US3364143A - Method for improving the working properties of metals - Google Patents

Method for improving the working properties of metals Download PDF

Info

Publication number
US3364143A
US3364143A US510360A US51036065A US3364143A US 3364143 A US3364143 A US 3364143A US 510360 A US510360 A US 510360A US 51036065 A US51036065 A US 51036065A US 3364143 A US3364143 A US 3364143A
Authority
US
United States
Prior art keywords
epoxidized
metals
grams
esters
oxirane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US510360A
Inventor
Johnson Keith Liddell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JBS USA LLC
Original Assignee
Swift and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US177968A external-priority patent/US3242200A/en
Application filed by Swift and Co Inc filed Critical Swift and Co Inc
Priority to US510360A priority Critical patent/US3364143A/en
Application granted granted Critical
Publication of US3364143A publication Critical patent/US3364143A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2221/043Polyoxyalkylene ethers with a thioether group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/241Manufacturing joint-less pipes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/242Hot working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/243Cold working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/246Iron or steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/247Stainless steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles

Definitions

  • This invention relates to an improved method for improving the working properties of metals in operations such as rolling, drawing, extruding and stamping. More particularly, the present invention pertains to an improved method for lubricating ferrous and nonferrous metals.
  • Ferrous and nonferrous metals are treated at the present time with various compositions in order to reduce burring, overheating, staining and excessive wear of the metals during milling and machining operations.
  • Commonly employed compositions in this type of lubrication include soap and fat dispersions in the lubrication of copper tubing and wire during drawing operations, nonaqueous mineral oil solutions of esters such as butyl stearate in the treatment of aluminum and its alloys, and emulsions based on petroleum sulfonates and various oils known to the art as soluble oils in the cutting, drilling and sawing of ferrous metals.
  • the objects of the present invention are accomplished by lubrication of the ferrous or nonferrous metal with an aqueous dispersion of a material prepared by reacting a monohydric, non-ionic polyoxyalkylene composition with an epoxidized ester.
  • compositions employed in the present invention comprise derivatives of oxirane substituted aliphatic acids and esters wherein the oxirane group is broken and oxyalkylene containing compositions and radicals of lower polyhydn'c alcohol ethers are substituted on one carbon which before the reaction had formed the oxirane group and the adjacent carbon which had formed the other carbon of the oxirane group is substituted with a hydroxyl group or an oxylalkylene group.
  • compositions used in the present invention include the products resulting from the catalyzed reaction between oxirane esters of a hydrophobic character and having a molecular weight, preferably above about 200, with oxyalkylene substituted alcohols having one available hydroxyl group.
  • Catalysts most useful in insuring the desired reaction between the hydroxyl group of the alcohol and the oxirane containing esters are the strong Lewis acids, tertiary amines and alkali metal alcoholates.
  • Oxirane-substituted compounds which can be employed in producing the non-polymeric surface-active materials of the invention comprise the hydrophobic higher molecular weight organic acids and esters having one or more oxirane groups.
  • the epoxidized triglycerides represent a very convenient source of the oxirane-substituted materials.
  • Epoxidized animal, vegetable and marine triglycerides are well known in the art, and examples of these materials include epoxidized soybean oil, epoxidizcd linseed oil, epoxidized safflower oil, epoxidized perilla oil, epoxidized lard oil, epoxidized tallow and epoxidized fish oils such as menhaden and sardine oil as well as epoxidized sperm oil.
  • These compositions are readily available in that the naturally occurring ethylenically unsaturated materials can be epoxidized by methods well known in the art to provide compositions having varying amounts of oxirane substitution.
  • aliphatic alcohol esters of oxirane-substituted higher fatty acids such as monoand dihydric alcohol esters wherein the alcohol portion of the ester is a monohydric aliphatic alcohol having 1-8 carbons or a dihydric aliphatic alcohol having 2-6 carbons are also contemplated.
  • Suitable monohydric alcohols providing the alcohol moiety of the epoxy fatty acid esters include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, amyl, isoamyl, hexyl, heptyl and octyl alcohols.
  • Dihydric alcohols which may be employed to provide the alcohol moiety of the epoxy fatty .acid ester include ethylene glycol, 1,2-propane diol, 1,3-propane diol, dimethyl ethylene glycol, trimethylene glycol, tetramethylene glycol, up to and including hexamethylene glycol.
  • Polyhydric alcohol esters of the oXirane-containing fatty acids which can be employed to provide the oxirane-containing reactant include the epoxy higher fatty acid esters of tri-, tetra-, pentaand hexa-hydric alcohol esters of the fatty acid moiety. Included within this group are those aliphatic alcohols having 3-6 carbons and 3 or more alcohol groups.
  • alcohols include glycerol, erythritol, penta-erythritol and hexitols such as mannitol and sorbitol.
  • Synthetic triglycerides such as epoxidized triolein, epoxidized trilinolein and epoxidized trilinolenin are also contemplated.
  • esters of acids of the type such as epoxidized oleic acid, epoxidized linoleic acid and epoxidized linolenic acid are preferred.
  • Esters of epoxidized higher fatty alcohols with lower monoand polycarboxylic aliphatic acids are also contemplated. Included in this group are 9,10-epoxy stearoyl acetate, di-(9,10-epoxystearoyl)maleate and di-(9-, 10-, 12-, 13-diepoxystearoyl)adipate.
  • the hydroxyl supplying reactant can be selected from the group consisting of ethers and esters of aliphatic monohydric alcohols.
  • Examples of compositions of this type are the alkyl phenol polyoxyalkylene glycol adducts such as nonyl phenyl ethylene oxide condensation products wherein 6-12 mols of ethylene oxide are combined with each mol of nonyl phenol.
  • the alkyl group on the benzenoid ring of such composition can contain 8-14 carbons and can be either a straight or branch chain.
  • Lower alkyl and alkenyl ethers such as the 1-4 carbon ethers of polyoxyalkylene glycols are also contemplated.
  • the esters of the polyoxyalkylene glycols include the higher fatty acid esters containing -22 carbons in the fatty acid portion of the molecule. These acids are obtained from naturally occurring fats and oils. Tall oil fatty acid esters of polyoxyethylene glycol having 12-18 oxyethylene groups are typical of the higher fatty acid esters of polyoxyalkylene compounds.
  • X is H or aliphatic hydrocarbon radical of 8-14 carbons, n is 1-100, R is an aliphatic hydrocarbon radical of 9-21 carbons, and R is an aliphatic hydrocarbon radical of 1-6 carbons.
  • compositions of the present invention will contain about 1-5 of the above groups.
  • compositions illustrated have for convenience been shown containing oxyethylene groups it should be understood that compositions made up of oxypropylene and oxybutylene groups are also encompassed by the invention.
  • the catalytic agent utilized in producing the compositions used in the present invention may be selected from the group consisting of strong Lewis acids, tertiary amines and alkali metal a-lcoholates.
  • Suitable catalysts include Friedel-Crafts type catalysts such as the halides of boron, iron, aluminum, silicon, antimony, tin, arsenic, zinc, and zirconium.
  • tertiary amines such as benzyl dimethyl amine, lower C through C trialkyl amines and trialkylolamines are satisfactory catalysts as are potassium ethylate, sodium methylate, etc.
  • Boron trifiuoride and boron trifluoride complexes are preferred, although lower alkoxides of metals such as aluminum and titanium isopropoxides and isobutoxides are also satisfactory.
  • the ratio of the oxirane-containing material to the alcohol composition which are combined is usually maintained so that there are sufiicient hydroxyl groups to react with each epoxide group and insure that the degree of functionality in the reaction product is held at a minimum. If an excess of either reactant is to be employed, it is preferred that the hydroxy compound be present in an excess.
  • the above-described compositions are formed into a uniform aqueous dispersion by mild agitation. From about 0.5 to about 50%, and preferably from about 1.0 to about 10% by weight of the composition is combined with water.
  • Example I Epoxidized soybean oil having an oxirane content of 6.95% was added to 640 grams of ethoxylated nonyl phenol.
  • the ethoxylated nonyl phenol is the condensation product of 9.5 mols of ethylene oxide condensed with one mol of nonyl phenol.
  • Two hundred fifty grams of epoxidized oil was added to a dispersion of 8 grams of a boron trifiuoride-ethyl Cellosolve complex in the ethoxy lated nonyl phenol. The mixture was stirred and an exothermic reaction took place as the polyoxyethylene ether reacted with epoxidized oil.
  • a milky white dispersion was then produced by mixing 20 grams of the material thus formed with grams of water.
  • This dispersion was evaluated for lubricity at a metal-metal interface in a Baroid oil well drilling mud tester in which a rotating metal ring is brought into contact with the surface of a metal block beneath the surface of the test solution. Pressure is applied to the block and is measured by means of a torque wrench. Seizure is indicated by monitoring an ammeter which measures the current drawn by the motor and noting the torque value at which it increases precipitably. Fai-lure occurred at a value of 132 foot pounds as opposed to 53 foot pounds for a 10% solution of a diethanolammonium oleate-lauryl diethanol amide blend commonly used as an aqueous drawing compound.
  • Example II A composition was formed by reacting 310 grams of ethoxylated nonylphenol (1.5 mols ethylene oxide) with 230 grams of epoxidized soybean oil in the presence of 1.25 grams of boron tn'fluoride etherate under reaction conditions such as those taught in Example I.
  • the material formed by this reaction was not self-dispersible in water and was somewhat darker than that of Example I. However, dispersibility was restored by the additon of 10% of the reaction product of Example I and the material thus formed exhibited lubricating properties comparable to those obtained in Example I.
  • Example III Four hundred ten grams of ethoxylated octyl phenol (43% by weight ethylene oxide) were reacted with 180 grams of epoxidized linseed oil (oxirane oxygen 9.03%) in the presence of 3 grams of tin tetrachloride. The procedure used was the same as that of Example I. This material exhibited properties almost identical to the properties' of the material obtained in Example I, but was of a slightly darker color.
  • Example IV Five hundred grams of ethoxylated oleyl alcohol (54% by weight ethylene oxide) were reacted with 385 grams of epoxidized sperm oil (oxirane oxygen 4.14%) .in the presence of 4 grams of antimony pentachloride by a procedure as that taught in Example I. The resultant product was quite dark in color but exhibited desirable properties as a lubricant.
  • Example V Seven grams of epoxidized soybean oil were reacted I with 34 grams of ethoxylated dinonylphenol (73% by weight ethyleneoxide) in the presence of 12 drops of boron trifluoride-Cellosolve complex by a procedure similar to that of Example I.
  • the resultant material was a pasty liquid which showed desirable lubricating properties and also showed utility as a fluid-loss inhibitor in drilling muds indicating that it could be used in the lubrication of drilling bits in oil wells.
  • Example VI Nine hundred sixty grams of epoxidized 2-et-hylhexyltallate (oxirane oxygen 4.2%) were reacted with 610 grams of ethoxylated dodecyl mercaptan in the presence of 5 grams of boron trichloride by the procedure of Example I. The product resulting from this reaction exhibited utility as a lubricant for drilling and cutting operations in ferrous metals.
  • a method for improving the working properties of metals comprising: applying to a metal-metal interface an aqueous dispersion of an ester of a higher fatty acid, the fatty acyl chain of said ester having substituted on adjacent carbons hydroxyl groups and ether radicals, said ether radicals being selected from the group consisting of oxyalkylene ethers and oxyalkylene esters.
  • ester has a molecular weight of above about 200 and contains from about 1 to about 5 pairs of hydroxy groups and ether radicals.
  • ester is derived from a naturally occurring triglyceride.
  • ester employed contains from about 1 to about 5 of the following groups OH O-(YO) n Z CHOH where Y is an alkylene group of 24 carbons, in is 1-100 and Z is selected from the group consisting of acyl, phenyl, phenyl alkyl, and lower alkyl groups.

Description

United States Patent ()ffice 3,364,143 Patented Jan. 16, 1968 3,364,143 METHOD FOR IMPROVING THE WORKING PROPERTIES OF METALS Keith Liddell Johnson, Matteson, Ill., assignor to Swift & Company, Chicago, Ill., a corporation of Illinois No Drawing. Continuation-impart of application Ser. No. 177,968, Mar. 7, 1962. This application Nov. 29, 1965, Ser. No. 510,360
7 Claims. (Cl. 252-495) The present application is a continuation-in-part of application Ser. No. 177,968, filed on Mar. 7, 1962, now US. Patent No. 3,242,200.
This invention relates to an improved method for improving the working properties of metals in operations such as rolling, drawing, extruding and stamping. More particularly, the present invention pertains to an improved method for lubricating ferrous and nonferrous metals.
Ferrous and nonferrous metals are treated at the present time with various compositions in order to reduce burring, overheating, staining and excessive wear of the metals during milling and machining operations. Commonly employed compositions in this type of lubrication include soap and fat dispersions in the lubrication of copper tubing and wire during drawing operations, nonaqueous mineral oil solutions of esters such as butyl stearate in the treatment of aluminum and its alloys, and emulsions based on petroleum sulfonates and various oils known to the art as soluble oils in the cutting, drilling and sawing of ferrous metals.
The above systems, as well as other lubrication systems used at present, have certain undesirable features. For example, the use of soap and fat dispersions necessitates the installation of specially baifled tanks necessary to precipitate the copper soaps formed, thereby resulting in increased production costs. Employment of nonaqueous mineral oil-butyl stearate solutions in the preparation and handling of aluminum and its alloys requires the subsequent use of a nonaqeuous solvent-type cleaner which is both costly and presents occupational and fire hazards. In the working of ferrous metals, different formulations are required for various operations resulting in high cost and operating difiiculties caused by water loss from emulsions by evaporation, contamination resulting in subsequent inversion of the emulsion, contamination of other systems producing difi'iculties elsewhere on the production line, etc.
Therefore, it can be readily seen that a method for lubricating ferrous and nonferrous metals during milling and machining operations without incurring operational and economic difficulties heretofore experienced would be highly desirable in the art.
It is therefore an object of the present invention to provide an improved method for lubricating ferrous and nonferrous metals.
It is a further object of the present invention to provide an improved method for lubricating ferrous and nonferrous metals which will not contain inherent operational and economic disadvantages heretofore experienced in the art.
Additional objects of the present invention, if not specifically set forth herein, will be readily apparent to one skilled in the art from the following detailed description of the present invention.
In general, the objects of the present invention are accomplished by lubrication of the ferrous or nonferrous metal with an aqueous dispersion of a material prepared by reacting a monohydric, non-ionic polyoxyalkylene composition with an epoxidized ester.
Generally, the compositions employed in the present invention comprise derivatives of oxirane substituted aliphatic acids and esters wherein the oxirane group is broken and oxyalkylene containing compositions and radicals of lower polyhydn'c alcohol ethers are substituted on one carbon which before the reaction had formed the oxirane group and the adjacent carbon which had formed the other carbon of the oxirane group is substituted with a hydroxyl group or an oxylalkylene group.
More specifically, the compositions used in the present invention include the products resulting from the catalyzed reaction between oxirane esters of a hydrophobic character and having a molecular weight, preferably above about 200, with oxyalkylene substituted alcohols having one available hydroxyl group. Catalysts most useful in insuring the desired reaction between the hydroxyl group of the alcohol and the oxirane containing esters are the strong Lewis acids, tertiary amines and alkali metal alcoholates.
Oxirane-substituted compounds which can be employed in producing the non-polymeric surface-active materials of the invention, as has been noted previously, comprise the hydrophobic higher molecular weight organic acids and esters having one or more oxirane groups. The epoxidized triglycerides represent a very convenient source of the oxirane-substituted materials. Epoxidized animal, vegetable and marine triglycerides are well known in the art, and examples of these materials include epoxidized soybean oil, epoxidizcd linseed oil, epoxidized safflower oil, epoxidized perilla oil, epoxidized lard oil, epoxidized tallow and epoxidized fish oils such as menhaden and sardine oil as well as epoxidized sperm oil. These compositions are readily available in that the naturally occurring ethylenically unsaturated materials can be epoxidized by methods well known in the art to provide compositions having varying amounts of oxirane substitution.
Other aliphatic alcohol esters of oxirane-substituted higher fatty acids such as monoand dihydric alcohol esters wherein the alcohol portion of the ester is a monohydric aliphatic alcohol having 1-8 carbons or a dihydric aliphatic alcohol having 2-6 carbons are also contemplated. Suitable monohydric alcohols providing the alcohol moiety of the epoxy fatty acid esters include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, amyl, isoamyl, hexyl, heptyl and octyl alcohols. Dihydric alcohols which may be employed to provide the alcohol moiety of the epoxy fatty .acid ester include ethylene glycol, 1,2-propane diol, 1,3-propane diol, dimethyl ethylene glycol, trimethylene glycol, tetramethylene glycol, up to and including hexamethylene glycol. Polyhydric alcohol esters of the oXirane-containing fatty acids which can be employed to provide the oxirane-containing reactant include the epoxy higher fatty acid esters of tri-, tetra-, pentaand hexa-hydric alcohol esters of the fatty acid moiety. Included within this group are those aliphatic alcohols having 3-6 carbons and 3 or more alcohol groups. These alcohols include glycerol, erythritol, penta-erythritol and hexitols such as mannitol and sorbitol. Synthetic triglycerides such as epoxidized triolein, epoxidized trilinolein and epoxidized trilinolenin are also contemplated. Generally, esters of acids of the type such as epoxidized oleic acid, epoxidized linoleic acid and epoxidized linolenic acid are preferred.
Esters of epoxidized higher fatty alcohols with lower monoand polycarboxylic aliphatic acids are also contemplated. Included in this group are 9,10-epoxy stearoyl acetate, di-(9,10-epoxystearoyl)maleate and di-(9-, 10-, 12-, 13-diepoxystearoyl)adipate.
The hydroxyl supplying reactant can be selected from the group consisting of ethers and esters of aliphatic monohydric alcohols. Examples of compositions of this type are the alkyl phenol polyoxyalkylene glycol adducts such as nonyl phenyl ethylene oxide condensation products wherein 6-12 mols of ethylene oxide are combined with each mol of nonyl phenol. The alkyl group on the benzenoid ring of such composition can contain 8-14 carbons and can be either a straight or branch chain. Lower alkyl and alkenyl ethers such as the 1-4 carbon ethers of polyoxyalkylene glycols are also contemplated.
The esters of the polyoxyalkylene glycols include the higher fatty acid esters containing -22 carbons in the fatty acid portion of the molecule. These acids are obtained from naturally occurring fats and oils. Tall oil fatty acid esters of polyoxyethylene glycol having 12-18 oxyethylene groups are typical of the higher fatty acid esters of polyoxyalkylene compounds.
Typical structures of the adjacent hydroxyl and ether groups on the hydrocarbon chain which before reaction were occupied by the epoxy groups are as follows:
where X is H or aliphatic hydrocarbon radical of 8-14 carbons, n is 1-100, R is an aliphatic hydrocarbon radical of 9-21 carbons, and R is an aliphatic hydrocarbon radical of 1-6 carbons.
Generally, the compositions of the present invention will contain about 1-5 of the above groups.
While the compositions ilustrated have for convenience been shown containing oxyethylene groups it should be understood that compositions made up of oxypropylene and oxybutylene groups are also encompassed by the invention.
As previously stated, the catalytic agent utilized in producing the compositions used in the present invention may be selected from the group consisting of strong Lewis acids, tertiary amines and alkali metal a-lcoholates. Suitable catalysts include Friedel-Crafts type catalysts such as the halides of boron, iron, aluminum, silicon, antimony, tin, arsenic, zinc, and zirconium. Also, tertiary amines such as benzyl dimethyl amine, lower C through C trialkyl amines and trialkylolamines are satisfactory catalysts as are potassium ethylate, sodium methylate, etc. Boron trifiuoride and boron trifluoride complexes are preferred, although lower alkoxides of metals such as aluminum and titanium isopropoxides and isobutoxides are also satisfactory. A catalytic amount of about 0.5-7% based upon the epoxide depending upon the activity of the specific catalyst wil ordinarily be employed.
The ratio of the oxirane-containing material to the alcohol composition which are combined is usually maintained so that there are sufiicient hydroxyl groups to react with each epoxide group and insure that the degree of functionality in the reaction product is held at a minimum. If an excess of either reactant is to be employed, it is preferred that the hydroxy compound be present in an excess.
In order to prepare the lubricants suitable for use in the present invention, the above-described compositions are formed into a uniform aqueous dispersion by mild agitation. From about 0.5 to about 50%, and preferably from about 1.0 to about 10% by weight of the composition is combined with water.
The following examples illustrate the production and use of the above specified compositions in the present invention. These examples are presented merely for pur' poses of illustrating the present invention.
Example I Epoxidized soybean oil having an oxirane content of 6.95% was added to 640 grams of ethoxylated nonyl phenol. The ethoxylated nonyl phenol is the condensation product of 9.5 mols of ethylene oxide condensed with one mol of nonyl phenol. Two hundred fifty grams of epoxidized oil was added to a dispersion of 8 grams of a boron trifiuoride-ethyl Cellosolve complex in the ethoxy lated nonyl phenol. The mixture was stirred and an exothermic reaction took place as the polyoxyethylene ether reacted with epoxidized oil. A milky white dispersion was then produced by mixing 20 grams of the material thus formed with grams of water. This dispersion was evaluated for lubricity at a metal-metal interface in a Baroid oil well drilling mud tester in which a rotating metal ring is brought into contact with the surface of a metal block beneath the surface of the test solution. Pressure is applied to the block and is measured by means of a torque wrench. Seizure is indicated by monitoring an ammeter which measures the current drawn by the motor and noting the torque value at which it increases precipitably. Fai-lure occurred at a value of 132 foot pounds as opposed to 53 foot pounds for a 10% solution of a diethanolammonium oleate-lauryl diethanol amide blend commonly used as an aqueous drawing compound.
Example II A composition was formed by reacting 310 grams of ethoxylated nonylphenol (1.5 mols ethylene oxide) with 230 grams of epoxidized soybean oil in the presence of 1.25 grams of boron tn'fluoride etherate under reaction conditions such as those taught in Example I. The material formed by this reaction was not self-dispersible in water and was somewhat darker than that of Example I. However, dispersibility was restored by the additon of 10% of the reaction product of Example I and the material thus formed exhibited lubricating properties comparable to those obtained in Example I.
Example III Four hundred ten grams of ethoxylated octyl phenol (43% by weight ethylene oxide) were reacted with 180 grams of epoxidized linseed oil (oxirane oxygen 9.03%) in the presence of 3 grams of tin tetrachloride. The procedure used was the same as that of Example I. This material exhibited properties almost identical to the properties' of the material obtained in Example I, but was of a slightly darker color.
' Example IV Five hundred grams of ethoxylated oleyl alcohol (54% by weight ethylene oxide) were reacted with 385 grams of epoxidized sperm oil (oxirane oxygen 4.14%) .in the presence of 4 grams of antimony pentachloride by a procedure as that taught in Example I. The resultant product was quite dark in color but exhibited desirable properties as a lubricant.
Example V Seven grams of epoxidized soybean oil were reacted I with 34 grams of ethoxylated dinonylphenol (73% by weight ethyleneoxide) in the presence of 12 drops of boron trifluoride-Cellosolve complex by a procedure similar to that of Example I. The resultant material was a pasty liquid which showed desirable lubricating properties and also showed utility as a fluid-loss inhibitor in drilling muds indicating that it could be used in the lubrication of drilling bits in oil wells.
Example VI Nine hundred sixty grams of epoxidized 2-et-hylhexyltallate (oxirane oxygen 4.2%) were reacted with 610 grams of ethoxylated dodecyl mercaptan in the presence of 5 grams of boron trichloride by the procedure of Example I. The product resulting from this reaction exhibited utility as a lubricant for drilling and cutting operations in ferrous metals.
Obviously, many modifications and variations of the invention as hereinbefore set forth may be made Without departing from the spirit and scope thereof and, therefore, only such limitations should be imposed as are indicated in the appended claims.
I claim:
1. A method for improving the working properties of metals comprising: applying to a metal-metal interface an aqueous dispersion of an ester of a higher fatty acid, the fatty acyl chain of said ester having substituted on adjacent carbons hydroxyl groups and ether radicals, said ether radicals being selected from the group consisting of oxyalkylene ethers and oxyalkylene esters.
2. The method of claim 1 wherein the aqueous dispersion contains from about 0.5% to about 50% of said ester.
3. The process of claim 1 wherein the polyoxy alkylene compound contains about 40-90% by weight oxyalkylene groups.
4. The process of claim 1 wherein the ester has a molecular weight of above about 200 and contains from about 1 to about 5 pairs of hydroxy groups and ether radicals.
5. The process of claim 1 wherein the ester is derived from a naturally occurring triglyceride.
6. The process of claim 1, wherein the ester employed contains from about 1 to about 5 of the following groups OH O-(YO) n Z CHOH where Y is an alkylene group of 24 carbons, in is 1-100 and Z is selected from the group consisting of acyl, phenyl, phenyl alkyl, and lower alkyl groups.
7. The process of claim 1, wherein said ether radicals are ethers of alkoxylated alkyl phenols.
UNITED STATES PATENTS References Cited DANIEL E. WYMAN, Primary Examiner.
W. H. CANNON, Assistant Examiner.

Claims (1)

1. A METHOD FOR IMPROVING THE WORKING PROPERTIES OF METALS COMPRISING: APPLYING TO A METAL-METAL INTERFACE AN AQUEOUS DISPERSION OF AN ESTER OF A HIGHER FATTY ACID, THE FATTY ACYL CHAIN OF SAID ESTER HAVING SUBSTITUTED ON ADJACENT CARBONS HYDROXYL GROUPS AND ETHER RADICALS, SAID ETHER RADICALS BEING SELECTED FROM THE GROUP CONSISTING OF OXYALKYLENE ETHERS AND OXYALKYLENE ESTERS.
US510360A 1962-03-07 1965-11-29 Method for improving the working properties of metals Expired - Lifetime US3364143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US510360A US3364143A (en) 1962-03-07 1965-11-29 Method for improving the working properties of metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US177968A US3242200A (en) 1962-03-07 1962-03-07 Esters of higher fatty acids having hydroxy and ether substituents on adjacent carbon atoms of the acyl moiety
US510360A US3364143A (en) 1962-03-07 1965-11-29 Method for improving the working properties of metals

Publications (1)

Publication Number Publication Date
US3364143A true US3364143A (en) 1968-01-16

Family

ID=26873826

Family Applications (1)

Application Number Title Priority Date Filing Date
US510360A Expired - Lifetime US3364143A (en) 1962-03-07 1965-11-29 Method for improving the working properties of metals

Country Status (1)

Country Link
US (1) US3364143A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585565A (en) * 1984-11-23 1986-04-29 Aluminum Company Of America Metalworking lubricant comprising mineral oil and alkoxyalkyl ester
EP0193870A2 (en) * 1985-02-27 1986-09-10 The Nisshin Oil Mills, Ltd. Cold rolling mill lubricant and method of manufacturing steel sheets
US4618441A (en) * 1984-11-23 1986-10-21 Aluminum Company Of America Metalworking with a lubricant composition comprising mineral oil and alkoxyalkyl ester
US4729839A (en) * 1986-05-29 1988-03-08 Phillips Petroleum Company Water soluble lubricating additives
US4767554A (en) * 1987-09-18 1988-08-30 Nalco Chemical Company Polycarboxylic acid ester drawing and ironing lubricant emulsions and concentrates
US4776970A (en) * 1985-11-20 1988-10-11 San Nopco Limited Lubricant for use in paper coating and method for producing the same
EP0918084A2 (en) * 1997-11-21 1999-05-26 Basf Aktiengesellschaft Additive for conveyor lubricant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1795491A (en) * 1924-09-08 1931-03-10 Standard Oil Dev Co Sulfonic lubricating material and process of making the same
US3024198A (en) * 1958-04-28 1962-03-06 Nopco Chem Co Emulsifier composition
US3066159A (en) * 1960-11-29 1962-11-27 Petrolite Corp Reaction product of polyols and epoxidized fatty compounds
US3117929A (en) * 1958-08-08 1964-01-14 Texaco Inc Transparent dispersion lubricants
US3202607A (en) * 1961-12-21 1965-08-24 Celanese Corp Metal working fluids
US3242200A (en) * 1962-03-07 1966-03-22 Swift & Co Esters of higher fatty acids having hydroxy and ether substituents on adjacent carbon atoms of the acyl moiety

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1795491A (en) * 1924-09-08 1931-03-10 Standard Oil Dev Co Sulfonic lubricating material and process of making the same
US3024198A (en) * 1958-04-28 1962-03-06 Nopco Chem Co Emulsifier composition
US3117929A (en) * 1958-08-08 1964-01-14 Texaco Inc Transparent dispersion lubricants
US3066159A (en) * 1960-11-29 1962-11-27 Petrolite Corp Reaction product of polyols and epoxidized fatty compounds
US3202607A (en) * 1961-12-21 1965-08-24 Celanese Corp Metal working fluids
US3242200A (en) * 1962-03-07 1966-03-22 Swift & Co Esters of higher fatty acids having hydroxy and ether substituents on adjacent carbon atoms of the acyl moiety

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585565A (en) * 1984-11-23 1986-04-29 Aluminum Company Of America Metalworking lubricant comprising mineral oil and alkoxyalkyl ester
US4618441A (en) * 1984-11-23 1986-10-21 Aluminum Company Of America Metalworking with a lubricant composition comprising mineral oil and alkoxyalkyl ester
EP0193870A2 (en) * 1985-02-27 1986-09-10 The Nisshin Oil Mills, Ltd. Cold rolling mill lubricant and method of manufacturing steel sheets
EP0193870A3 (en) * 1985-02-27 1987-01-21 The Nisshin Oil Mills, Ltd. Cold rolling mill lubricant and method of manufacturing steel sheets
US4776970A (en) * 1985-11-20 1988-10-11 San Nopco Limited Lubricant for use in paper coating and method for producing the same
US4729839A (en) * 1986-05-29 1988-03-08 Phillips Petroleum Company Water soluble lubricating additives
US4767554A (en) * 1987-09-18 1988-08-30 Nalco Chemical Company Polycarboxylic acid ester drawing and ironing lubricant emulsions and concentrates
EP0918084A2 (en) * 1997-11-21 1999-05-26 Basf Aktiengesellschaft Additive for conveyor lubricant
EP0918084A3 (en) * 1997-11-21 1999-11-17 Basf Aktiengesellschaft Additive for conveyor lubricant

Similar Documents

Publication Publication Date Title
EP0069960B1 (en) Machining fluid of water soluble type using organic surfactants
KR100434573B1 (en) Aqueous lubricant for cold working of metal materials
CN101016498A (en) Composition of cold rolling sheet rolling oil
US3130159A (en) Lubricant for working of metals
US3518917A (en) Method of supplying fluids to machine tools
CA2938598C (en) Polyalkanoic or polyalkenoic acid based high perormance, water-dilutable lubricity additive for multi-metal metalworking applications
US4215002A (en) Water-based phosphonate lubricants
US5391310A (en) Sulfurized aqueous machining fluid composition
US3364143A (en) Method for improving the working properties of metals
US3950258A (en) Aqueous lubricants
US3242200A (en) Esters of higher fatty acids having hydroxy and ether substituents on adjacent carbon atoms of the acyl moiety
US3634245A (en) Water soluble lubricant
AU696771B2 (en) Metalworking process
US5360560A (en) Universal lubricant based on a synthetic oil solution
US3657126A (en) Oil and water-base lubricant: that, as to improvements in oil and water-base lubricants
US4767554A (en) Polycarboxylic acid ester drawing and ironing lubricant emulsions and concentrates
US2967831A (en) Hydraulic fluid and its preparation
US3024198A (en) Emulsifier composition
JPH05505806A (en) Esters and liquids containing them
US3200073A (en) Agents to improve yields of hydroxy stearate greases
JPH10298577A (en) Lubricant composition
NO150564B (en) COMPONENT FOR A WATER DELINABLE LUBRICANT FOR METAL WORKING AND APPLICATION OF THIS COMPONENT
JP2984026B2 (en) Metal working oil and metal working method
US10000718B2 (en) Sulphur-bridged compounds, use thereof and process for production thereof
JPH06256789A (en) Water-soluble lubricant for cold pilger rolling and method for lubrication in cold pilger rolling machine