US3287512A - Multiple independent operable switch mechanisms with improved knob and indicating apparatus - Google Patents

Multiple independent operable switch mechanisms with improved knob and indicating apparatus Download PDF

Info

Publication number
US3287512A
US3287512A US487347A US48734765A US3287512A US 3287512 A US3287512 A US 3287512A US 487347 A US487347 A US 487347A US 48734765 A US48734765 A US 48734765A US 3287512 A US3287512 A US 3287512A
Authority
US
United States
Prior art keywords
rotary
shaft
switch
winding
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US487347A
Inventor
Elmer P Gertsch
Richard M Bloniarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Singer Co
Original Assignee
Singer Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US228467A priority Critical patent/US3244966A/en
Application filed by Singer Co filed Critical Singer Co
Priority to US487347A priority patent/US3287512A/en
Application granted granted Critical
Publication of US3287512A publication Critical patent/US3287512A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/165Indicators for switching condition, e.g. "on" or "off" comprising numbered dials

Description

MULTIPLE INDEENDENT OPERABLE SWITCH MECHANISMS WITH IMPROVED KNOB AND INDICATING APPARATUS 5 Sheets-Sheet 1 Original Filed Sept. 28, 1959 g z l m I i 3 m F i V II '0 J J O I w a w, v
1 l .l I I i'; a
8 l 'U" m g l I 1 d I 0 0 g 6, g, INVENTORS;
E. P. 6ERT$CH i R. M. BLON/ARZ BY mm A IRNEY Nov. 22, 1966 E, P. GERTSCH ETAL 3,287,512
MULTIPLE INDEPENDENT OPERABLE SWITCH MECHANISMS WITH IMPROVED KNOB AND INDICATING APPARATUS Original Filed Sept. 28, 1959 5 Sheets-Sheet 2 Nov. 22, 1966 E P. GERTSCH ETAL 3,287,512
MULTIPLE INDEPENDENT OPERABLE SWITCH MECHANISMS 1 WITH IMPROVED KNOB AND INDIGATING APPARATUS Original Filed Sept. 28, 1959 5 Sheets-Sheet 3 United States Patent MULTIPLE INDEPENDENT OPERABLE SWITCH MECHANISMS WITH IMPROVED KNOB AND IN- DICATING APPARATUS Elmer P. Gertsch and Richard M. Bloniarz, both of Los Angeles, Calif., assignors, by mesne assignments, to The Singer Company, New York, N.Y., a corporation of New Jersey Continuation of application Ser. No. 842,770, Sept. 28,
1959. This application Aug. 5, 1965, Ser. No. 487,347 10 Claims. (Cl. 20014) This is a division of our prior application, now Patent No. 3,244,966 issued April 5, 1966, which was in turn a continuation of application Serial No. 842,770 filed September 28, 1959, and now abandoned.
This invention pertains generally to variable electrical devices having a plurality of electrically variable units therein, and more particularly to such a device wherein each of the variable units includes and an electrical switch device or the like to provide means for connecting selectable tape to an output circuit.
It is a principal object of the invention to provide a compact and efficient control arrangement by which a plurality of independent rotatably-adjusted electrical devices can be individually controlled by a set of individually operable knobs which are connected to telescoped shafts extending centrally along an axis about which the devices are clustered. The arrangement is especially useful Where centralized control of several different devices (tap switches or the like, for example) is desired. Thus, rotary switches of conventional kinds can be individually and independently mounted in a clustered array, and all controlled from the central axis rather than over independent control shafts that would have to be mounted side-by-side on a front panel.
The invention further provides for the mounting of controlled devices in compartments spaced at different positions along the axis of a cylindrical casing, together with centralized but independently operable control from a single central knob assembly positioned within the outline of the casing. This arrangement greatly facilitates handling the casing and knobs as a unit, for example when mounting the assembly on a panel or the like, and facilitates adjustment of the devices and the reading of their positions. A particular advantage is the ability to read the settings of several different devices as a coordinated multidigit number, as will appear.
With the above considerations and objects in mind, the invention itself will now be described in connection with a preferred embodiment thereof given by way of example and not of limitation, and with reference to the accompanying drawings, in which:
FIG. 1 is a plan view of the apparatus of the present invention, with portions there-of being broken away.
FIG. 2 is an end view of the device shown in FIG. 1.
FIG. 3 is a sectional view of a portion of the device shown in the previous figures, taken on line 3-3 in FIG. 2.
FIG. 4 is a schematic wiring diagram of one form of the electrical circuitry of the apparatus of the present invention.
FIG. 5 is a sectional view taken on line 5-5 in FIG. 1, and showing one face of the rotary switches of the apparatus of the present invention.
FIG. 6 is a sectional view taken on line 66 in FIG. 1, and showing the reverse face of the switches shown in FIG. 4.
FIG. 7 is a schematic wiring diagram similar to FIG. 4 but illustrating other possible circuit arrangements.
Referring now paticularly to FIG. 1, an elongate cylindrical housing 10 is shown in position over the apparatus Patented Nov. 22, 1966 of the present invention, with the open end 12 of the housing in abutting relation with a shoulder on the end cap 14. A plurality of elements, both internal and external of the housing 10, are supported by the end cap 14, as will be described, and the housing 10 is held in place by means of a plurality of nuts 16 which are threaded onto respective supporting rods, one of which is shown at 18.
To the right of end cap are a plurality of rotary knobs 20, 22 and 24 which are mounted on coaxial shafts in a manner to be described in connection with FIG. 3. As may be seen, the knobs 20, 22 and 24 are arranged in order of decreasing diameter with increasing distance from the end cap 14. A suitable guard 26 is positioned over the three knobs, being connected to both the end cap 14 and to a housing 28 for a counter or register 30 which serves to indicate the number of turns through which a rotary knob 32 (and the shaft 34 connected thereto) has passed with respect to some fiducial position. A lock lever 33 may be provided for the counter shaft 34. As may be seen in FIG. 2, this counter 30 may provide an indication of the number of turns of shaft 34 away from the fiducial position from one to nine hundred and ninety nine. Accordingly, knobs 20, 22 and 24 may bear numerals from Zero to nine to indicate the relative positioning thereof with respect to a fiducial rotary position. However, as described below, there may optionally be provided eleven taps per winding, and corresponding dial markings, to permit ratio settings greater than unit: for example, as high as 1.111
The guard 26 has an aperture 36 therein to permit viewing of the indicia on the three knobs 20, 22 and 24, with the three digits of the knobs appearing through aperture 36 combining with the three digits of the counter 30 to form a six-digit reading corresponding to the setting of all the knobs, and, as a result, of all the adjustable rotary elements of the apparatus of the present invention, as will be better understood in connection with the description that follows. For some uses, the ten turn potentiometer shown can be replaced with a one turn potentiometer; in this case, a dial calibrated from zero to one hundred is used in place of counter 30, providing S-place resolution.
Referring again to FIG. 1, end cap 14 extends into the housing 10 a short distance and terminates in a face which provides a support surface for three switch assemblies 38, 40 and 42. As shown in the drawing, these three switches are substantially aligned axially of the housing 10 and the shaft 34, and they are radially displaced from central shaft 34 (as may better be seen in FIGS. 5 and 6). Rotary shafts 44, 46 and 48 are connected to the rotary elements of the three respective switches 38, 40 and 42, and these shafts are also respectively connected by suitable gearing to the shafts of the three knobs 20, 22 and 24, as Will be further explained.
A potted, toroidal transformer is indicated at 50, the taps on the several windings of which are connected to respective ones of the stationary contacts on the several switches 38, 40 and 42 by means of the conductors indicated generally at 52. The center of toroidal transformer 50 is hollow to permit passage therethrough of the central shaft 34 into a potentiometer the casing of which is shown at 54, and which is attached by suitable means to the plate 55. This plate 55 is secured to transformer 50, and serves to divide the housing into two compartments. One of these compartments includes the potentiometer 54, while the other includes the several switches and the transformer 50. Actually, the transformer 50 serves to divide the latter compartment into two smaller compartments, containing, respectively, the transformer itself and the switches. It will be understood that in the preferred form the transformer 50 comprises a single annular ferromagnetic core, with a plurality of toroidal windings thereon.
The manner in which the three knobs 20, 22 and 24 are attached to the three switches may be seen in FIG. 3. As previously stated, FIG. 3 is a sectional view of the apparatus taken on line 3--3 in FIG. 2, but with housing 28, knob 32 and all of the elements to the left (in FIG. 1) of the switches removed. Thus, shaft 34 passes centrally through all of the apparatus shown in FIG. 3, and a plurality of nested coaxial shafts 56, 58 and 60 are mounted thereon. Knob 20 is aflixed to shaft 56, knob 22 is affixed to shaft 58, and knob 24 is aflixed to shaft 60. The inner ends of the shafts 56, 58 and 60 (the ends remote from the respective knobs thereon) carry respective spur gears 62, 64 and 66. Each of these gears engages with a respective mating gear, only two of which are shown; viz., spur gears 68 and 69 which mesh with gears 62 and 64. The description that follows in connection with spur gear 68, and its mounting and connection with the switch assembly 40, is exemplary of the manner of mounting and connection for the remaining gears and their respective switch assemblies 38 and 42.
Spur gear 68 is mounted on shaft 46, and is secured for rotation therewith by means of a screw 70 or the like which passes through an aperture in the gear hub to engage the shaft. Shaft 46 is mounted for rotation with respect to the end cap 14 by means of a bearing indicated generally at 72, where the shaft passes through the inner face of the end cap. Shaft 46 then passes through a detent assembly 74 which includes a rotary element 76 having a plurality of detents therein and mounted on shaft 46. A rotationally stationary ball or the like (not shown) is spring mounted with respect to the bearing assembly 72 for limited motion relative thereto in a direction axial of the shaft 46. As shaft 46 is rotated, the ball is forced out of a seat in one of the detents in the detent plate 76, and then, upon further rotation, seats again in the next adjacent detent under the action of the spring mount. This detent assembly serves to position the rotary elements of the switch assembly in defined and discrete positions, as is well known in the art.
The inner end of shaft 46 carries the rotary element 78 of switch 40, which rotary element is concentric with the annular stationary element 80 of the switch. In FIG. 3 the wiring to the several terminals on the switch assemblies has been removed, and the manner in which the wiring is connected, as well as the arrangement of the several stationary and movable contacts on the switches, will better be understood in connection with the description of subsequent figures of the drawings.
The preferred form of the electrical device of the present invention as shown and described herein is an inductive voltage divider, as previously stated. The electrical circuitry of this preferred form of the device is shown in FIG. 4. The three windings 82, 84 and 86 are wound about a common magnetic core indicated schematically at 88. Actually, this core 88 is in the form of an annulus within the housing 50 shown in FIG. 1, and the three windings are toroidal in configuration.
Each of the windings 82, 84 and 86 is tapped at a plurality of points thereon to provide connections to a corresponding number of stationary contacts on the switching assembly associated therewith. For example, the switch assembly 40 has a plurality of stationary contacts, a few of which are indicated at 90 in FIG. 4, and each of these stationary contacts is connected to a respective tapping point on the winding 82. As will be appreciated by those skilled in the art, the spacing (or, more accurately, the number of turns) between each adjacent pair of these stationary contacts is preferably equal, and the number of turns between adjacent taps on winding 82 will also prefe'rably bear a predetermined relationship with the number of turns between adjacent taps on windings 84 and 86. In order to conform to the decimal number system, and to provide ratios up to 0999+, there will be ten taps (including one at one of the end points) on each winding, providing nine segments thereon. The number of turns between taps on winding 84 will preferably be ten times the number between adjacent taps on winding 86. Similarly, the number of turns between adjacent taps on winding 82 will be ten times the number of turns between adjacent taps on winding 84, and one hundred times the number of turns between adjacent taps on winding 86. If the number of turns (i.e., the number of turns of wire around the core 88) between adjacent taps on winding 86 is unity, then the number of turns between adjacent taps on windings 84 and 82 are ten and one hundred, respectively. Thus, the total number of turns on windings 82, 84 and 86 are one thousand, one hundred, and ten, respectively. However, in FIG. 4, the use of ten fixed contacts providing nine winding segments leaves one segment idle insofar as the sliding contact is concerned, it will be understood that these specific figures are merely representative of a preferred form of the apparatus of the present invention, and other values may be employed with satisfactory results. Further, it is not necessary that the relationship between the several windings (and the cone sponding marking on the several knobs shown in FIG. 2) bear a direct relationship to the decimal system, such system being described herein only as a preferred and con venient form.
A pair of input terminals 92 and 94 are connected to respective ends of winding 82, and terminal 94 is also connected to one output terminal 96. The remaining output terminal 98 is adapted to be adjustably connected through and by means of the several variable elements of the apparatus of the present invention to a selectable point on the first stage Winding 82, which winding has the entire input voltage impressed across it. The voltage at output terminal 98 is smoothly adjustable over the entire range of this input voltage by virtue of the several adjustable elements of the circuit, as will now be described.
Switch assembly 40 includes a movable contact 100 which serves as the main tap or movable contact for contacting the several taps of the winding 82. Contact 100 is mounted for movement with respect to the several stationary contacts of switch assembly 40 in such manner that the contact breaks and then makes contact with successive adjacent ones of the stationary contacts. The assembly including the detent plate 76 (FIG. 3) urges the rotary portion of switch 40 into definite positions defined by the registry of movable contact 100 with any one of the several stationary contacts 90, and thus the contact 100 is prevented from stopping at a point at which it fails to make connection with one of the stationary contacts.
, An auxiliary contact 102 is also mounted on the rotary portion of switch assembly 40, for rotary movement with contact 100. Auxiliary contact 102 is electrically connected to contact 100 by means of a resistor 104 of suitable size for the purpose of eliminating transients in the making of the circuit connections between movable contact 100 and the several stationary contacts of the switch. As will better be understood in connection with the description of FIGS. 5 and 6 below, auxiliary contact 102 is mechanically mounted on the movable element of switch assembly 40 in such manner with respect to main contact 100 as to be spaced therefrom a distance substantially equal to one half of the spacing between the adjacent stationary contacts 90. In this manner, when contact 100 is in exact registry with one of the contacts or taps 90, auxiliary contact 102 is in circuit with none of such contacts, but is positioned between an adjacent pair as indicated in FIG. 4. When contact 100 is in transit between an adjacent pair of the contacts 90, the auxiliary contact 102 lsthen making connection with either the next subsequent stationary contact to be contacted by the movable contact 100, or the stationary contact that this movable contact is just leaving.
Movable contact or brush 100 is connected to one end of the Winding 84, the taps of which are connected to a plurality of stationary contacts of the switch assembly 38 in a manner substantially identical to that of switch 40.
Movable brush 106 of switch 38 is connected to one end of winding 86, and the auxiliary contact 108 is connected to main contact 106 through a resistor 110. Similarly, the movable brush or contact 112 of switch 42 is connected to the auxiliary contact 114 thereon by means of a resistor 116. Movable contact 112 is also connected to one end of the resistance element 118 of the helical (or single turn) potentiometer indicated at 54 in FIG. 1. element 118 is connected in shunt with an auxiliary Winding 120 wound on the common annular core 88, which connection between the auxiliary winding and the potentiometer develops voltage across the latter. When reference is made to a potentiometer herein, it will be understood by those familiar with the art that the term is intended to include equivalents, such as a set of fixed resistors connected in series, with a suitable switch to connect between them in turn.
The auxiliary winding is normally made of heavy gauge wire to minimize the loading effects of the resistance element.
The structure of the several switches 38, 40 and 42 is shown in FIGS. 5 and 6, showing the opposite faces of the three switches. Referring first to FIG. 5, the rotary element 78 of switch 40 is shown mounted on rotary shaft 46. Rotary element 78 is in the form of a disc or the like, and carries a conductive ring 121 on the near face thereof, said ring including a protruding finger or the like serving as the main movable contact 100 of the switch 40. A small clearance is provided between rotary element 78 and the stationary annulus 80 which supports the several stationary contacts 90 of switch 40. This annular stationary element of the switch is supported by means of a pair of bolts or the like, as may better be seen in FIG. 1. Contact 122 on stationary member 80 is considerably longer than the other stationary contacts 90 thereon, and thus provides a brush for the slip ring formed by the conductive ring 121 on the rotary member 78. Resistor 104 is connected between contact 122 and another stationary contact 124, the latter being mounted on the wafer face opposite to that shown in FIG. 5.
It can be seen that each of the switch wafers, such as that indicated at 80, includes twelve circumferentially spaced positions for the stationary contacts thereon. On the switch faces shown in FIG. 5, eleven of the twelve positions on each face are occupied by stationary contacts (including the longer contact which acts as a brush for completing a circuit to the slip ring mounted on the rotary element of each switch). As will be understood, each of these twelve positions corresponds to a seated position of the rotary detent means 74 as discussed in connection with FIGS. 1 and 3. In both FIGS. 5 and 6, the wiring has been removed fromthe several contacts, with the exception of the leads to the three resistors 104, 110 and 116.
The three switches 38, 4-0 and 42 are substantially identical as to structure and arangement, and the detailed description herein has been limited to the switch assembly 40 as exemplary of all three, with the several elements of switches 38 and 42 corresponding to like elements of switch 40 both in number and arrangement.
FIG. 16 shows the faces of the three switches opposite those shown in FIG. 5, and it may be seen in FIG. 6 that the rotary element 78 of switch 40 also carries a conductive ring 126, which includes a projecting contact finger or the like indicated at 102. The rotary position of shaft 46 is the same in FIG. 6 as that shown in FIG. 5, and it will thus be seen that the two rotary fingers 100' and 102 are spaced apart rotationally (i.e., circumferentially of the wafer 80) a distance equal to approximately one half of the circumferential spacing between the stationary contacts 90. Only eleven of the twelve detent positions have terminals therein on the side of the wafer shown in FIG. 6, with one of the eleven being occupied by the slipring contacting finger 124. The resistor 104 is connected between terminal 124 and terminal 122, as shown.
This resistance It will be appreciated that the paired terminals or stationary contacts lying in circumferential registry on the opposite faces of the wafer are connected together electrically, as may be seen in FIG. 1. Further, terminal 122, which is continuously connected to rotating contact through slip-ring 121, is connected to one end of winding 84, as by the conductor 128 shown in FIG. 4. Similarly, the slip-ring brush 130 of switch 38 is connected to one end of winding 86, and the brush 132 of switch assembly 42 is connected to one end of the potentiometer resistance element 118.
Proceeding now to the operation of the apparatus as described above, the input voltage is app-lied to the terminals 92, 94 and is thereby placed across the first stage winding 82. Assuming that it is desired to provide an output potential which is not less than eight-tenths of the input potential, knob 20 is rotated until the numeral 8 appears in the aperture 36 of the housing 26 (see FIG. 2). This adjustment moves the rotary contact 100 of the switch assembly 40 into contact with the eight stationary contact from the bottom or common end of winding 82, whereby eight-tenths of the input voltage will appear on conductor 128. If the precise fractional output desired is, say, 0.866547, the remaining knobs 22 and 24 are set to the positions shown in FIG. 2, as is the potentiometer control knob 32 (as indicated by the counter or register 30 connected thereto). This adjustment of knobs 22 and 24 positions the movable contacts 106 and 112 of the switches 38 and 42, respectively, in registry with the sixth stationary contacts of each of the windings 84 and 86. In a manner well known to those skilled in the art of helical potentiometers, the aforementioned adjustment of the knob 32 serves to move an adjustable rotary slider or tap (not shown) along the resistance element 118 of the helical potentiometer 54 to a point at which the voltage appearing at the terminal 98 is equal to the voltage appearing at movable contact 112 plus the selected potentiometer ratio, viz., 0.547 multiplied by the potential existing across auxiliary winding 120. Inasmuch as the potential across the auxiliary winding is equal to the potential-between adjacent taps on winding 86, the adjustable potentiometer serves to interpolate this potential.
Due to the fact that the three windings 82, 84 and 86 are wound on a toriodal common core 88 and thus have common magnetic fields, the energization of winding 82 by the application of the input voltage across it serves also to energize windings 84 and 86 by means of the wellknown inductive action of a transformer. Since winding 84 has only a tenth of the total number of turns found in winding 82, with winding 86 having, in turn, only a tenth of the total number of turns of winding 84, the voltages induced in windings 84 and 86 are, respectively, one tenth and one hundredth of the input potential applied across winding 82 at terminals 92 and 94. Thus, the voltage induced across each of the entire windings 84 and 86 is equal to the voltage appearing across each of the segments between adjacent taps of the respective preceding windings 82 and 84.
Assuming now, for the sake of convenience in description, that the input potential applied across winding 82 is one hundred volts, the voltage then appearing across winding 84 is ten volts, and that across winding 86 is one volt. The voltage appearing across the auxiliary winding is one-tenth of a Volta. With the several adjustable elements of the apparatus set to the positions discussed above (and shown in the drawings), the voltage appearing on conductor 128 is eighty volts, that appearing at contact 106 is eighty plus six, or eighty six, and that appearing at brush 112 is eighty six plus sixtenths, or 86.6 volts. To this voltage appearing on brush 112 is added a portion of the voltage appearing across auxiliary winding 120. The portion added is determined by the resistive dividing element 118 and its associated movable contact connected to the output terminal 98. In this specific example, the resistive divider element 118 is set to add 0.547 of the voltage appearing across auxiliary winding 120. The net result is a voltage of 86.6547 volts at terminals 98, 96. It will be understood that while terminals 94 and 96 are shown as separate terminals in FIG. 4, they will conveniently comprise a single terminal in actual equipment, and the two are so indicated in FIG. 1 as the single terminal 96.
The mechanical operation of the switches is easily understood by reference to FIG. 3. As knob 22, for example, is rotated, the hollow shaft 58 to which this knob is secured is correspondingly rotated to position the spur gear 64 in the desired rotational position. Rotation of spur gear 64 causes corresponding movement of the meshed gear 68, resulting in rotation of shaft 46 and the rotary element 78 of switch 40 mounted thereon. Rotation of the remaining knobs 20- and 24 causes similar rotation of the respective shafts 56 and 60, each carrying a respective spur gear 64 and 66. These latter gears mesh with corresponding gears such as 69 for causing the desired rotational positioning of the rotary elements of the remaining switching assemblies 38 and 42.
Considering the showings of FIGS. and 6 together, it is seen that the main movable contact 100 of this switch is in registry with the eighth stationary contact. This corresponds to the position shown in the electrical circuit of FIG. 4. Similarly, the auxiliary contact 102 is midway between the seventh and eighth contacts. In the same manner, rotation of the rotary elements of switches 38 and 42 to the aforementioned positions corresponding to the knob positions shown in FIG. 2 moves main contacts 106 and 112 into registry with the sixth stationary contacts of the respective switches (see FIG. 5). This positions the respective auxiliary contacts 108 and 114 between the fifth and sixth stationary contacts of the respective switches 38 and 42 (FIG. 6). In each of the three switches, as the rotary element thereof is rotated to move the main and auxiliary contacts into engagement with succeeding lower-numbered ones of the stationary contacts, the auxiliary contacts make connection with the next stationary contact before the associated main contact breaks the connection made with the stationary contact that is then in the circuit, thereby effectively eliminating the transient surges that would otherwise appear in the conductors connected to the respective main contacts if the auxiliary contacts and the associated resistors were not employed. In like manner, when the rotary elements of the switches are moved in a direction which moves the movable contacts toward the higher-numbered stationary contacts, the main contacts make the new circuit connection with the next succeeding stationary contacts prior to the breaking of the circuits previously established and still held by means of the auxiliary contacts in series with the respective resistors.
Reference has been made above to certain variants in the wiring arrangement, and these are illustrated in the schematic diagram of FIG. 7. Parts which are the same as those earlier described are given the same reference numerals.
While the resolution capabilities of an instrument as already described can be extended indefinitely by the addi-v tion of larger and larger windings on the same core, it will be realized that for a decimal scheme, the smallest winding will have ten turns, and the next two larger windings will have a hundred turns and a thousand turns. If a fourth decade were to be added, it would require 10,000 turns, and while this is technically possible, using very fine wire and a core of substantial size, the practical limit has already been reached. FIG. 7 illustrates how the decades may be extended by using a separate additional core, common to several decades, and energizing this added core from flux in the first core. Thus, an added core 188 has a first winding (say of a thousand turns) at 182, and this winding is connected to a single-turn winding 220 linking the core 88, in a manner similar to the way in which voltage divider 118 was linked to that core in FIG. 4. The
reason for a single turn coupling loop is that for inter polated. Winding 186 has ten turns, or one turn between taps.
In effect, the second core 188 and its windings, taps and switches (the second and further windings are omitted in FIG. 7 since they will be identical to the first core windings) act as a precision interpolator in place of the resistive voltage divider 118. However, such a resistive divider may be applied to the last winding of this added core 188 precisely as shown in FIG. 4. Since the impedance of the one-turn coil 220 is negligible, the current drawn through it by the winding 182 will have a wholly negligible effect on the flux in core 88 from the loading standpoint.
FIG. 7 also illustrates a useful variation, already mentioned, in the number of taps connected to windings of the core 88. 'At the upper end of each such winding, an eleventh fixed tap is shown as at 190, 290 and 390. These taps are marked 1. to distinguish them from the lowermost taps but one, which are marked 1 meaning one-tenth of the way along the winding. With this slight addition, the ratio divider will read ratios up to 1111+, because it is now possible to obtain an output voltage equal to the full sum of each entire decadenamely, 1.0+0.1+0.01 and so on, as contrasted with a maximum sum of 0.9|0.09+0.009 and so on in the case of FIG. 4. With the FIG. 7 contact arrangement, an additional significant figure will of course also be marked on the dial knobsshown in FIG. 2, in the position just beyond the present 9 digit markings.
Obviously, either of the foregoing variations can be applied to a ratio divider independently of the other, the purpose herein. being merely to illustrate several of such possibilities. Other variations falling within the spirit of the invention will occur to those skilled in this art, and it is intended to include herein all such as fall within the scope of the appended claims.
What is claimed is:
1. A compartmentalized electrical device, comprising an elongate housing therefor, a centrally located shaft within said housing extending lengthwise thereof and mounted for rotation with respect thereto, a first rotary knob secured to said centrally located shaft at one end thereof, a first electrical component having a rotary element attached to the other end of said centrally located shaft and operated thereby, a support plate mounted within said elongate housing transverse of the length thereof and dividing said housing into two compartments, said first electrical component being mounted on said support plate and extending into a first of said compartments, and with their rotary element axes disposed parallel to but spaced radially from said centrally located shaft, a plurality of other electrical components each having a rotary element and being mounted within the other of said compartments, said other electrical components being spaced circumferentially about said central axis and in substantial alignment with one another lengthwise of said elongate housing, a rotary control knob for the rotary element of each of said other electrical components, said rotary control knobs each being mounted on a respective shaft coaxial with said centrally located shaft, and drive means independently connecting each of said rotary elements of said other electrical components to a respective one of said coaxial shafts whereby rotation of each of the rotary control knobs causes corresponding rotation of the rotary element connected thereto.
2. A compact multiunit switch assembly including a generally cylindrical casing adapted for panel mounting by bodily insertion through a circular panel aperture, a plurality of multicontact rotary switch devices in said casing, said switch devices being clustered laterally about the central longitudinal axis of said casing, and each havg an ndividual control shaft spaced from and parallel to said longitudinal axis, and each such switch device including detent means defining plural selectable contact positions: a stepped-diameter plurality of concentric operating knobs mounted on said central axis at one end of the casing and all provided with numerical indicia corresponding to the contact positions of said respective switch devices, and coaxial shaft means centered on said casing axis and individually connecting one each of the control shafts of said switch devices to a respective one of said knobs whereby the settings of said switch devices can be read off the knob indicia as a connected multidigit numeral.
3. A switch assembly in accordance with claim 2, including means defining an inspection aperture bracketing radially aligned numerals of said operating knobs indicative of the selected switch device settings.
4. A compact, multi-unit switch assembly including a generally circular-profile support plate adapted for panel mounting by bodily insertion through a circular panel aperture, a plurality of multicontact rotary switch devices carried by said support plate on one side thereof, said switch devices being clustered laterally about the central axis of said support plate, and each such switch device including a control shaft spaced from said central axis and detent means defining plural selectable contact positions; a stepped-diameter plurality of concentric operating knobs mounted on said central axis on the opposite side of the support plate and all provided with numerical indicia corresponding to the contact positions of said respective switch devices, and coaxial shaft means centered on said central axis and individually connecting one each of the control shaft of said switch devices to a respective one of said knobs; whereby the settings of said switch devices can be read off the knob indicia as a connected multidigit numeral.
5. A switch assembly in accordance With claim 4, including means defining an inspection aperture bracketing radially aligned numerals of said operating knobs indicative of the selected switch device settings.
6. A switch assembly in accordance with claim 4, including a central shaft disposed within said coaxial shaft means and extending beyond said cluster of switch devices for connection to a controllable element, said shaft also extending beyond said concentric operating knobs; and a central control knob connected to that end of said shaft.
7. A switch assembly in accordance with claim 6, said central control knob being provided with numerical indicia adapted to align with the indicia of said plurality of operating knobs.
8. A compact, multi-unit switch assembly including a support plate having a central axis, a plurality of multicontact rotary switch devices carried by said support plate on one side thereof, said switch devices being clustered laterally about the central axis of said support plate, and each such switching device including a control shaft spaced from said central axis and detent means defining plural selectable contact positions; a stepped-diameter plurality of concentric operating knobs mounted on said central axis on the opposite side of the support plate and all provided with numerical indicia corresponding to the contact positions of said respective switch devices, and co axial shaft means centered on said central axis and individually connecting one each of the central shafts of said switch devices to a respective one of said knobs; whereby the settings of said switch devices can be read off the knob indicia as a connected multidigit numeral.
9. A switch assembly in accordance with claim 8, including means defining an inspection aperture bracketing radially aligned numerals of said operating knobs indicative of the selected switch device settings.
10. A switch assembly in accordance with claim 8, including and a central shaft disposed within said coaxial shaft means and extending beyond said cluster of switch devices for connection to a controllable element, said shaft also extending beyond said concentric operating knob; and a central control knob connected to the last-named end of said shaft.
References Cited by the Examiner UNITED STATES PATENTS 1,405,260 1/ 1922 Beavers 20043 1,423,432 7/ 19272 Kendechy 200-43 1,650,469 11/1927 Rychlewski 200-43 1,709,775 4/ 1929 Clinton 20043 ROBERT K. SCHAEFER, Primary Examiner.
ROBERT K. SCHAEFER, Examiner.
J. R. SCOTT, Assistant Examiner.

Claims (1)

1. A COMPARTMENTALIZED ELECTRICAL DEVICE, COMPRISING AN ELONGATE HOUSING THEREFOR, A CENTRALLY LOCATED SHAFT WITHIN SAID HOUSING EXTENDING LENGTHWISE THEREOF AND MOUNTED FOR ROTATION WITH RESPECT THERETO, A FIRST ROTARY KNOB SECURED TO SAID CENTRALLY LOCATED SHAFT AT ONE END THEREOF, A FIRST ELECTRICAL COMPONENT HAVING A ROTARY ELEMENT ATTACHED TO THE OTHER END OF SAID CENTRALLY LOCATED SHAFT AND OPERATED THEREBY, A SUPPORT PLATE MOUNTED WITHIN SAID ELONGATE HOUSING TRANSVERSE OF THE LENGTH THEREOF AND DIVIDING SAID HOUSING INTO TWO COMPARTMENTS, SAID FIRST ELECTRICAL COMPONENT BEING MOUNTED ON SAID SUPPORT PLATE AND EXTENDING INTO A FIRST OF SAID COMPARTMENTS, AND WITH THEIR ROTARY ELEMENT AXES DISPOSED PARALLEL TO BUT SPACED RADIALLY FROM SAID CENTRALLY LOCATED SHAFT, A PLURALITY OF OTHER ELECTRICAL COMPONENTS EACH HAVING A ROTARY ELEMENT AND BEING MOUNTED WITHIN THE OTHER OF SAID COMPARTMENTS, SAID OTHER ELECTRICAL COMPONENTS BEING SPACED
US487347A 1962-10-04 1965-08-05 Multiple independent operable switch mechanisms with improved knob and indicating apparatus Expired - Lifetime US3287512A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US228467A US3244966A (en) 1962-10-04 1962-10-04 Multi-unit variable transformer device
US487347A US3287512A (en) 1962-10-04 1965-08-05 Multiple independent operable switch mechanisms with improved knob and indicating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US487347A US3287512A (en) 1962-10-04 1965-08-05 Multiple independent operable switch mechanisms with improved knob and indicating apparatus

Publications (1)

Publication Number Publication Date
US3287512A true US3287512A (en) 1966-11-22

Family

ID=26922395

Family Applications (1)

Application Number Title Priority Date Filing Date
US487347A Expired - Lifetime US3287512A (en) 1962-10-04 1965-08-05 Multiple independent operable switch mechanisms with improved knob and indicating apparatus

Country Status (1)

Country Link
US (1) US3287512A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3511944A (en) * 1968-06-03 1970-05-12 Esco Mfg Co Switch actuator apparatus
US3534185A (en) * 1968-10-25 1970-10-13 Tektronix Inc Control device
US3582581A (en) * 1969-08-22 1971-06-01 Thomas R Hawks Timing device with improved non-conductive programming means
US3621158A (en) * 1969-10-20 1971-11-16 Solartron Electronic Group Electrical switching apparatus
US3746804A (en) * 1971-08-23 1973-07-17 Hewlett Packard Co Phase-linking rotating mechanism for plural switch assembly
US3754106A (en) * 1972-04-03 1973-08-21 Donald W Mac Panel display switch
US4857677A (en) * 1987-03-04 1989-08-15 Anritsu Corporation Dial device
US5182465A (en) * 1990-01-23 1993-01-26 Crown International, Inc. Amplifier selector for magnetic resonance imaging machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1405260A (en) * 1920-02-24 1922-01-31 Beavers Dalridge Bernard Ignition switch
US1423432A (en) * 1920-06-15 1922-07-18 Kendechy Andrew Auto theft protection
US1650469A (en) * 1925-04-11 1927-11-22 John S Rychlewski Ignition switch
US1709775A (en) * 1927-07-20 1929-04-16 James C Clinton Electric switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1405260A (en) * 1920-02-24 1922-01-31 Beavers Dalridge Bernard Ignition switch
US1423432A (en) * 1920-06-15 1922-07-18 Kendechy Andrew Auto theft protection
US1650469A (en) * 1925-04-11 1927-11-22 John S Rychlewski Ignition switch
US1709775A (en) * 1927-07-20 1929-04-16 James C Clinton Electric switch

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3511944A (en) * 1968-06-03 1970-05-12 Esco Mfg Co Switch actuator apparatus
US3534185A (en) * 1968-10-25 1970-10-13 Tektronix Inc Control device
US3582581A (en) * 1969-08-22 1971-06-01 Thomas R Hawks Timing device with improved non-conductive programming means
US3621158A (en) * 1969-10-20 1971-11-16 Solartron Electronic Group Electrical switching apparatus
US3746804A (en) * 1971-08-23 1973-07-17 Hewlett Packard Co Phase-linking rotating mechanism for plural switch assembly
US3754106A (en) * 1972-04-03 1973-08-21 Donald W Mac Panel display switch
US4857677A (en) * 1987-03-04 1989-08-15 Anritsu Corporation Dial device
US5182465A (en) * 1990-01-23 1993-01-26 Crown International, Inc. Amplifier selector for magnetic resonance imaging machine

Similar Documents

Publication Publication Date Title
US3312892A (en) Contactless electrical transducer having moving parts
US3020527A (en) Position indicating system
US4471304A (en) Fluid-powered actuator having a cylinder with magnetic field detectors thereon and a magnetized piston rod
US3784897A (en) Capacitor transducer
US2867783A (en) Measuring device
US2715703A (en) Remote digital controllers
US2805408A (en) Magnetic permanent storage
US2496585A (en) Contiguous rotation counter
US2922994A (en) Electrical signal generators
US2465624A (en) Computer device for solving trigonometric problems
US3678372A (en) Portable circuit breaker tester for calibrating a circuit breaker over a wide range of current
US2889518A (en) Digital meter
GB1585745A (en) Electro-mechanical devices
JP2005072300A (en) Variable resistor
US2866184A (en) Analog to digital converter
CA1203866A (en) Electronic vernier
US3286251A (en) Analog-to-digital encoder
US2650352A (en) Variable inductance for measuring motion
US2945997A (en) Graphical recorder chart motor drive system
US2539575A (en) Indicating or control device
US2700076A (en) Electromechanical counter
US3198923A (en) Rotor indicating device
US2927168A (en) Multiple rotary switch control
US2803799A (en) Voltage divider calibrating apparatus
US3631603A (en) Method and apparatus for measuring profile and lead errors in gear teeth