made of aluminum and magnesium. Aluminum is preferred, for it has a higher modulus of elasticity and higher flexural strength. Also, the collet can be made of a high-strength material having a clad surface providing the desired gripping properties.
  • a demountable cylinder arrangement comprising:
  • each collet including,
  • said cartridge is constituted by an internally-threaded tube receivable in a bore in said hub section, a piston slidable in said bore, and a set-screw to advance the position of said piston.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Rotary Presses (AREA)

Description

April 23, 1968 R HQEXTER 3,378,902
HYDRAULICALLY ACTUATED DEMOUNTABLE PRINTING CYLINDERS Filed July 5, 1966 7 WWW?!" QOLF HOEXTGQ 5. BY W w ATTOQ/YEXS United States Pat ent 3,378,902 HYDRAULICALLY ACTUATED DEMOUNTABLE PRINTING CYLINDERS Rolf Hoexter, Fort Lee, N.J., assignor to Mosstype Corporation, Waldwick, N.J., a corporation of New York Filed July 5, 1966, Ser. No. 562,764 5 Claims. (Cl. 29-113) ABSTRACT OF THE DISCLOSURE A printing cylinder having a pair of hydraulically-actuated collets mounted concentrically at opposing ends thereof, the mandrel for supporting the cylinder being slidably receivable within the collet and securely locked thereto when hydraulic pressure is applied. Each collet includes a cylindrical sleeve having a thick-walled hub section and a relatively long thin walled pressure section. A broad circumferential channel is cut in the pressure section to form a bendable pressure wall, the pressure section being surrounded by a collar of high tensile strength whose edges are welded to the pressure section to define an annular fluid chamber bounded by the collar and the pressure wall. A pressure cartridge is fitted into a cavity in the hub section, the cartridge communicating with the fluid chamber in the pressure section and including a piston which is advanced inwardly by an adjusting screw. When the annular chamber is filled with hydraulic Ifiuid and the piston is advanced inwardly, the resultant hydraulic pressure causes fiexure of the pressure wall, thereby subjecting the mandrel to radially-directed stresses which are uniformly distributed and serve to lock the mandrel to the collet and at the same time to maintain proper con'centricity.
This invention relates generally to demountable printing cylinders, and in particular to a hydraulically-actuated locking collet for releasably coupling a printing cylinder to a mandrel.
In gra-vure printing, use is made of a printing cylinder whose surface is etched with cup-like cells which, as the cylinder passes through an ink fountain, pick up and carry the ink. When the cylinder engages an impression roller, the ink is transferred to the surface of the paper running there'between. Flexographic printing uses similar inks, but the ink is picked up by rubber printing plates attached to a cylinder.
Since in the course of such printing operations, it is frequently necessary to replace one cylinder by another, various eidpedients have heretofore been proposed to provide demountable cylinder structures whereby the same mandrel may be coupled to dilferent cylinders for use in the printing machine.
The simplest mechanical expedient for this purpose is set-screws to attach a cylinder to the mandrel. While setscrew arrangements are uncomplicated, they have many serious practical drawbacks. It is difiicult to achieve proper concentricity with set-screws, and as a consequence, the printing is of poor quality. Moreover, set-screws tend to vibrate and work loose. Other more complicated mechanical locking devices, such as split-lock clamping collars and expanding collets, have been suggested, but these are generally more expensive and equally inaccurate.
One may obtain accurate mounting for printing cylinders using a heat-shrinkage procedure to attach and detach a cylinder to or from a mandrel. This procedure involves en-d closures on the cylinder having a relatively high coefiicien t of thermal expansion with respect to the mandrel, and it requires special heating equipment. Not only is the procedure time-consuming, but should axial Ice or side-to-side adjustment of the cylinder on the mandrel be necessary, the heating procedure must be repeated, with a further loss of time.
Another recent approach makes use of hydraulically- .actuated collet locks for dernountable cylinders. However, known devices of this type require grease guns to pump fluid into the lock each time a locking action is to be elfeoted, the grease being bled off each time the mandrel is to be released. The use of grease in the environment of printing operations is obviously undesirable. Moreover, it is not possible with such known devices to determine without the use of additional expedients, the amount of hydraulic pressure that is being imposed on the mandrel, and whether it is sufiicient to afford adequate torque resistance. As a consequence, cylinder creep or slippage may be encountered in the course of printing, with deleterious effects.
Accordingly, it is the main object of this invention to provide de'rnountable printing cylinders incorporating quick-acting, hydraulically-actuated locking collets having 'a self-contained, piston-controlled fluid supply which is adapted to impose a predetermined amount of pressure on the mandrel, thereby insuring adequate torque resistance.
A salient feature of the invention resides in the fact that a locking action is obtained simply by turning a piston screw in a pressure cartridge combined with the collet, and a release action just as easily, by reversing the direction of turn. No external source of hydraulic fi-uid is required and no bleeding is necessary. Thus the hydraulic [fluid is always sealed within the collet, and contamination of the cylinder printing surfaces is avoided.
More specifically, it is an object of the invention to provide a locking collet of the above-described type which is adapted to subject the mandrel to uniform radial pressure throughout its circumference, without imposing on due pressure on the cylinder head surrounding the collet, whereby distortion of the cylinder is avoided and proper concentricity is maintained.
Yet another object of the invention is to provide a locking collet made of a material having an exceptionally high friction factor with respect to the material of the mandrel, thereby aifording increased torque resistance for a given amount of hydraulic locking pressure.
Also an object of the invention is to provide a hydraulically-a ctuated locking collet which may be manufaotured at low cost, which is readily installed on a print ing cylinder and thereafter requires no maintenance, and which is efiicient and reliable in operation.
Briefly stated, these objects are attained in a printing cylinder having a pair of hydraulically-actuated locking collets mounted concentrically at opposing ends thereof, the mandrel for supporting the cylinder being slidably receivable within the collets and being securely locked thereto when hydraulic pressure is applied. Each collet is constituted by a cylindrical sleeve having a thick-walled hub section and a relatively long, thin-Walled pressure section. A broad circumferential channel is cut in the pressure section to form a bendable pressure Wall, the pressure section being surrounded by a collar of high tensile strength whose edges are welded to the pressure section to define an annular fluid chamber bounded by the collar and the pressure wall.
A pressure cartridge is fitted into a cavity in the hub section, the cartridge communicating with the fluid chamber in the pressure section and including a piston which is advanced inwardly by an adjusting screw. When the annular chamber is filled with hydraulic fluid, and the piston is advanced inwardly, the resultant hydraulic pressure causes flexure of the pressure wall, thereby subjecting the mandrelto radially-directed stresses which are uniformly distributed and serve to lock the mandrel to the collet and at the same time to maintain proper concentricity.
For a better understanding of the invention, as well as other objects and further features thereof, reference is made to the following detailed description to be read in conjunction with the accompanying drawing, wherein:
FIG. 1 is a longitudinal section taken through a printing cylinder mounted on a mandrel by means of hydraulically-actuated locking collets in accordance with the in vention;
FIG. 2 illustrates one of the locking collets in perspective;
FIG. 3 is a perspective cut-away view of one collet mounted Within the cylinder head;
FIG. 4 is a section taken through the collet;
FIG. 5 is a front view of the collet, the hydraulic fitting and the pressure cartridge being separated from the col let; and
FIG. 6 is an enlarged sectional view of the pressure cartridge;
Referring now to the drawing, and more particularly to FIG. 1, there is shown a standard gravure or flexographic printing cylinder 10, releasably mounted on a mandrel 11 of a printing press, the mandrel being coaxially disposed within the cylinder. While the invention is described in the context of demountable printing cylinders, it will be appreciated that the hydraulically-operated locking collet in accordance with the invention is usable in other applications requiring an efficient, low-cost locking action.
Cylinder has a uniform circular cross-section, and is enclosed at opposing ends by head pieces 12 which are welded or otherwise secured to the inner surface of the cylinder. Received within the central bore of each head piece and bonded thereto, is a hydraulically-actuated collet in accordance with the invention, the collet being generally designated by numeral 13. Mandrel 11 is slidably receivable within the collets, the inner surface of the collets being carefully machined to close tolerances to avoid any play between collet and mandrel.
The collets are each provided with a screw-operated pressure cartridge, generally designated by numeral 14, the arrangement being such that when hydraulic pressure is applied by turning the cartridge screw inwardly, the mandrel is firmly locked to the cylinder, and when the screw is reversely turned, pressure is relieved and the mandrel is released. The collet is also provided with a removable hydraulic fitting 15 having a unidirectional check valve to facilitate filling the fluid chamber of the collet with hydraulic fluid.
Collet 13, as best seen in FIGS. 2 to 5, is constituted by a metallic sleeve having a thick-walled front or hub section 13A, and a relatively long, thin-walled rear or pressure section 1313. In one actual embodiment, the total length of the sleeve is 2 /4 inches, of which of an inch is the hub section, the remainder being the pressure section. The inner diameter of the sleeve is 3.5 inches, whereas the outer diameter is five inches at the hub section and four inches at the pressure section, thereby forming a shoulder at the juncture of the two sections.
Cut circumferentially in pressure section 13B is a broad channel forming a relatively thin and bendable pressure wall 13C. Surrounding pressure section 13B is a collar 13D, the edges of which are welded to the pressure section, thereby defining an annular fluid chamber 13E. In the actual embodiment of the collet, pressure wall 13C is /s of an inch thick, whereas the collar 13D is A of an inch thick, the depth of the fluid chamber being of an inch. Obviously, these dimensions may be tailored as desired, and the collets may be scaled to meet different requirements.
Pressure cartridge 14 is threadably received in a lateral bore in hub section 13A, which communicates internally with pressure chamber 13E through a passage 13F. The lateral bore is constituted by an internally threaded section 13H to receive the cartridge tube, and a cavity section 131 to receive the piston of the pressure cartridge. Fitting 15 is threadably received in another bore in hub section 13A which communicates with the pressure chamber 13E through a passage 136. The face of the hubsection opening is chamfered at 13] to facilitate insertion of mandrel 11.
Each collet is telescoped within the bore of the associated head piece, with the collar of the collet permanently bonded by epoxy cement or similar means to the inner surface of the head. The hub section of the collet lies against the outer face of the associated head piece, providing ready access to the projecting pressure cartridge.
Pressure cartridge 14, as best seen in FIG. 6, is constituted by an internally-threaded tube 14A, which is screwed in section 13H of the lateral bore, and a piston 14B which is slidably disposed in the cavity section 131 of the lateral bore. Encircling the piston within a circumferential groove therein and engaging the internal wall of the cavity, is an O-ring 14C which is formed of rubber or similar sealing material adapted to prevent leakage of hydraulic fluid. Also encircling the piston is a back-up washer 14D, preferably of Teflon. Piston 14B is advanced inwardly in the cavity by means of a headless set-screw 14E which operates within tube 14A of the pressure cartridge.
Fitting 15 is simply a tapered and threaded plug which when screwed into the hub of the collet, prevents leakage of hydraulic fluid regardless of the pressure developed in the hydraulic chamber. Fitting 15 incorporates a check valve which permits fluid to be supplied to the fluid chamber, but prevents discharge of the fluid. Thus once the fitting is installed, it need never thereafter be removed.
In order to fill the fluid chamber with hydraulic fluid or grease at the desired pressure and to completely displace the air therefrom, the following procedure is followed.
Step A.With the screw and piston removed from the pressure cartridge, grease is pumped through fitting 15 until grease begins to fill the cavity 131, thereby indicating that chamber 13B and the passage 13F communicating therewith, are filled with fluid and that the air has been displaced.
Step B.-The excess grease in cavity 131 is Wiped away, the piston 14B is inserted therein, and by turning-in screw 14E, piston 14B is bottomed in the cavity. It this condition, the fluid chamber is filled but is under no pressure.
Step C.Grease is now pumped through the fitting into the filled fluid chamber, thereby producing pressure therein. The grease is pumped through a suitable pressure gauge until the desired amount of pressure is attained.
Step D.-Screw 14E is turned out to relieve pressure within the chamber, the fluid then entering the cavity to move the piston away from the bottom of the cavity. In this condition, the collet will receive the mandrel.
In the context of the demountable cylinder arrangement, torque is the turning movement exerted by a tangential force acting on the cylinder relative to the mandrel at a distance from the axis of the rotation of the mandrel determined by the radius of the cylinder. For large printing cylinders, the turning moment produced in press operations can be considerable, and substantial pressures are necessary to prevent creepage orslippage between the cylinder and the mandrel. In practice, hydraulic collet pressures in the order of 3000 pounds per square inch and higher have been found satisfactory. Obviously, the amount of pressure required depends on the diameter of the cylinder. Hence in Step C, one may feed in that amount of fluid appropriate to the use to which the collet is put.
Once the collet is filled with fluid under the proper amount of pressure, no further pumping actions are required, and in mounting operations, all the operator need do, is to turn-in the set screw to advance the piston to its maximum position, thereby being assured that the torque resistance is suflicient for the cylinder. To demount, the operator merely turns out the screw to release pressure.
The pressure created within chamber 13E exerts a force both on the pressure wall 13C and on the collar 13D, but since the pressure wall is relatively thin and bendable, this wall is caused to flex and to exert a clamping pressure on the mandrel. The stress imposed radially on the mandrel is a uniformly distributed force, so that the concentricity of the mandrel and cylinder is maintained.
The resistance to relative motion between the cylinder and the mandrel depends also on the coeflicient of friction. Friction between the collet and mandrel surfaces is proportional to the force pressing the surface together, and is independent of the area of contact. The constant ratio between the friction and the force pressing the surfaces together, is known as the coetficient of friction.
The coefficient of friction between two like materials is not as great as between dissimilar materials, for the chief causes of friction are the interlocking of minute irregularities of the rubbing surfaces and the indentation of the softer by the harder body. Hence since the mandrel is generally of steel, it is desirable that the collect be formed of a dissimilar and preferably a softer metal, yet one having high mechanical strength. To this end, the collet is made of aluminum and magnesium. Aluminum is preferred, for it has a higher modulus of elasticity and higher flexural strength. Also, the collet can be made of a high-strength material having a clad surface providing the desired gripping properties.
It is important to note that the hydraulic pressure developed within the collet effects fiexure of the thin pressure wall, but not perceptibly the thicker collar. Should the collar be dilated, this would act to apply a distorting pressure on the associated head piece, with a resultant growth in cylinder diameter.
While there has been shown and described a preferred embodiment of hydraulically-actuated demountable print ing cylinder in accordance with the invention, it will be appreciated that many changes and modifications may be made therein without, however, departing from the essential spirit of the invention as defined in the annexed claims.
What I claim is:
1. A demountable cylinder arrangement comprising:
(A) a tubular cylinder,
(B) a pair of heads enclosing the opposing ends of said cylinder, said heads each having a central opening, and
(C) a locking collet mounted on each head for receiving a mandrel coaxially to support said cylinder, each collet including,
(a) a sleeve having a hub section and a pressure section of reduced thickness, said pressure section having a broad circumferential channel formed therein to form a bendable pressure wall,
(b) a collar surrounding said pressure section and fastened thereto to define with said pressure wall a hydraulic fluid chamber, the exterior surface of said collar being bonded to the wall of said head opening, said hub section lying against the outer face of the associated head, and
(c) a pressure cartridge mounted in said hub section and communicating with said pressure chamber releasably to apply pressure to fluid in said chamber, thereby to impose a locking force on the mandrel.
2. A demountable cylinder arrangement as set forth in claim 1, wherein said mandrel is of steel and said collet is of aluminum.
3. A demountable cylinder arrangement as set forth in claim 1, further including a fitting having a check valve mounted in a bore in said hub section which communicates with said chamber to supply fluid thereto.
4. An arrangement as set forth in claim 1, wherein said cartridge is constituted by an internally-threaded tube receivable in a bore in said hub section, a piston slidable in said bore, and a set-screw to advance the position of said piston.
5. An arrangement as set forth in claim 1, wherein said collar has a thickness at least twice as great as that of said pressure wall.
References Cited UNITED STATES PATENTS 2,083,842 6/1937 Henning.
2,093,092 9/1937 McElhany et al.
2,093,281 9/1937 Kreuser 192-88 XR 2,583,117 1/1952 Piperoux et al.
2,732,232 1/1956 Whitfield.
2,826,420 3/ 1958 Klingler 2794 2,918,867 12/1959 Killary et a1 101-375 3,023,995 3/ 1962 Hopkins.
3,072,416 1/ 1963 Leifer 2794 3,250,542 5/1966 Winnen et a1. 2794 FOREIGN PATENTS 569,773 11/ 1957 Italy.
BILLY I. WILHITE, Primary Examiner.
US562764A 1966-07-05 1966-07-05 Hydraulically actuated demountable printing cylinders Expired - Lifetime US3378902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US562764A US3378902A (en) 1966-07-05 1966-07-05 Hydraulically actuated demountable printing cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US562764A US3378902A (en) 1966-07-05 1966-07-05 Hydraulically actuated demountable printing cylinders

Publications (1)

Publication Number Publication Date
US3378902A true US3378902A (en) 1968-04-23

Family

ID=24247672

Family Applications (1)

Application Number Title Priority Date Filing Date
US562764A Expired - Lifetime US3378902A (en) 1966-07-05 1966-07-05 Hydraulically actuated demountable printing cylinders

Country Status (1)

Country Link
US (1) US3378902A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486776A (en) * 1968-02-07 1969-12-30 Chester Lebaron Method and means of securing a roller on a shaft
US4030415A (en) * 1974-09-26 1977-06-21 M.A. Buckley (Engraving) Limited Flexographic printing roll having fluid pressure grooving for dismounting
US4089265A (en) * 1974-09-26 1978-05-16 M. A. Buckley (Engraving) Limited Flexographic printing roll and means for assembling same
US4111569A (en) * 1977-06-14 1978-09-05 Magnat Corp. Shell and shaft subassembly
DE2830463A1 (en) * 1977-07-11 1979-01-25 Hans Otto Olsson DEVICE FOR PREVENTING LEAKAGE
US4282810A (en) * 1979-06-11 1981-08-11 Ellis James F Print roller
DE3111273A1 (en) * 1980-03-17 1982-05-13 Kabushiki Kaisha Morico, Tokyo Automatic numbering arrangement
US4381709A (en) * 1980-06-13 1983-05-03 Robert Katz Printing roller with removable cylinder
US4383483A (en) * 1980-10-06 1983-05-17 Mosstype Corporation Hydraulically-actuated mandrel for a demountable printing cylinder
US4386566A (en) * 1980-10-06 1983-06-07 Mosstype Corporation Mandrel assembly for demountable printing cylinder
US4407199A (en) * 1980-10-06 1983-10-04 Mosstype Corporation Mandrel assembly for demountable printing cylinders of different lengths
DE3309815A1 (en) * 1983-03-18 1984-09-20 Mosstype Corp., Waldwick, N.J. Mounting mandrel unit for impression cylinders
US4624184A (en) * 1984-03-27 1986-11-25 Sidney Katz Annular expansible heads for a printing cylinder assembly
US4651643A (en) * 1985-02-14 1987-03-24 Sidney Katz Adaptors for use with printing cylinder mandrels
EP0306987A2 (en) * 1987-09-11 1989-03-15 OFFICINE MECCANICHE GIOVANNI CERUTTI S.p.A. Forme cylinder for a rotary printing machine
US5036766A (en) * 1989-09-08 1991-08-06 Luminite Products Corporation Mounting construction for a printing cylinder
US5042379A (en) * 1988-10-24 1991-08-27 Greer Larry J Rotary die hold down assembly
US5133125A (en) * 1990-03-20 1992-07-28 Stork Screens B. V. Method for the manufacture of a roller, and roller thus obtained
US5237895A (en) * 1990-06-06 1993-08-24 Spirex Tools Ab Hydraulic tool holder
US5429446A (en) * 1993-08-09 1995-07-04 L. J. Smith, Inc. Apparatus for hydraulically locking a hollow cylinder body onto a shaft
US5481975A (en) * 1994-10-03 1996-01-09 Schulz; Werner Printing cylinder mandrel and image carrier sleeve
US5507228A (en) * 1994-10-03 1996-04-16 Schulz; Werner Printing cylinder
EP1025996A1 (en) * 1999-02-01 2000-08-09 Fischer & Krecke Gmbh & Co. Forme cylinder
EP1132209A1 (en) * 2000-02-10 2001-09-12 Fischer & Krecke Gmbh & Co. Screen roller for a flexographic press
US6647880B2 (en) 2000-10-13 2003-11-18 Fischer & Krecke Gmbh & Co. Flexographic printing press with device for washing the back-pressure cylinder
US20030234484A1 (en) * 2002-06-19 2003-12-25 Srinivas Guddanti Pressurized roller
US6684783B2 (en) 2001-08-17 2004-02-03 Creo Inc. Method for imaging a media sleeve on a computer-to-plate imaging machine
US20040079250A1 (en) * 2000-07-25 2004-04-29 Heinz Lorig Adapter sleeve, especially for printing presses
EP1745929A1 (en) 2005-07-21 2007-01-24 Fischer & Krecke GmbH & Co. KG Printing machine
US20070145692A1 (en) * 2004-04-03 2007-06-28 Herud Josef K Hydraulic expansion chuck for chucking a tool, such as a boring tool, milling cutter, or other cutting tool
US20080116649A1 (en) * 2006-11-17 2008-05-22 Hydra-Lock Corporation Hydrostatically actuated workholding apparatus with high expansion and recovery sleeve
DE102009055767A1 (en) 2009-11-25 2011-06-01 Fischer & Krecke Gmbh Printing cylinder arrangement for a rotary printing machine
US20230030487A1 (en) * 2021-07-28 2023-02-02 Shaw Industries Group, Inc. Roller Assembly, And Feed Roller Systems Comprising Same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2083842A (en) * 1934-04-21 1937-06-15 Bruno W Henning Coupling device
US2093092A (en) * 1933-06-01 1937-09-14 Robert D Mcelhany Method of joining tubular members
US2093281A (en) * 1932-10-19 1937-09-14 Adolf Kreuser Friction coupling
US2583117A (en) * 1950-06-08 1952-01-22 Celanese Corp Mandrel
US2732232A (en) * 1956-01-24 whitfield
US2826420A (en) * 1954-01-08 1958-03-11 Karl A Klingler Hydraulic holding means for chucks and the like
US2918867A (en) * 1956-06-26 1959-12-29 Killary David Charles Printing collet construction
US3023995A (en) * 1958-07-21 1962-03-06 William C N Hopkins Sealing and coupling structures
US3072416A (en) * 1961-05-31 1963-01-08 Gisholt Machine Co Force amplifying collet chuck
US3250542A (en) * 1964-05-04 1966-05-10 Erickson Tool Co Hydraulic chucks and arbors

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732232A (en) * 1956-01-24 whitfield
US2093281A (en) * 1932-10-19 1937-09-14 Adolf Kreuser Friction coupling
US2093092A (en) * 1933-06-01 1937-09-14 Robert D Mcelhany Method of joining tubular members
US2083842A (en) * 1934-04-21 1937-06-15 Bruno W Henning Coupling device
US2583117A (en) * 1950-06-08 1952-01-22 Celanese Corp Mandrel
US2826420A (en) * 1954-01-08 1958-03-11 Karl A Klingler Hydraulic holding means for chucks and the like
US2918867A (en) * 1956-06-26 1959-12-29 Killary David Charles Printing collet construction
US3023995A (en) * 1958-07-21 1962-03-06 William C N Hopkins Sealing and coupling structures
US3072416A (en) * 1961-05-31 1963-01-08 Gisholt Machine Co Force amplifying collet chuck
US3250542A (en) * 1964-05-04 1966-05-10 Erickson Tool Co Hydraulic chucks and arbors

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486776A (en) * 1968-02-07 1969-12-30 Chester Lebaron Method and means of securing a roller on a shaft
US4030415A (en) * 1974-09-26 1977-06-21 M.A. Buckley (Engraving) Limited Flexographic printing roll having fluid pressure grooving for dismounting
US4089265A (en) * 1974-09-26 1978-05-16 M. A. Buckley (Engraving) Limited Flexographic printing roll and means for assembling same
US4111569A (en) * 1977-06-14 1978-09-05 Magnat Corp. Shell and shaft subassembly
DE2830463A1 (en) * 1977-07-11 1979-01-25 Hans Otto Olsson DEVICE FOR PREVENTING LEAKAGE
US4282810A (en) * 1979-06-11 1981-08-11 Ellis James F Print roller
US4397233A (en) * 1980-03-17 1983-08-09 Kabushiki Kaisha Morico Automatic numbering assembly
DE3111273A1 (en) * 1980-03-17 1982-05-13 Kabushiki Kaisha Morico, Tokyo Automatic numbering arrangement
US4381709A (en) * 1980-06-13 1983-05-03 Robert Katz Printing roller with removable cylinder
US4383483A (en) * 1980-10-06 1983-05-17 Mosstype Corporation Hydraulically-actuated mandrel for a demountable printing cylinder
US4386566A (en) * 1980-10-06 1983-06-07 Mosstype Corporation Mandrel assembly for demountable printing cylinder
US4407199A (en) * 1980-10-06 1983-10-04 Mosstype Corporation Mandrel assembly for demountable printing cylinders of different lengths
DE3309815A1 (en) * 1983-03-18 1984-09-20 Mosstype Corp., Waldwick, N.J. Mounting mandrel unit for impression cylinders
US4624184A (en) * 1984-03-27 1986-11-25 Sidney Katz Annular expansible heads for a printing cylinder assembly
US4651643A (en) * 1985-02-14 1987-03-24 Sidney Katz Adaptors for use with printing cylinder mandrels
EP0306987A2 (en) * 1987-09-11 1989-03-15 OFFICINE MECCANICHE GIOVANNI CERUTTI S.p.A. Forme cylinder for a rotary printing machine
EP0306987A3 (en) * 1987-09-11 1990-04-11 OFFICINE MECCANICHE GIOVANNI CERUTTI S.p.A. Forme cylinder for a rotary printing machine
US5042379A (en) * 1988-10-24 1991-08-27 Greer Larry J Rotary die hold down assembly
US5036766A (en) * 1989-09-08 1991-08-06 Luminite Products Corporation Mounting construction for a printing cylinder
US5133125A (en) * 1990-03-20 1992-07-28 Stork Screens B. V. Method for the manufacture of a roller, and roller thus obtained
US5237895A (en) * 1990-06-06 1993-08-24 Spirex Tools Ab Hydraulic tool holder
US5429446A (en) * 1993-08-09 1995-07-04 L. J. Smith, Inc. Apparatus for hydraulically locking a hollow cylinder body onto a shaft
US5481975A (en) * 1994-10-03 1996-01-09 Schulz; Werner Printing cylinder mandrel and image carrier sleeve
US5507228A (en) * 1994-10-03 1996-04-16 Schulz; Werner Printing cylinder
EP1025996A1 (en) * 1999-02-01 2000-08-09 Fischer & Krecke Gmbh & Co. Forme cylinder
US6523470B2 (en) 1999-02-01 2003-02-25 Fischer & Krecke Gmbh & Co. Printing cylinder
US6701838B2 (en) 2000-02-10 2004-03-09 Fischem & Krecke Gmbh & Co. Engraved transfer cylinder for a flexographic printing press
EP1132209A1 (en) * 2000-02-10 2001-09-12 Fischer & Krecke Gmbh & Co. Screen roller for a flexographic press
US20040079250A1 (en) * 2000-07-25 2004-04-29 Heinz Lorig Adapter sleeve, especially for printing presses
US6647880B2 (en) 2000-10-13 2003-11-18 Fischer & Krecke Gmbh & Co. Flexographic printing press with device for washing the back-pressure cylinder
US6684783B2 (en) 2001-08-17 2004-02-03 Creo Inc. Method for imaging a media sleeve on a computer-to-plate imaging machine
US20030234484A1 (en) * 2002-06-19 2003-12-25 Srinivas Guddanti Pressurized roller
US6905119B2 (en) * 2002-06-19 2005-06-14 Hewlett-Packard Development Company, L.P. Pressurized roller
US7914010B2 (en) * 2004-04-03 2011-03-29 Kennametal Inc. Hydraulic expansion chuck for chucking a tool, such as a boring tool, milling cutter, or other cutting tool
US20070145692A1 (en) * 2004-04-03 2007-06-28 Herud Josef K Hydraulic expansion chuck for chucking a tool, such as a boring tool, milling cutter, or other cutting tool
EP1745929A1 (en) 2005-07-21 2007-01-24 Fischer & Krecke GmbH & Co. KG Printing machine
US20080116649A1 (en) * 2006-11-17 2008-05-22 Hydra-Lock Corporation Hydrostatically actuated workholding apparatus with high expansion and recovery sleeve
US20110140328A1 (en) * 2006-11-17 2011-06-16 Hydra-Lock Corporation Hydrostatically Actuated Workholding Apparatus with High Expansion and Recovery Sleeve
US7967300B2 (en) * 2006-11-17 2011-06-28 Hydra-Lock Corporation Hydrostatically actuated workholding apparatus with high expansion and recovery sleeve
US8585061B2 (en) 2006-11-17 2013-11-19 Hydra-Lock Corporation Hydrostatically actuated workholding apparatus with high expansion and recovery sleeve
DE102009055767A1 (en) 2009-11-25 2011-06-01 Fischer & Krecke Gmbh Printing cylinder arrangement for a rotary printing machine
US20230030487A1 (en) * 2021-07-28 2023-02-02 Shaw Industries Group, Inc. Roller Assembly, And Feed Roller Systems Comprising Same
US12043505B2 (en) * 2021-07-28 2024-07-23 Shaw Industries Group, Inc. Roller assembly, and feed roller systems comprising same

Similar Documents

Publication Publication Date Title
US3378902A (en) Hydraulically actuated demountable printing cylinders
US4386566A (en) Mandrel assembly for demountable printing cylinder
US3516681A (en) Hydraulic chuck or arbor
US4381709A (en) Printing roller with removable cylinder
JP4016295B2 (en) Hydraulic mechanical chuck
US4244248A (en) Method and apparatus for setting up tools, work pieces and similar on a rotatable spindle
US3130978A (en) Expansible mandrel
US3388916A (en) Hydraulic arbor
US4383483A (en) Hydraulically-actuated mandrel for a demountable printing cylinder
US5735206A (en) Deformable mandrels for rotary printing cylinders
US4008598A (en) Work reducing
GB1276863A (en) Improvements in or relating to chuck assemblies
SE8500890L (en) TOOL MACHINERY AND TO THIS ADJUSTED TOOL HOLDER
US2567471A (en) Collet chuck
US4407199A (en) Mandrel assembly for demountable printing cylinders of different lengths
GB763413A (en) Improvements in or relating to reel cones for printing paper
SE424017B (en) PROCEDURE AND DEVICE FOR MOUNTING LONG FORMS ON AN AXLE
ES461958A1 (en) Rolling disc attachment
US3747445A (en) Expansible work holder
US2487390A (en) Pump piston
US2940388A (en) Printing roll and method for assembling the same
EP0963268B1 (en) Hydraulic precision mandrel
US2899855A (en) Bolt-tensioning devices
WO1998032562B1 (en) Hydraulic precision mandrel
US2812684A (en) Arbor nut with fluid pressure actuated spacer engaging pins