US3336100A - Process for the production of molybdenum dioxide - Google Patents
Process for the production of molybdenum dioxide Download PDFInfo
- Publication number
- US3336100A US3336100A US347388A US34738864A US3336100A US 3336100 A US3336100 A US 3336100A US 347388 A US347388 A US 347388A US 34738864 A US34738864 A US 34738864A US 3336100 A US3336100 A US 3336100A
- Authority
- US
- United States
- Prior art keywords
- molybdenum
- furnace
- atmosphere
- product
- molybdenum dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 title claims description 30
- 238000000034 method Methods 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000047 product Substances 0.000 claims description 26
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 14
- 239000007795 chemical reaction product Substances 0.000 claims description 14
- 230000001603 reducing effect Effects 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Inorganic materials O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 239000011541 reaction mixture Substances 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 2
- 102100030393 G-patch domain and KOW motifs-containing protein Human genes 0.000 claims 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 17
- 229910052750 molybdenum Inorganic materials 0.000 description 17
- 239000011733 molybdenum Substances 0.000 description 17
- 239000005864 Sulphur Substances 0.000 description 12
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 229910001309 Ferromolybdenum Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 235000010269 sulphur dioxide Nutrition 0.000 description 6
- 239000004291 sulphur dioxide Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000012141 concentrate Substances 0.000 description 5
- 229910052961 molybdenite Inorganic materials 0.000 description 5
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000003750 conditioning effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000002000 scavenging effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005188 flotation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000501754 Astronotus ocellatus Species 0.000 description 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001033 granulometry Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G39/00—Compounds of molybdenum
- C01G39/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- This invention relates to prepartion of molybdenum dioxide for industrial uses'such as production of molybdenum steels and alloys.
- I l I Present industrial practices for addition of molybdenum to a bath of liquid steel include placing a quantity of a molybdenum alloy, generally ferromolybdenum, which has the. amount of molybdenum required within a solid charge of a furnace before the charge is melted.
- Another practice comprises adding the ferromolybdenum to the molten bath.
- Such practices have disadvantages due to the high melting point and great density of ferromolybdenum, which is slow to dissolve in the steel bath because the temperature of the bath is generally lower than the melting point of the ferromolybdenum.
- the ferromolybdenum remains on the bottom of the furnace and, after tapping out thesteel the furnace operator finds pieces of the ferromolybdenum on the bottom of the furnace. Consequently, the steel tapped out is deficient in molybdenum and residual molybdenum left in the furnace is liable to be incorporated into the next heat of steel in which it is unnecessary, or even unwanted, if the next heat requires a low molybdenum content. Thus, consecutive heats of steel may not havethe specified amount of molybdenum.
- molybdic oxide, M00 which may or may not be accompanied by a reducing agent, onto a steel bath.
- the reducing action of the iron, and contingently that of the reducing agent, frees the molybdenum which becomes incorporated into the has disadvantages which arise fromthe molybdenum oxhaving a considerable vapor pressure at the temperatures of application.
- a substantial proportion is lost by sublimation or by entrainment in the pulverulent condition. Inlight of the cost of molybdenum, a sizable loss is encountered.
- the amount lost'is variable and the steel or alloy may lack the specified amount of molybdenum.
- M00 instead of M00 in this last method of operation ofiers considerable advantages.
- M00 requires less reducing agent since it contains no more than 2 atoms of oxygen instead of 3 per atom of molybdenum.
- This fixing of sulphur by molybdenum dioxide does not depend only upon the partial pressure of sulphur dioxide, but also'upon the length of time of subjection of the dioxide to presence of certain impurities.
- My invention relates to a process which includes a reaction of M05 and M00, and renders it possible-to produce a molybdenum dioxide, M00 which has a very low 8 content and a low M00 content.
- the process comprises intimately mixing finely divided products containing M00 and M08, in stoichiometrical amounts which allow for contingently presentimpurities liable to react with these two compounds.
- the resulting mixture is very gradually heated within an enclosure wherein the advantage ofliered by the generated.
- the following the particular atmosphere and upon the' 3 atmosphere is conditioned.
- the reaction between M and M takes place between 600 C. and 700 C., and preferably between 650 C.
- the mixture introduced into the reaction enclosure is the product from a molybdenite roasting kiln
- the sulphur it contains must be measured to determine the proportions of the products which are to be mixed in order to practice my process.
- the operation of a roasting kiln of this kind may be regulated so that the product obtained may be used directly in my process.
- the physical condition and chemical composition of the products introduced into the kiln or furnace are adapted to the quality of the molybdenum dioxide to be manufactured.
- molybdic oxide M00 whose grains are smaller than 2 mm.
- the flotation concentrates are appropriate for the M08 however, it is desirable that this M05 have a high degree of fineness. Additionally, special attention is devoted to stirring of the M00 and MOS; to obtain an intimate mixture.
- the reaction between the M00 and the M08 is performed in a hermetic rotary furnace which isequipped with devices for conditioning the atmosphere therein.
- the reactive mixture is heated progressively and maintained at a temperature exceeding 650 C. for a certain time, such as several hours. Temperatures which exceed 700 C. are avoided so as not to efi'ectvfritting of the M00 and M08
- the time of this heating or first stage depends upon the quality of the product one wishes to obtain, and upon certain characteristics of the reactive mixture, for example, grain sizes, mode of operation, the agitation of the mixture, or the thickness of a solid layer in the furnace. 1
- the atmosphere of the furnace is under pressure in slight excess of that on the outside of the furnace (for instances 5 to 10 mm. of water) and is progressively enriched with S0; until the proportion of S0 exceeds 80%. Naturally, escape of. the gases to the outside occurs.
- the yield from my process varies according to the operating conditions and may reach 95%.
- this first stage is terminated when the reaction products contain less than 0.5% S and less than M003.
- my invention includes commencing the desulphurization, or second stage, earlier and also covers extending the first stage until release of S0 becomes insignificant, i.e. until the pressure inside the furnace stops being superior to the atmospheric pressure, thereby avoiding air entering the furnace.
- the residual sulphur content results predominantly from the action of an atmosphere rich in S0 upon the M00 of the reaction product; half the residual sulphur I the M00 product while a very low percentage of S is results from this action when the S0 content in the atmosphere of the furnace ranges about
- the product is maintained at a moderately high temperature, 400 C. to 600C, within an enclosure under a pressure close to atmospheric pressure, in which partial S0 pressure is as low as possible and generally lower than 10%.
- the reaction product is maintained at a moderately high temperature, 400 C. to 600C, within an enclosure under a pressure close to atmospheric pressure, in which partial S0 pressure is as low as possible and generally lower than 10%. In this enclosure, the
- This second stage may be carried out between the end required, the furnace of the second stage is scavenged with a slightly oxidizing current of gas, e.g., one containing a limited quantity of air.
- a slightly oxidizing current of gas e.g., one containing a limited quantity of air.
- the quantity of air -therefore oxygen-to be admitted obviously depends upon the reoxidization of. the product which may be tolerated for substantially the whole oxygen so introduced oxides M00 into M00 This lowers the amount of sulphur but increases the content of free M00 due to a slight reoxidization of the surface of the M00 product.
- the desulphu'rization may also be performed at a temperature comprised between 600 C. and 700 C. However, one must wait until the emission of S0 has become sufficiently low so that the required rate of flow of the diluent gas necessary for maintaining under 10% the partial S0 pressure in the atmosphere of the furnace is not economically prohibitive.
- the reaction between thev M00 and the MOS may continue to a certain extent with the last traces of reducing sulphur in the reaction product. If in this case the gaseous scavenging necessary to lower the concentration of sulphur dioxide is performed with air, the resulting oxidization on the surface of the molybdenum dioxide may even hasten the end of the reaction.
- the cooling of the product rich in M00 is carried out in a non-oxidizing atmosphere, neutral or reducing, to about 250 C., to prevent its reoxidization.
- a non-oxidizing atmosphere neutral or reducing
- the inert atmosphere employed for the desulphurization stage is particularly suitable.
- the second stage desulphurization, occurs in the same furnace as the first stage, wherein the atmosphere is modified so that it contains 'less than 10% S0
- the reaction products are withdrawn from the furnace at the end of the first stage and introduced into another enclosure in which are conditions favorable for desulphurization.
- the process may be conducted continuously from the mixing to the extraction of the final cooled M00 product. It is further possible to practice the process by forming within an identical apparatus two enclosures separated by a partition wherein the lower extremity is immersed in the product which is being processed.
- Example I kg. of molybdic oxide of technical quality, containing 92% M00 and 14 kg. of molybdenite concentrate containing 86% MoS were carefully mixed and then treated in a rotary furnace in which they progressively reached a temperature of 650 C. In this furnace, they were maintained at this temperature for approximately 3 hours under a pressure close to atmospheric pressure.
- the furnace was equipped with devices for temperature control and atmosphere conditioning. When the atmosphere in the furnace contained 80% of S0 the release of sulphur dioxide had practically stopped. Thereafter, the temperature of the furnace was allowed to drop to 500 C.
- This product was then introduced into a second furnace substantially identical with the first and equipped with devices for the conditioning of the atmosphere. There it remained for approximately 2 hours at 600/ 650 C. while subjected to an atmosphere whose sulphur dioxide content was maintained at 10% by blowing in approximately 2 m. of air per 100 kg. of product.
- Example 111 In this example, I employed an oxide direct from roasting of molybdenite concentrates within a specially controlled furnace. The oxide contained:
- a process for the production of molybdenum dioxide comprising:
- the process of claim 1 characterized by carrying out said heating and maintaining until the atmosphere of a furnace in Which said heating and maintaining is performed is more than 80% S0 4.
- the process of claim 1 characterized by carrying out said heating and maintaining until the sulphur content of the reaction product is less than 0.5% sulphur and less than 15% M00 5.
- the process of claim 1 characterized by during said desulphu-rizing subjecting said reaction product to flows of an inert gas to maintain the S0 content of said atmosphere less than 10%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Manufacture And Refinement Of Metals (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR926277A FR1357784A (fr) | 1963-02-28 | 1963-02-28 | Procédé de fabrication de dioxyde de molybdène |
Publications (1)
Publication Number | Publication Date |
---|---|
US3336100A true US3336100A (en) | 1967-08-15 |
Family
ID=8798067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US347388A Expired - Lifetime US3336100A (en) | 1963-02-28 | 1964-02-26 | Process for the production of molybdenum dioxide |
Country Status (7)
Country | Link |
---|---|
US (1) | US3336100A (en&quot) |
BE (1) | BE643941A (en&quot) |
CH (1) | CH417552A (en&quot) |
DK (1) | DK111202B (en&quot) |
FR (1) | FR1357784A (en&quot) |
GB (1) | GB1016237A (en&quot) |
NL (1) | NL6401327A (en&quot) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3833352A (en) * | 1968-05-21 | 1974-09-03 | M Vojkovic | Process for beneficiating molybdenate concentrate to produce molybdenum trioxide |
US3928240A (en) * | 1971-09-01 | 1975-12-23 | Standard Oil Co Ohio | Process for the preparation of molybdenum-containing oxidation catalysts |
US4462822A (en) * | 1983-11-08 | 1984-07-31 | Amax Inc. | Molybdenum dioxide-molybdenite roasting |
US4551312A (en) * | 1984-11-13 | 1985-11-05 | Atlantic Richfield Company | Process for converting molybdenite to molybdenum oxide |
US4552749A (en) * | 1985-01-11 | 1985-11-12 | Amax Inc. | Process for the production of molybdenum dioxide |
US20080260612A1 (en) * | 2007-04-18 | 2008-10-23 | Orchard Material Technology, Llc | Oxidation of metallic materials as part of an extraction, purification and/or refining process |
US20140161715A1 (en) * | 2012-12-12 | 2014-06-12 | Orchard Material Technology | Sulfide oxidation process for production of molybdenum oxides from molybdenite |
CN113148960A (zh) * | 2021-04-13 | 2021-07-23 | 郑州大学 | 钼精矿短流程制备高纯度含硫产物的方法 |
CN113234940A (zh) * | 2021-04-13 | 2021-08-10 | 郑州大学 | 钼精矿短流程制备钼金属产物的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1637838A (en) * | 1925-01-27 | 1927-08-02 | Fillmore Hyde A | Method of treating ores |
US2398114A (en) * | 1942-09-12 | 1946-04-09 | Westinghouse Electric Corp | Reduction of molybdenum trioxide |
US2817583A (en) * | 1956-05-10 | 1957-12-24 | Basf Ag | Working up of sulfidic raw materials |
US2987392A (en) * | 1960-02-02 | 1961-06-06 | Lester D Supiro | Method of rapidly producing metallic powders of high purity |
-
1963
- 1963-02-28 FR FR926277A patent/FR1357784A/fr not_active Expired
-
1964
- 1964-02-14 NL NL6401327A patent/NL6401327A/xx unknown
- 1964-02-18 BE BE643941D patent/BE643941A/xx unknown
- 1964-02-21 DK DK85664AA patent/DK111202B/da unknown
- 1964-02-26 US US347388A patent/US3336100A/en not_active Expired - Lifetime
- 1964-02-28 CH CH248764A patent/CH417552A/fr unknown
- 1964-02-28 GB GB8498/64A patent/GB1016237A/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1637838A (en) * | 1925-01-27 | 1927-08-02 | Fillmore Hyde A | Method of treating ores |
US2398114A (en) * | 1942-09-12 | 1946-04-09 | Westinghouse Electric Corp | Reduction of molybdenum trioxide |
US2817583A (en) * | 1956-05-10 | 1957-12-24 | Basf Ag | Working up of sulfidic raw materials |
US2987392A (en) * | 1960-02-02 | 1961-06-06 | Lester D Supiro | Method of rapidly producing metallic powders of high purity |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3833352A (en) * | 1968-05-21 | 1974-09-03 | M Vojkovic | Process for beneficiating molybdenate concentrate to produce molybdenum trioxide |
US3928240A (en) * | 1971-09-01 | 1975-12-23 | Standard Oil Co Ohio | Process for the preparation of molybdenum-containing oxidation catalysts |
US4462822A (en) * | 1983-11-08 | 1984-07-31 | Amax Inc. | Molybdenum dioxide-molybdenite roasting |
US4551312A (en) * | 1984-11-13 | 1985-11-05 | Atlantic Richfield Company | Process for converting molybdenite to molybdenum oxide |
US4552749A (en) * | 1985-01-11 | 1985-11-12 | Amax Inc. | Process for the production of molybdenum dioxide |
US20080260612A1 (en) * | 2007-04-18 | 2008-10-23 | Orchard Material Technology, Llc | Oxidation of metallic materials as part of an extraction, purification and/or refining process |
US20140161715A1 (en) * | 2012-12-12 | 2014-06-12 | Orchard Material Technology | Sulfide oxidation process for production of molybdenum oxides from molybdenite |
US9187340B2 (en) * | 2012-12-12 | 2015-11-17 | Orchard Material Technology | Sulfide oxidation process for production of molybdenum oxides from molybdenite |
CN113148960A (zh) * | 2021-04-13 | 2021-07-23 | 郑州大学 | 钼精矿短流程制备高纯度含硫产物的方法 |
CN113234940A (zh) * | 2021-04-13 | 2021-08-10 | 郑州大学 | 钼精矿短流程制备钼金属产物的方法 |
Also Published As
Publication number | Publication date |
---|---|
FR1357784A (fr) | 1964-04-10 |
DK111202B (da) | 1968-07-01 |
NL6401327A (en&quot) | 1964-08-31 |
BE643941A (en&quot) | 1964-06-15 |
GB1016237A (en) | 1966-01-05 |
CH417552A (fr) | 1966-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2866701A (en) | Method of purifying silicon and ferrosilicon | |
US3336100A (en) | Process for the production of molybdenum dioxide | |
US2039645A (en) | Treatment of sulphur bearing ores | |
US4615729A (en) | Flash smelting process | |
JP7060113B2 (ja) | 溶鋼へのCa添加方法 | |
AU2013315359B2 (en) | Removal of radioactive impurities from a copper ore or copper concentrate during or after smelting | |
US1412452A (en) | Process for the purification of sulphur-bearing gases and concentration of their sulphur content | |
US4552749A (en) | Process for the production of molybdenum dioxide | |
US1917725A (en) | Condensation of sulphur arsenic compounds | |
US3975187A (en) | Treatment of carbothermically produced aluminum | |
US1034785A (en) | Method of producing refined metals and alloys. | |
US1835925A (en) | Smelting process | |
US2864689A (en) | Process of successively desulphurizing and desiliconizing a bath of pig iron | |
US2600813A (en) | Production of phosphoric acid | |
US1344905A (en) | Method of producing sulfur dioxid | |
US2011400A (en) | Process of treating zinciferous iron ores | |
US4154603A (en) | Method of producing alloy steels having an extremely low carbon content | |
US2830890A (en) | Process for the production of ferromanganese from low-grade manganese-bearing materials | |
US2815267A (en) | Process for the recovery of tin or tin dioxide from materials containing tin in an oxidic form | |
US2776871A (en) | Quality of vanadium trioxide for the manufacture of ductile vanadium | |
US1913833A (en) | Method of producing and refining tungsten steel | |
US735903A (en) | Method of manufacturing spelter from zinc ores. | |
US1818556A (en) | Method for the purification of iron and steel | |
US2383281A (en) | Process for producing magnesium containing beryllium | |
US2853378A (en) | Treatment of lead |