New! View global litigation for patent families

US3351894A - Connector - Google Patents

Connector Download PDF

Info

Publication number
US3351894A
US3351894A US56822166A US3351894A US 3351894 A US3351894 A US 3351894A US 56822166 A US56822166 A US 56822166A US 3351894 A US3351894 A US 3351894A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
socket
contact
side
connector
portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Kinkaid Robert John
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMP Inc
Original Assignee
AMP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01RLINE CONNECTORS; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCBs], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • H01R12/722Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits
    • H01R12/724Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits containing contact members forming a right angle
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01RLINE CONNECTORS; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00-H01R33/00
    • H01R13/40Securing contact members in or to a base or case; Insulating of contact members
    • H01R13/42Securing in a demountable manner
    • H01R13/428Securing in a demountable manner by resilient locking means on the contact members; by locking means on resilient contact members
    • H01R13/432Securing in a demountable manner by resilient locking means on the contact members; by locking means on resilient contact members by stamped-out resilient tongue snapping behind shoulder in base or case
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01RLINE CONNECTORS; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00-H01R33/00
    • H01R13/64Means for preventing incorrect coupling

Description

R. J. KINKAID Nov. 7, 1967 CONNECTOR Original Filed Nov. 2'7, 1961 United States Patent C) 3,351,894 CONNECTOR Robert John Kiukaid, New Cumberland, Pa., assignor to AMP Incorporated, Harrisburg, Pa. Application Mar. 3, 1965, Ser. No. 436,827, now Patent No. 3,264,599, dated Aug. 2, 1966, which is a division of application Ser. No. 157,037, Nov. 27, 1961, now Patent No. 3,215,975. Dividedand this application July 27, 1966, Ser. No. 568,221

8 Claims. (Cl. 339-217) ABSTRACT OF THE DISCLOSURE A connector to be received in a housing and having a spring detent struck from one side of said connector and extending into an opening formed in a second side of said connector.

This application is a division of my parent application Ser. No. 436,827 filed Mar. 3, 1965, and noW Patent No. 3,264,599, issued Aug. 2, 1966, which is a division of my prior application Ser. No. 157,037 filed Nov. 27, 1961, and now Patent No. 3,215,975, which is a continuationin-part of my prior application Ser. No. 75,955 filed Dec. 15, 1960, now abandoned.

A variety of connectors have been proposed for incorporating banks of printed circuit cards in a system, but the lack of versatility, reliability, ruggedness and economy, in more or less degree, is a common failing.

An important feature of the invention, therefore, is the provision of a rugged and reliable connector assembly easily adaptable to a variety of functions and forms in the wiring of printed circuit card blanks in electrical systems. To this end, as an objective the connector assembly of this invention includes a multi-contact plug block and a mating socket block, wherein the plug block may be formed so as to connect a printed circuit card individually into one of an array of socket blocks, or additionally may provide connections for two or more socket blocks to a single printed circuit card, or merely to provide feed-through connections for two or more socket blocks.

Another feature of the invention concerns the character of the contacts in the plug and socket blocks which are simple and rugged, yet are producible with a wide range of manufacturing tolerances. Another feature lies in the preservation of long life of the contacts by providing a slide-fit engagement which is highly wear-resistant. Closely allied with this feature lies the reliability of contact engagementby multiplicity of contact points between the contacts of the plug and socket blocks, and between the plug contacts and the printed circuit cards.

An additional feature resides in the provision of a commercially feasible organization of parts which overcomes certain disadvantages inherent in the structures of the prior art, which features will become apparent to those skilled in the art upon reading the following detailed description when taken in conjunction with the drawings in which:

FIGURE 1 is a perspective view of an embodiment of a connector block assembly according to the present invention;

FIGURE 2 is an enlarged side view, in section, of the connector assembly of FIGURE 1, but with the connector blocks engaged;

FIGURE 3 is a fragmentary sectional view taken along lines 33 of FIGURE 2;

FIGURE 4 is a fragmentary sectional view, further enlarged, taken along lines 4-4 of FIGURE 2; and

FIGURE 5 is an enlarged perspective view of a contact for insertion in the socket block of the assembly.

With reference to the embodiment of the invention, as shown in FIGURES 1-5, the connector block assembly includes a plug block 2 mounted on a printed circuit card 4 for cooperation with a socket block 6 to complete circuit connections from the printed circuit lines 8 and the electrical components (not shown) on card 4v to lead wires 10 associated with socket block 6 which lead to other apparatus of the electrical system involved.

The body of plug block 2 is of suitable insulating material and carries a row of plug contacts 12 which preferably are sheet-metal stampings from brass coated with a gold plating, especially when used for dry circuit connections. Conveniently, plug contacts 12 are insert-molded in plug block 2, and to this end the main body portion 14 has a central aperture 16 through which insulation of block 2 may extend for firmly anchoring the contacts. Each plug contact has a pair of tangs 18 projecting from the bottom surface of plug block 2 and received in a pair of apertures 20 in printed circuit card 4 for solder connection 22 in the usual manner to a printed circuit line 8 that passes by the apertures. Two such tangs are preferred to protect against faulty solder connections by multiplicity. Each plug contact 12 further has a plug part projecting from the forward face of plug block 2, advantageously in the form of a generally rectangular blade 24 having smoothly rounded corners on one side to provide a pair of longitudinally extending contact surfaces 26 as best shown in FIGURE 4. Preferably, the rounded corners are achieved by coining the edges of a flat sheet metal blank, thus to maintain close tolerances. In cross-section, contact surfaces 26 are arcuate on a radius of curvature which breaks the corners of the blade to the extent of about one-half the stock thickness. The side of the blades containing the contact surfaces 26, for convenience in assembly, all face in the same direction.

Socket block 6, also preferably molded from a suitable insulating plastic material, is generally rectangular and has a row of through passageways 28 extending between its front and back faces 30 and 32 respectively, thus to admit in their front end the row of plug blades 24 for cooperative engagement with a corresponding set of socket contacts 34 received into the back face of the passageways and supported in the socket block. The socket contacts also are of a form suitable for fabrication by sheet metal stamping techniques, preferably from a metal having spring qualities; e.g., Phosphor bronze with a highly conductive and corrosive-resistant coating such as a gold plating, and include an elongated blade-receiving socket section defined by a base 36 having a pair of opposed side flanges 38 bent back upon the base toward one another with their end edges 40 spaced less than the width of blades 24. Side flanges 38 addition-ally are curved, preferably by a coining operation to achieve close tolerances, on a radius of curvature slightly larger than the radius of curvature of plug contact surfaces 26, thus to provide mating contact surfaces 42 on their inside surfaces, the tangent at end edges 40 to this curvature projecting at a diverging angle relative to socket base 36. A radius of curvature for side flanges 38 of approximately 1 /2 times the radius of curvature of plug surfaces 26 has been found to be mechanically optimum.

As thus constructed, when a blade 24 is telescoped with a socket contact 34 and relatively pressed against side flanges 38, plug contact surfaces 26 are accommodated within the curvature of socket contact surfaces 42, effecting a predictable and constant quality of electrical engagement in their areas of meeting regardless of a wide range of configurational departures caused, for example, by accidental deformation or design tolerances. A spring prong 44 struck out of base 36 and extending inwardly and forwardly in socket contact 34 supplies the spring pressure for biasing or pressing blade 24 against flanges 38. Further, prong 44 is generally arcuate transversely of its axis with its free end normally positioned below the inside surface of base 36 so as not to interfere with the plug blade on insertion.

Socket contacts 34 advantageously are rather loosely mounted in socket block 6 in a snap-in relation so that they can adjust individually to the entrance angle of the rigidly mounted plug blades 24 into passageways 28. In this regard, a spring detent 46 struck out of base 36 and extending inwardly and rearwardly in socket contact 34 is arranged to engage behind a stop shoulder 47 extending inwardly from a sidewall of passageway 28 as the forward end of the socket contact approaches lips 48 at the forward end of the passageway upon insertion of the socket contact from the back face 32 of the socket block. Stop shoulder 47 is centrally arranged on the sidewall of the passageway so that on proper insertion of a socket contact 34, it will be passed in the space between end edges 46 of side flanges 38. If an attempt is made to insert the socket contact upside down, however, base 36 will be obstructed by stop shoulder 47, thus to assure that all the socket contacts will be properly inserted to face in the same direction and in proper orientation relative to blade contacts 12.

At the rearward end of each socket contact, suitable means are provided for connection with lead wires 10. Typically, such means, as shown in FIGURE 5, may comprise two pairs of ears d and 52 crimped about the stripped metallic core 54 and the insulation 56, respectively, of the lead wire in a manner well-known in the art.

To interfit the blocks simply and accurately, alignment and guide means are provided, preferably of a form adding no parts or manufacturing complexity. Thus, socket block 6 is molded with a pair of integral guide lugs 58 projecting forwardly from front face 30 along which extends a slot 60. Lugs 58 are spaced to guide an extended portion 62 of printed circuit card 4 into slot 60 as blades 12 are thereby aligned with and enter passageways 28.

A pair of side lugs 64 for rack-mounting socket block 6 may be provided, if desired.

As thus constructed and arranged, the part are seen to be of simple and rugged construction, yet highly reliable and effective in performance. For example, the spring portions, viz., prong 44 and detent 46, are wholly protected by being enclosed within the channel configuration of socket contact 34. Further, it is contemplated that in normal use the solid crimp section of the socket contact, including ears 50 and 52, will have slightly larger crosssectional dimensions than the contact section including flanges 38, thereby tending first to absorb any external shocks.

Moreover, even should flanges 38 become distorted as by being bent more or less closed, the quality of electrical contact will not suffer so long as blade 24 is capable of entering the socket contact channel, since the accommodation of curved contact surfaces 26 to contact surfaces 42 is essentially independent of the angle of flanges 38 or the relative thickness of the blade. Forceful insertion of a blade 24 is also effective to reform the flanges to operative condition. It is to be understood, however, that in normal use the main body of socket contact 34, including side flanges 38 and base 36, is intended to be a rigid structure which does not bend or deflect to any significant extent on insertion of blade 24. That is to say, the character and control of the contact pressure between the mating parts is preferably determined primarily by the character and design of spring 44. More constant and predictable quality of electrical contact can be thus achieved.

In relation to the character of the electrical contact and contact pressure between surfaces 26 and 42, it will be apparent that under the force exerted by spring 44, blade 24 tends to wedge and bend side flanges 38 apart. The magnitude of the wedging force, for a given spring pressure, will depend upon the angle 0 between the line tangent to the contact point of surfaces 26 and 42, and the line along which the force of spring 44 is applied, i.e., a line perpendicular to the base of blade 24. More specifically stated, the normal force F,,, at the point of contact is equal to the applied force, P delivered by spring 44, divided by sin 0. Where angle 0 is low, i.e., the contact point is low along the side of blade 24, the normal force can become quite high, disadvantageously ten-ding to bend flanges 38 and increasing the force required to insert the blade and the wear on the parts during insertion, perhaps to the point of destruction of any gold plating. Accordingly, it is important that angle 0 have a high value; in practice 68 have been found to be optimum, although angles within the range 63 to 73 are acceptable.

It is also important to note that the contact assembly is polarized; that is, blade 24 cannot be inserted into the channel of socket contact 34 upside down because the unbroken or square side corners of the blade would interfere with flanges 38. In other words, side flanges 38 are turned inwardly sufficiently far that, relative to the width and thickness of rectangular blade 24, the channel of the socket contact will not admit the blade but for the breaking of side corners 26.

In this specification and accompanying drawings, I have shown and described a preferred embodiment of my invention and suggested various modifications; but it is to be understood that these are not intended to be exhaustive nor limiting of the invention but, on the contrary, are given for purposes of illustration in order that others skilled in the art may fully understand the invention and the principles, and the manner of applying it in practical use so that they may modify and adapt it in various forms, each as may best be suited to the conditions of a particular use.

I claim:

1. A connector element adapted to be received in a housing, said connector comprising a forward contactengaging portion and a rearward conductor-engaging portion, said forward portion having a spring detent struck from one side thereof, said forward portion further having an opening extending along a second side opposite to said one side, said detent extending generally rearwardly from its point of attachment on said one side and into the opening along said second side, said detent being capable of rearward flexing upon insertion of said connector into said housing, and upon further insertion into said housing said detent being capable of movement away from said one side into cooperation with a depending surface of said housing to prevent the withdrawal of said connector from said housing.

2. A connector element as set forth in claim 1 further comprising means for limiting movement of said connector into said housing upon insertion thereof.

3. A connector element as set forth in claim 1 wherein said connector is formed of sheet metal and wherein said contact-engaging portion is a plug receiving socket.

4. An electrical terminal of the type adapted to be inserted within a socket of a terminal block and having an elongate body with a forward end and a rear end, said body comprising a hollow portion having an opening through one side thereof and a tab struck inwardly from the opposite side thereof, said tab traversing the interior of said hollow portion and extending into said opening, said tab being adapted to engage shoulder means on the terminal block to limit movement of the terminal in the socket in the directionv of said rear end, the extending portion of the tab being axially offset substantially from the portion of the tab connected with said opposite side of said hollow portion.

5. An electrical terminal as set forth in claim 4 wherein said tab traverses the interior of the hollow portion at an acute angle to the axis of the hollow portion.

6. In an electrical connector, the combination comprising a terminal block having an open ended socket provided with radially inwardly extending shoulder means, an elongate electrical terminal inserted axially within the socket and having a hollow portion, said terminal having a forward end adapted to be electrically connected with another terminal and a rear end to which a wire is adapted to be connected, the hollow portion of said terminal having a tab struck inwardly from one side thereof and an aperture on the opposite side thereof into which said tab extends, said tab extending across the hollow interior of the terminal at an acute angle to the longitudinal axis of the terminal with the projecting end of the tab engageable with the shoulder means on the terminal block to limit axial movement of the terminal in said socket in the direction of said rear end.

7. A connector element adapted to be received in a housing, said connector comprising a forward contact engaging portion and a rearward conductor engaging portion, said forward portion having a spring detent struck from one side thereof, said forward portion further having an opening extending along a second side opposite to said one side, said detent extending through a hollow interior portion of said connector from said one side into the opening in said second side, said detent being capable of flexing inwardly upon insertion of said connector into said housing, said detent being further capable of flexing outwardly into cooperation with a depending surface of said housing to prevent the withdrawal of said connector from said housing.

8. A connector element as set forth in claim 7 wherein said detent traverses the interior of the hollow portion at an acute angle to the axis of the connector.

References Cited UNITED STATES PATENTS 3,083,345 3/1963 Scheller 339-217 X MARVIN A. CHAMPION, Primary Examiner.

PATRICK A. CLIFFORD, Examiner.

Claims (1)

1. A CONNECTOR ELEMENT ADAPTED TO BE RECEIVED IN A HOUSING, SAID CONNECTOR COMPRISING A FORWARD CONTACTENGAGING PORTION AND A REARWARD CONDUCTOR-ENGAGING PORTION, SAID FORWARD PORTION HAVING A SPRING DETENT STRUCK FROM ONE SIDE THEREOF, SAID FORWARD PORTION FURTHER HAVING AN OPENING EXTENDING ALONG A SECOND SIDE OPPOSITE TO SAID ONE SIDE, SAID DETENT EXTENDING GENERALLY REARWARDLY FROM ITS POINT OF ATTACHMENT ON SAID ONE SIDE AND INTO THE OPENING ALONG SAID SECOND SIDE, SAID DETENT BEING CAPABLE OF REARWARD FLEXING UPON INSERTION OF SAID CONNECTOR INTO SAID HOUSING, AND UPON FURTHER INSERTION INTO SAID HOUSING SAID DETENT BEING CAPABLE OF MOVEMENT AWAY FROM SAID ONE SIDE INTO COOPERATION WITH A DEPENDING SURFACE OF SAID HOUSING TO PREVENT THE WITHDRAWAL OF SAID CONNECTOR FROM SAID HOUSING.
US3351894A 1961-11-27 1966-07-27 Connector Expired - Lifetime US3351894A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US3215975A US3215975A (en) 1961-11-27 1961-11-27 Connector block assembly
US3264599A US3264599A (en) 1961-11-27 1965-03-03 Connector block assembly
US3351894A US3351894A (en) 1961-11-27 1966-07-27 Connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3351894A US3351894A (en) 1961-11-27 1966-07-27 Connector

Publications (1)

Publication Number Publication Date
US3351894A true US3351894A (en) 1967-11-07

Family

ID=27387957

Family Applications (1)

Application Number Title Priority Date Filing Date
US3351894A Expired - Lifetime US3351894A (en) 1961-11-27 1966-07-27 Connector

Country Status (1)

Country Link
US (1) US3351894A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517370A (en) * 1966-05-27 1970-06-23 Etablis Proner Sa Insulating protector for clips used in electrical connections
US3634811A (en) * 1968-09-23 1972-01-11 Amp Inc Hermaphroditic connector assembly
US3699502A (en) * 1971-01-11 1972-10-17 Amp Inc Electrical connector having improved contact retention means
US4030792A (en) * 1976-03-01 1977-06-21 Fabri-Tek Incorporated Tuning fork connector
US4124264A (en) * 1976-04-05 1978-11-07 Nissan Motor Company, Ltd. Electric plug assembly
US4641908A (en) * 1984-01-27 1987-02-10 Siemens Aktiengesellschaft Right-angled plug-type connector
US4697864A (en) * 1986-06-19 1987-10-06 Amp Incorporated Printed circuit board receptacle for sealed connector
US4767350A (en) * 1986-06-20 1988-08-30 Amp Incorporated Receptacle and plug assembly
US4859191A (en) * 1986-05-30 1989-08-22 Texas Instruments Incorporated Multi-piece connector assembly
US4874317A (en) * 1988-08-15 1989-10-17 Switchcraft, Inc. Jackfield with front terminals
WO1998034301A1 (en) * 1997-02-01 1998-08-06 Ut Automotive Dearborn, Inc. Improved lateral insertion connector
US8632365B2 (en) 2010-06-07 2014-01-21 Fci Americas Technology Llc Electrical card-edge connector
US8690589B2 (en) 2010-06-07 2014-04-08 Fci Americas Technology Llc Electrical card-edge connector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3083345A (en) * 1960-11-21 1963-03-26 Amp Inc Electrical connector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3083345A (en) * 1960-11-21 1963-03-26 Amp Inc Electrical connector

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517370A (en) * 1966-05-27 1970-06-23 Etablis Proner Sa Insulating protector for clips used in electrical connections
US3634811A (en) * 1968-09-23 1972-01-11 Amp Inc Hermaphroditic connector assembly
US3699502A (en) * 1971-01-11 1972-10-17 Amp Inc Electrical connector having improved contact retention means
US4030792A (en) * 1976-03-01 1977-06-21 Fabri-Tek Incorporated Tuning fork connector
US4124264A (en) * 1976-04-05 1978-11-07 Nissan Motor Company, Ltd. Electric plug assembly
US4641908A (en) * 1984-01-27 1987-02-10 Siemens Aktiengesellschaft Right-angled plug-type connector
US4859191A (en) * 1986-05-30 1989-08-22 Texas Instruments Incorporated Multi-piece connector assembly
US4697864A (en) * 1986-06-19 1987-10-06 Amp Incorporated Printed circuit board receptacle for sealed connector
US4767350A (en) * 1986-06-20 1988-08-30 Amp Incorporated Receptacle and plug assembly
US4874317A (en) * 1988-08-15 1989-10-17 Switchcraft, Inc. Jackfield with front terminals
WO1998034301A1 (en) * 1997-02-01 1998-08-06 Ut Automotive Dearborn, Inc. Improved lateral insertion connector
US8632365B2 (en) 2010-06-07 2014-01-21 Fci Americas Technology Llc Electrical card-edge connector
US8690589B2 (en) 2010-06-07 2014-04-08 Fci Americas Technology Llc Electrical card-edge connector

Similar Documents

Publication Publication Date Title
US3348191A (en) Electrical connector elements
US3208030A (en) Electrical connector
US3601775A (en) Printed circuit connector
US3555493A (en) Right angle printed circuit board connector
US3178669A (en) Electrical connecting device
US3562698A (en) Electrical contact
US3173737A (en) Connector with tab terminal latching means
US6210240B1 (en) Electrical connector with improved terminal
US6183287B1 (en) Electrical connector
US3845455A (en) Tubular conductor-in-slot connecting device
US3955869A (en) Electrical socket and socket contact adapted for use therewith
US5297966A (en) Mounting bracket for an electrical connector
US6024612A (en) Receptacle contact
US4316647A (en) Miniature audio connector
US3569900A (en) Electrical connector assembly
US5704809A (en) Coaxial electrical connector
US4943248A (en) Electrical terminal for bladed fuse
US5595509A (en) Electrical connector with terminal position assurance system
US4902242A (en) Panel mount, cable terminable connector with die cast housing and drawn shell
US6482045B2 (en) Connector socket, connector plug and connector assembly
US5310360A (en) Circuit board mounted modular phone jack
US5713767A (en) Socket contact having spring fingers and integral shield
US6783405B1 (en) Terminal for electric connector for communication apparatus
US5582519A (en) Make-first-break-last ground connections
US4963102A (en) Electrical connector of the hermaphroditic type