US3279541A - Method for removing paraffinic and asphaltic residues from wells - Google Patents

Method for removing paraffinic and asphaltic residues from wells Download PDF

Info

Publication number
US3279541A
US3279541A US48302065A US3279541A US 3279541 A US3279541 A US 3279541A US 48302065 A US48302065 A US 48302065A US 3279541 A US3279541 A US 3279541A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
solvent
well
paraffin
heat
residues
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
John A Knox
Reginald M Lasater
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Co
Original Assignee
Halliburton Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/524Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/927Well cleaning fluid
    • Y10S507/929Cleaning organic contaminant
    • Y10S507/93Organic contaminant is asphaltic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/927Well cleaning fluid
    • Y10S507/929Cleaning organic contaminant
    • Y10S507/931Organic contaminant is paraffinic

Description

Oct. 18, 1966 J. A. KNOX ETAL MOVING PARAFFINI 3,2 79,541 0 AND ASPHALTIC LLS METHOD FOR RE RESIDUES FROM WE 2 Sheets-Sheet 1 Filed Aug. 20, 1965 N mm moqmmbm amp/ 5050 332% Oh I SE z m m emzmimm Q5: swim: 3,53 $2 555 9502mm I o I ED E ZIHEmE 553% 32m: 9:: I

INVENTORS. John A. Knox BY Reginald M. Lasmer Oct. 18, 1966 J, KNOX ETAL MOVING PARAF'FIN 3,279,541 METHOD FOR RE 10 AND ASPHALTIC 4 RES IDUES FROM WELLS 2 Sheets-Sheet 2 Filed Aug. 20, 1965 MEZDEE mfiwwfi I j; I :55 I 53253 m 5 E5 M335 5233 5:; M253 @2325 om 0wm OF I EDIE ZEEE mfifi 52.3:

25583 @9133 2233 2525 I j; 51 I 2 55% to $5 do :85 55326 SE I 2255 5:; I 5556 $2326 2959mm GE: ozmm E I 93 I 2:123 I S53: 2525 653mm SE6: 8 $5 as: I

Emiom D II Q 253% INVENTORS. John A. Knox BY Reginald M. Lasafer ATTORNEY u United States Patent 3,279,541 METHOD FOR REMOVING PARAFFINIC AND ASPHALTHC RESIDUES FROM WELLS John A. Knox and Reginald M. Lasater, Duncan, Okla., assignors to Halliburton Company, Duncan, Okla., a corporation of Delaware Filed Aug. 20, 1965, Ser. No. 483,020

20 Claims. (Cl. 16638) This application is a continuation-in-part of application Serial No. 191,713, filed May 2, 1962, now abancloned.

This invention relates to a new and improved method of treating wells for the removal of parafiinic and asphaltic residues, and more particularly to a method encompassing a novel means of heating a parafiin solvent, increasing the effective specific gravity of the solvent, and removing the paraffin dissolved or loosened thereby.

One of the problems frequently encountered in the production of crude petroleum is the accumulation and deposition of paraffin in the producing string, flow lines, tank batteries, and in some instances on the face of the formation sand. These waxes, gums, resins, and asphaltic materials or paraffins which compose the deposits were originally in solution in the crude oil as it origin-ally existed in the reservoir. Often times in the production or transporting of crude petroleums, the equilibrium of the solution is altered or destroyed and these paraffins being the less soluble constitutents separate and accumulate on the string, pipe or tank as the case may be. The accumulation of these parafiins progressively decreases the rate of movement of the petroleum and must therefore be periodically removed.

The cleaning of Wax or paraifin deposits from wells, flow lines, separators, tanks and the like, is expensive and raises the overall cost of producing or transporting operations. Numerous methods of removing parafiin have been tried with varying degrees of success. Such methods include the use of mechanical scrapers, solvents for dissolving the wax and the use of heat. As temperature is one of the most important factors affecting the stability of the solution of parafiin constituents in crude oil or petroleum, various means of heating the paraffin and/ or petroleum have been proposed. Among these means are the use of alkali metals such as sodium and potassium, and steam.

One particular prior art process for removing parafiin from a formation penetrated by a well bore, utilizes a metal such as sodium or potassium in an inert non-aqueous carrier, preferably a wax solvent, which metal upon injection into the well formation reacts with the connate water to liberate heat, thus heating the well formation.

An extensive discussion of the causes of paraifin buildup and remedies therefor, may be found in Bulletin 348 of the US. Department of Commerce, Bureau of Mines, entitled Paraffin and Congealing-oil Problems by C. E. Reistle, Jr.

It is therefore an important object of the present invention to provide a new and improved and economical means of removing paraffin or the deposits or accumulations from wells, lines, tanks or the like.

It is another object of the present invention to provide a new and improved method of heating a paraffin solvent for a more effective removal of parafiin and the like.

Still another object of the present invention is to provide a new and improved method of removing parafiin deposits or accumulations from producing well strings or the like wherein such deposits or accumulations may be readily removed from the well after the deposits have been dissolved or loosened.

A further object of the present invention is to provide a new and improved method of removing paraffin and the like from well strings or tubing, wherein the effective specific gravity of a parafiin solvent is increased thereby enabling the solvent to be more efiiciently used.

Other objects and advantages of the present invention will be readily determinable from a reading of the specification and claims hereinafter and by reference to the accompanying drawings.

FIG. 1 is a block or flow diagram illustrating broadly a preferred form of the present invention wherein A, a parafiin solvent with a heat generating chemical dispersed therein is introduced into an area or formation to be treated and, B, thereafter followed by water, which may or may not have been preheated, as desired, and which is brought into contact with the parafiin solvent-heat generating chemical mixture at the area or formation to be treated;

FIG. 2 is a block or flow diagram illustrating broadly and alternate form of the present invention, wherein, A, the paraffin solvent is first introduced into the area to be treated, and B, water with the heat generating chemical therein is introduced behind the paraffin solvent and brought into contact therewith;

FIG. 3, is a block or flow diagram illustrating another form of the present invention, wherein the paraffin solvent is pumped into a well and simultaneously therewith, Water with a heat generating chemical and emulsifier therein is pumped through a second pump into the well; and,

FIG. 4 is a block or flow diagram illustrating a preferred form of the invention similar to that of FIG. 1, but in more detail.

The present invention is especially adapted for the removal of parafiinic and asphaltic residues which form in well equipment and/ or the bore hole as crude petroleum or oil is produced. It generally comprises, the application of heat to a light paraflin solvent by the simple and inexpensive expedient of dispersing the solvent in a chemical solution which has evolved a large amount of heat, and adding a surface active agent or emulsifier to the solution for enabling the solvent to mix with the solution and to provide a more effective paraffin removal as will be discussed in detail hereinafter.

In the present invention, the use of an inorganic salt or base which evolves a large amount of heat upon the addition to water is preferred as the heat generating solution. Other chemical solutions which generate heat exothermically upon contact with water or aqueous solutions may be used without departing from the scope of the invention.

Such materials as aluminum chloride, magnesium chloride, calcium chloride, sodium hydroxide and potassium hydroxide are especially preferred in that each produces large amounts of heat upon going into solution, are readily available and relatively inexpensive. Some of the hydrated states of these inorganic salts also produce sufficient heat upon going into solution, and may be used in the present invention. Other inorganic salts and bases which might also be used in the present invention are not presently economical and some undesirable by-products may result from their dissolution in water.

Aluminum chloride, which is the most reactive of the above group, should be handled with especial caution, as the amount of heat it generates on being added to water is dangerous to handle and it may also react to form hydrochloric acid and aluminum oxide.

Such oxide, if preci itated in a well formation, could damage production of crude petroleum. By controlling the hydrostatic pressure, the solution can be prevented from entering the producing formation, and its use can then be permitted.

An inorganic salt such as calcium chloride can be added to water in sufficient quantities to cause a rise in the temperature of the water in the range of 200 F. Other salts can be used which give up even larger amounts of heat under similar conditions. This system can be used to heat a paraffin solvent, which solvent will be discussed more in detail hereinafter, can be mixed intimately with the aqueous salt solution in any desired proportion, and depending upon the quantity of solvent added, the temperature of the solvent can be increased up to about 200 F. above its ambient temperature.

Another type of heat generating chemicals or compounds which may be used in the present invention are the alkali metal hydrides, the alkaline earth metal hydrides and the alkali metal borohydrides. Some examples of these are lithium hydride, calcium hydride, sodium hydride, potassium hydride, lithium borohydride, potassium borohydride and sodium borohydride. These hydrides orborohydrides, as is well known in the art, produce heat when contacted with water or aqueous solutions. 'Some of the higher hydrides or borohydrides may require a suitable catalyst to achieve suflicient heat to carry out the present invention. The quantities of materials used and amount of heat generated may be varied in accordance with the requirements of the parafiin removal operation all well within the skill of one skilled in the art.

Other methods of producing heated or hot solutions, such as adding a metal to acidor water and adding a hydroxide to water, may also be used without departing from the scope of the invention.

Numerous oil soluble parafiin solvents and combinations thereof may be used in the present invention. Such solvents include saturated and unsaturated hydrocarbons, organic acids, paraffinic hydrocarbons, olefinic hydrocarbons, alicyclic compounds, condensed polynuclear aromatice hydrocarbons, nitro paraffins and the esters, ethers and alcohols thereof. Chlorinated hydrocarbons may also be used, but as many petroleum refiners object to the thereof, they are not recommended. Organic sulphur compounds, such as carbon disulfide, dimethyl sulfide, dimethyl sulfoxide and others may also be used, but these, too, are generally not preferred because of the dangers in handling same. Carbon disulfide, for example, is very dangerous because of its low flash point and auto-ignition point and broad explosion limits.

Some examples of other well-known paraffin solvents are gasoline, kerosene, benzene, xylene, toluene, chloroform, methyl ethyl ketone, cyclohexane and alpha methyl naphthalene. Terpenes and mixtures such as turpentine have been found to be particularly good solvents. Some examples of terpines are dipentene, terpinolene, phellandrene, and pinene.

It can be appreciated that any oil soluble paraffin solvent cay be used in the present invention, without departing from the scope thereof. It is preferred, however, that the solvent used be relatively safe to handle, inexpensive and readily available as well as being effective.

In addition to the parafiin solvent and the solution for heating same, a surface active agent which acts as an emulsifier enables the solvent to mix with the solution and thereby receive the maximum benefit from the heat evolved by the solution. The parafiin solvent can be the internal or external phase in the method of the present invention and an appropriate emulsifier can be chosen for the desired type of emulsion. A class of surfactants or surface active agents, a polyoxyethylene ether of a hexitan partial ester of a high molecular weight organic carboxylic acid, which also acts to prevent the deposition of paraffin and the like, is described in U.S. Patent No. 2,836,559. Some specific examples of compounds in this class are: polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, 2O polyoxyethylene sorbitan monostearate, 30 polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monoabietate, 2O polyoxyethylene sorbitan mononaphthenate, di-esters and The emulsifier of the present invention also aids in the tri-esters corresponding to the foregoing compounds, 20

polyoxyethylene sorbitan tri-tall oil esters, and mannitol derivatives corresponding to the foregoing, etc. In the names of the compounds set forth above, the numeral designates the average number of ethylene oxide groups per molecule of ester.

Polyoxyethylene ethers containing 430 oxyethylene groups per acid radical, of a hexitan partial ester of an organic carboxylic acid having 12-22 carbon atoms and selected from the group consisting of fatty, naphthenic and resin acids, are particularly efiective in preventing and retarding the deposition of wax or paraflin from crude oils upon the surfaces of well tubing, flow lines or other equipment through which oil is transported.

Other surfactants, which function similarly but may not have the added effect of preventing the reprecipitation of paraffin, may also be used without departing from the scope of the invention. Non-ionic and cationic materials are preferable.

removal of the paraffin from the well or lines after it has been dissolved by the solvent.

The emulsion or dispersion of the solvent and the aqueous phase generally become separated in the period of time that the solvent is dissolving the paraffin. Some paraffin will be loosened from the well equipment or formation by the solvent, but will not be completely dissolved thereby. By providing a means of agitation, such as pumping or flowing the well, the solvent with the dissolved paraffin as well as the loosened paraffin becomes emulsified with the salt solution and makes it easier to remove. Should agitation not be provided for, there is likelihood that the loosened paraffin would fall to the bottom of the well and damage the formation or plug the pumping equipment. Generally, the reaction of the chemical in the aqueous solution and/or the pumping of the solution will provides sufiicient agitation for effective emulsification. Additional agitation can be provided by mechanical or other suitable means, if needed or desired.

In parafiin removal operations it is generally desirable to employ a solvent which is heavier than the paraffin, so that the solvent will easily fall to the bottom of the well or to the area containing the paraffin deposits or accumulations. Both chlorinated solvents and certain sulfur-containing solvents are heavier than either oil or water. Should these solvents not be used, for reasons as explained above or for other reasons, and considering the overall economics of using other solvents, the only solvents remaining are those with a specific gravity lighter than or very near that of crude oil or parafiin, which are referred to herein as light paraffin solvents. By making an emulsion of a relatively light parafiin solvent and an aqueous salt solution, an effective specific gravity higher than either parafiin, crude, and most brines can be obtained. For example, a 50-50 mixture of a light parafiin solvent such as dipentene and a 40 percent solution of calcium chloride will have a specific gravity of 1.1.

For economical reasons, it is generally preferred that an expensive light paraffin solvent be diluted or mixed with a less expensive parafiin solvent such as a mineral oil. Diesel oil is particularly desirable as a diluent.

Broadly, the steps of the process or method of the present invention are: adding a heat generating chemical such as an inorganic salt, a metallic hydride or other suitable heat producing chemicals to 'water or an aqueous solution to provide heat; adding alight paraffin solvent to the water or solution to become heated and the efiective specific gravity thereof increased and contact the paraffin to be treated or removed; and, removing the parafiin from the well after it has been contacted, partially or all dissolved, and emulsified in the water or solution.

In the treatment of wells for the removal of parafiin, the method of the present invention may be varied wherein the heat is generated at the surface of the well and then transferred to the area of the well to be treated, or the heat may be generated in the well bore at or near the area or formation to be treated. The latter method is generally preferred as a maximum amount of the heat produced can be utilized.

In the form of the invention illustrated in FIG. 1, the heat generating chemical 'or inorganic salt is dispersed in the paraflin solvent then pumped or otherwise introduced into the well and subsequently into the formation or other area to be treated. After a suitable quantity of the paraflin solvent with the chemical dispersed therein has been pumped into the well, water is pumped into the well and into the formation, if desired. The water which may be preheated by any suitable means, including chemically heating thereof, when contacting the chemical dispersed in the solvent produces a large quantity of heat at the area to be treated. The paraflin solvent is heated and the paraflin deposits are loosened or dissolved therein.

Alternatively, the paraffin solvent, water and an emulsifier can be mixed together prior to introduction into the well with the heat generating chemical added as the mixture is introduced or pumped into the well.

- The heated fluid is preferably circulated and then returned to the surface while still heated where the paraflin can be readily removed therefrom. As the paraflin dissolved in the solvent may come out of solution upon cooling thereof, it is important to get the treating fluid to the surface before cooling sufliciently to cause the paraflin therein to solidify or come out of solution.

In the form of the invention illustrated in FIG. 2, the

paraflin solvent is pumped into the well and into the area to be treated and followed by the aqueous solution or water to which has been added the heat generating chemical. Heating begins when the chemical is added to the water and the water is heated as it is being pumped. The heated solution falls through the paraffin solvent thereby heating same at the area to be treated. Some heat is of course dissipated while the solution is being pumped down the well bore to the treating area.

In the form of the invention illustrated in FIG. 3, two separate pumps are required, one to pump the paraflin solvent, and one to pump the heated aqueous solution. The solvent and aqueous solution are mixed together at the wellhead, with the solvent being heated at this time. The heated paraflin solvent or solution is then introduced into the area to be treated, with circulation, return to surface and removal of parafiin being performed as in the case of the other methods illustrated in FIGS. 1, 2, and 4.

FIG. 3 also shows the use of the emulsifier or surfactant which in this instance is added to the aqueous solution after the chemical has been added thereto.

In FIG. 4, which is similar to FIG. 1, but is in more detail, dipentene is added to diesel oil to make an excellent and economical paraflin solvent, with the heat generating chemical calcium chloride subsequently dispersed therein. This diesel oil-dipentene-calcium chloride mixture is pumped into the well and then into the area to be treated.

The above solution is followed by an aqueous solution or water to which has been added calcium chloride, for pre-heating same, and an emulsifier, preferably in that order. This aqueous solution is then brought into contact with the above oil solution at the area to be treated, thereby heating the paraflin solvent or oil solution. The heated fluid is then circulated, returned to the surface and the paraflin removed therefrom.

It can be appreciated that an emulsifier for producing the required results or surfactant may be added to either the solvent or the aqueous solution. It is generally preferred that the emulsifier be the last to be added in either the oil (solvent) or water (aqueous solution) medium and prior to the mixing of the two mediums.

In an actual field test, an experimental treatment of a well for the removal of parafiin was conducted. The well treated had a total depth of 3276 feet, a bottom hole temperature of 100 F., and no bottom hole pressure as fluid was taken on vacuum. The well was originally completed in 1947 with a 2-inch tubing inside a 5 /2 inch casing. Several years subsequent to that, a 4 /2 inch liner had been set several feet in the bottom.

About two months prior to the test treatment, new tubing had been placed in the well and the rods had been steamed. Paraffin buildup in this well was such that the rods were pulled and steamed about every three months to remove the accumulated paraffin. The paraflin had adhered to the rods from top to bottom and was particularly heavily deposited on the section of rods between 1500 and 2100 feet. This section or interval went through a cooling zone, about 60 F., and the paraflin deposited on the rods was very hard.

In the treating procedure employed, one 50 gallon drum of dipentent was mixed with 50 gallons of diesel fuel prior to going on the well site. At the well site, 200 pounds of powdered anhydrous calcium chloride were dumped into the oil solution, while pumping the solution down the well annulus. A sack, pounds, of pelleted anhydrous calcium chloride was also added to the oil tank and the oil was agitated as much as possible during pumping to retain or hold the pellets in suspension.

After this mixture was pumped into the annulus, gallons of fresh water, to which 100 pounds of pelleted anhydrous calcium chloride and 1 gallon of a sulfonated ethylene oxide derivative of polyglyeol emulsifier or surfactant had been added, were pumped behind. This water actually ended up containing about pounds of calcium chloride, as about 50 pounds of calcium chloride had been left in the tank from the oil. A temporary thickening of the oil to aid in suspending the solids therein would aid in inhibiting the leaving of a calcium chloride residue in the tanks, if desired.

After pumping of the aqueous solution was completed, about 10:00 a.m., circulation with the well pump was commenced. After circulating the fluid about three hours, the dipentent was observed to be coming around in the oil. About an hour afterwards, the fluids were very thick and slushy, indicating that the paraffin was beginning to go into solution. Circulation was: continued until nightfall, and the following morning the well was pumped off into the line.

In carrying out the method of the present invention, it should be noted that the heat can be generated substantially in situ as illustrated in the above example, or the heat can be generated at the well surface, with the heated fluid then being pumped into the annulus to the area to be treated.

Broadly, the present invention relates to a new and improved method of removing paraflin by inexpensively heating a paraflin solvent-aqueous system, and transmitting the system to the area of the paraffin and removing the system with the paraffin therein.

The present invention particularly provides an economical, heated, weighted, emulsified, light paraffin solventaqueous system for removing araflinic deposits in a well.

What is claimed is:

1. A method of treating wells for the removal of parafl inic and asphaltic residues, comprising the steps of:

(a) mixing a light paraffin solvent, an aqueous medium, an emulsifying agent, and a chemical capable of generating heat when contacted with said aqueous medium to provide a heated emulsion having an effective specific gravity greater than the specific gravity of said light paraflin solvent, said heat generating chemical being selected from the group consisting of aluminum chloride, magnesium chloride, calcium chloride, sodium hydroxide, potassium hydroxide and mixtures thereof and the aqueous medium and light paraflin solvent being separately introduced into the well;

(b) contacting the paraflfinic and asphaltic residues with the heated emulsion, thereby loosening and dis solving the residues; and,

(c) removing the loosened and dissolved residues.

2. The method of claim 1, wherein the paraflin solvent is a terpene.

,agent is a polyoxyethylene ether of a hexitan partial ester of a high molecular weight organic carboxylic acid.

6. The method of claim 1, wherein the paratfin solvent comprises a terpene selected from the group consisting of dipentene, terpinolene, phellandrene, and pinene.

7. The method of claim 1, wherein the paraffin solvent, heat generating chemical and the emulsifying agent are mixed together, introduced into the well and subsequently contacted by the aqueous medium.

8. The method of claim 7, wherein the aqueous medium is heated prior to contacting the solvent-chemicalemulsifying agent mixture.

9. The method of claim 1, wherein the paraffin solvent and heat generating chemical are mixed together and introduced into the well and wherein the aqueous medium and emulsifier are mixed together and subsequently introduced into the well.

10. The method of claim 9, wherein the aqueous medium is heated prior to contacting the solvent-chemical mixure.

11. The method of claim 1, wherein the paraffin solvent is introduced into the well and the aqueous medium, chemical and emulsifier are mixed together and subsequently introduced into the well.

12. The method of claim 1, wherein a predetermined amount of the light paraffin solvent is mixed with a predetermined amount of diesel oil.

13. A method of treating wells for the removal of parafiinic and asphaltic residues, comprising the steps of:

(a) mixing a light paraffin solvent and diesel oil in about equal amounts by volume;

(b) pumping the solvent-diesel oil mixture down the well bore;

(c) adding a quantity of an inorganic compound selected from the group consisting of aluminum chloride, magnesium chloride, calcium chloride, sodium hydroxide and potassium hydroxide to the mixture as the mixture is being pumped down the well bore;

((1) pumping an aqueous solution of water, the inorganic compound of step (c) and a surfactant behind the solvent-oil mixture, so as to disperse the mixture in the aqueous solution, heat it and bring it into contact with the parafiinic and asphaltic residue in the well bore and thereby loosen and dissolve same; and

(e) removing the loosened and dissolved paraffin from the well bore.

14. The well treating method of claim 13, including the steps of:

(a) adding a quantity of said inorganic compound to the solvent-oil mixture prior to pumping the mixture down the well bore rather than adding said inorganic compound to the mixture as the mixture is being pumped down the well bore; and,

(b) agitating the mixture while pumping the mixture down the well bore so as to disperse and suspend said inorganic compound therein.

15. The well treating method of claim- 13, including the step of agitating the solvent-oil aqueous solution mixture in the well bore whereby the loosened paraffin and asphaltic residue is emulsified with the solvent-oil aqueous solution mixture.

16. The well treating method of claim 13, wherein the inorganic compound of step (c) is calcium chloride.

'8 17. 'The well treating method of claim 13, wherein the emulsifier of step (c) is a polyoxyethylene ether of a hexitan partial ester of a high molecular weight carboxylic acid.

18. The well treating method of claim 13, wherein the paraffin solvent of step (a) is a terpene.

19. A method of treating wells for the removal of paraffinic and asphaltic residues, comprising the steps of; (a) mixing a light paraffin solvent, an aqueous medium, an emulsifying agent, and a chemical capable of generating heat when contacted with said aqueous medium to provide a heated emulsion having an effective specific gravity greater than the specific gravity of said light paraffin solvent, said heat generating chemical being selected from the group consisting of the alkali metal hydrides, the alkaline earth metal hydrides and the alkali metal borohydrides and the aqueous medium and light paraffin solvent being separately introduced into the well; (b) contacting the paraffinic and asphaltic residues with the heated emulsion, thereby loosening and dissolving the residues; and, (c) removing the loosened and dissolved residues. 20. A method of treating wells for the removal of paraffinic and asphaltic residues, comprising the steps of: (a) mixing a light paraffin solvent, a mineral oil diluent for said paraffin solvent, an aqueous medium, an emulsifying agent, and a chemical capable of generating heat when contacted with said aqueous medium to provide a heated emulsion having an effective specific gravity greater than the specific gravity of said light paraffin solvent, said heat generating chemical being selected from the group consisting of aluminum chloride, magnesium chloride, calcium chloride, sodium hydroxide, potassium hydroxide and mixtures thereof;

(b) contacting the paraflinic and asphaltic residueswith the heated emulsion, thereby loosening and dissolving the residues; and,

(c) removing the loosened and dissolved residues.

References Cited by the Examiner UNITED STATES PATENTS 47,410 4/1865 Fraser 166-40 119,883 10/1871 Roberts 166--44 1,351,945 9/1920 Dulany 166-38 1,513,371 10/1924 Campbell 2528.55 1,963,072 6/1934 Boundy et al. 2528.55 2,139,595 12/1938 Lerch et al. 252-8.55 2,218,306 10/ 1940 Austerman 166-38 2,342,656 2/ 1944 Frye et al. 2528.55 2,753,939 7/1956 Carpenter et al 2528.55 2,799,342 7/1957 Fatt 166-41 2,889,884 6/1959 Henderson et al 166-38 3,127,345 3/1964 De Groote et al.

FOREIGN PATENTS 778,819 7/1957 Great Britain.

OTHER REFERENCES Condensed Chemical Dictionary: Sixth Edition, 1961 'T. A. ZALENSKI, .J. NOVOSAD, Assistant Examiner

Claims (1)

1. A METHOD OF TREATING WELLS FOR THE REMOVAL OF PARAFFINIC AND ASPHALTIC RESIDUES, COMPRISING THE STEPS OF: (A) MIXING A LIGHT PARAFFIN SOLVENT, AN AQUEOUS MEDIUM, AN EMULSIFYING AGENT, AND A CHEMICAL CAPABLE OF GENERATING HEAT WHEN CONTACTED WITH SAID AQUEOUS MEDIUM TO PROVIDE A HEATED EMUSLION HAVING AN EFFECTIVE SPECIFIC GRAVITY GREATER THAN THE SPECIFIC GRAVITY OF SAID LIGHT PARAFFIN SOLVENT, SAID HEAT GENERATING CHEMICAL BEING SELECTED FROM THE GROUP CONSISTING OF ALUMINUM CHLORIDE, MAGNESIUM CHLORIDE, CALCIUM CHLORIDE, SODIUM HYDROXIDE, POTASSIUM HYDROXIDE AND MIXTURES THEREOF AND THE AQUEOUS MEDIUM AND LIGHT PARAFFIN SOLVENT BEING SEPARATELY INTO DUCED INTO THE WELL; (B) CONTACTING THE PARAFFINIC AND ASPHALTIC RESIDUES WITH THE HEATED EMULSION, THEREBY LOOSENING AND DISSOLVING THE RESIDUES; AND (C) REMOVING THE LOOSENED AND DISSOLVED RESIDUES.
US3279541A 1965-08-20 1965-08-20 Method for removing paraffinic and asphaltic residues from wells Expired - Lifetime US3279541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US3279541A US3279541A (en) 1965-08-20 1965-08-20 Method for removing paraffinic and asphaltic residues from wells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3279541A US3279541A (en) 1965-08-20 1965-08-20 Method for removing paraffinic and asphaltic residues from wells

Publications (1)

Publication Number Publication Date
US3279541A true US3279541A (en) 1966-10-18

Family

ID=23918315

Family Applications (1)

Application Number Title Priority Date Filing Date
US3279541A Expired - Lifetime US3279541A (en) 1965-08-20 1965-08-20 Method for removing paraffinic and asphaltic residues from wells

Country Status (1)

Country Link
US (1) US3279541A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375192A (en) * 1964-09-25 1968-03-26 Canadian Ind Method for cleaning oil and gas wells employing carbon disulfide-pentane mixtures
US3437146A (en) * 1968-01-11 1969-04-08 Midwest Chem & Processing Co I Method of removing paraffin from a well with heated solvent
USB359946I5 (en) * 1971-07-20 1975-01-28
US3998743A (en) * 1973-12-07 1976-12-21 Union Oil Company Of California Method and solvent composition for stimulating the production of oil from a producing well
US4089703A (en) * 1976-12-23 1978-05-16 White Chemical Company, Inc. Hot detergent process
US4207193A (en) * 1978-03-24 1980-06-10 Halliburton Company Methods and compositions for removing asphaltenic and paraffinic containing deposits
US4448253A (en) * 1983-03-10 1984-05-15 Shell Oil Company Moderated borohydride-induced reservoir dewatering
US4455175A (en) * 1983-08-01 1984-06-19 The Dow Chemical Company Method for removing or retarding paraffin buildup on surfaces in contact with crude oil
WO1985000539A1 (en) * 1983-08-01 1985-02-14 The Dow Chemical Company Method for removing and/or retarding paraffin buildup on surfaces in contact with crude oil or natural gas containing such paraffin
US4663059A (en) * 1986-02-17 1987-05-05 Halliburton Company Composition and method for reducing sludging during the acidizing of formations containing sludging crude oils
US4669544A (en) * 1986-04-17 1987-06-02 Dowell Schlumberger Incorporated Reducing paraffin deposits on paraffin contaminated surfaces
US4934457A (en) * 1989-07-18 1990-06-19 Wallender Kenneth D Composition and method for stimulating wells
US5120935A (en) * 1990-10-01 1992-06-09 Nenniger John E Method and apparatus for oil well stimulation utilizing electrically heated solvents
US5183581A (en) * 1990-08-24 1993-02-02 Petroleo Brasileiro S.A. Process for the dewaxing of producing formations
US5247994A (en) * 1990-10-01 1993-09-28 Nenniger John E Method of stimulating oil wells
US5400430A (en) * 1990-10-01 1995-03-21 Nenniger; John E. Method for injection well stimulation
EP1403463A1 (en) * 2002-09-24 2004-03-31 Baker Hughes Incorporated Paraffin inhibitor compositions and their use in oil and gas production
US6984614B1 (en) 2005-01-10 2006-01-10 Als Jerome S Composition and method for removing deposits
WO2006039362A2 (en) * 2004-09-29 2006-04-13 Baker Hughes Incorporated Process for downhole heating
US20060192039A1 (en) * 2005-02-02 2006-08-31 Smith Kevin W In situ filter construction
WO2006104711A2 (en) * 2005-03-29 2006-10-05 Dyer Richard J Method for removal of asphaltene, paraffin and/or scale from producing wells
US20070251693A1 (en) * 2006-04-28 2007-11-01 Halliburton Energy Services, Inc. Compositions and methods for delivering an organic solvent to a downhole portion of a wellbore or to a portion of a pipeline
US20070254815A1 (en) * 2006-04-28 2007-11-01 Halliburton Energy Services, Inc. Compositions and methods for delivering an organic solvent to a downhole portion of a wellbore or to a portion of a pipeline
US20080020949A1 (en) * 2006-07-20 2008-01-24 Trimble Marvin I Method for removing asphaltene deposits
WO2011014057A1 (en) * 2009-07-27 2011-02-03 Petroliam Nasional Berhad (Petronas) A method and system for removing organic deposits
US20110114323A1 (en) * 2009-11-18 2011-05-19 Baker Hughes Incorporated Heat Generation Process for Treating Oilfield Deposits
US8101812B2 (en) 2007-09-20 2012-01-24 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials
US20120234548A1 (en) * 2011-03-15 2012-09-20 Dyer Richard J Oil well cleaning compositions
US8272442B2 (en) 2007-09-20 2012-09-25 Green Source Energy Llc In situ extraction of hydrocarbons from hydrocarbon-containing materials
US20130025873A1 (en) * 2011-07-15 2013-01-31 Berchane Nader S Protecting A Fluid Stream From Fouling
US8404108B2 (en) 2007-09-20 2013-03-26 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
US20130186629A1 (en) * 2012-01-24 2013-07-25 Baker Hughes Incorporated Asphaltene Inhibitors for Squeeze Applications
US20140318791A1 (en) * 2013-04-29 2014-10-30 Oceaneering International, Inc. System and method for subsea structure obstruction remediation using an exothermic chemical reaction
US20150005207A1 (en) * 2013-06-27 2015-01-01 Shell Oil Company Systems and methods for producing dimethyl sulfide from gasified coke
WO2015157156A1 (en) * 2014-04-08 2015-10-15 Fu Xuebing Systems and methods for accelerating production of viscous hydrocarbons in a subterranean reservoir with emulsions comprising chemical agents
RU2667912C2 (en) * 2013-06-27 2018-09-25 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Systems and methods of producing dimethyl sulphide from gasification coke

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US47410A (en) * 1865-04-25 Improved mode of treating oil-wells to remove paraffine, tar
US119883A (en) * 1871-10-10 Improvement in preventing the clogging of oil-wells
US1351945A (en) * 1919-11-01 1920-09-07 John R Dulany Method of cleaning oil and gas wells
US1513371A (en) * 1922-06-29 1924-10-28 Artis C Campbell Process for treating pipe lines
US1963072A (en) * 1933-05-08 1934-06-19 Dow Chemical Co Method of treating deep wells
US2139595A (en) * 1935-11-11 1938-12-06 Phillips Petroleum Co Method for dissolving paraffing and wax
US2218306A (en) * 1938-06-03 1940-10-15 Austerman Karl Method of treating oil wells
US2342656A (en) * 1941-10-01 1944-02-29 Richfield Oil Corp Well treating fluid
US2753939A (en) * 1954-03-15 1956-07-10 Union Oil Co Removal of waxy sludges from pipelines and oil wells
GB778819A (en) * 1954-03-11 1957-07-10 Diamond Alkali Co Improvements in or relating to the removal of tar and wax deposits from oil and gas well equipment
US2799342A (en) * 1954-07-30 1957-07-16 California Research Corp Process for treating oil well formations
US2889884A (en) * 1956-10-12 1959-06-09 Gulf Research Development Co Process for increasing permeability of oil bearing formation
US3127345A (en) * 1964-03-31 Chzoh

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US47410A (en) * 1865-04-25 Improved mode of treating oil-wells to remove paraffine, tar
US119883A (en) * 1871-10-10 Improvement in preventing the clogging of oil-wells
US3127345A (en) * 1964-03-31 Chzoh
US1351945A (en) * 1919-11-01 1920-09-07 John R Dulany Method of cleaning oil and gas wells
US1513371A (en) * 1922-06-29 1924-10-28 Artis C Campbell Process for treating pipe lines
US1963072A (en) * 1933-05-08 1934-06-19 Dow Chemical Co Method of treating deep wells
US2139595A (en) * 1935-11-11 1938-12-06 Phillips Petroleum Co Method for dissolving paraffing and wax
US2218306A (en) * 1938-06-03 1940-10-15 Austerman Karl Method of treating oil wells
US2342656A (en) * 1941-10-01 1944-02-29 Richfield Oil Corp Well treating fluid
GB778819A (en) * 1954-03-11 1957-07-10 Diamond Alkali Co Improvements in or relating to the removal of tar and wax deposits from oil and gas well equipment
US2753939A (en) * 1954-03-15 1956-07-10 Union Oil Co Removal of waxy sludges from pipelines and oil wells
US2799342A (en) * 1954-07-30 1957-07-16 California Research Corp Process for treating oil well formations
US2889884A (en) * 1956-10-12 1959-06-09 Gulf Research Development Co Process for increasing permeability of oil bearing formation

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375192A (en) * 1964-09-25 1968-03-26 Canadian Ind Method for cleaning oil and gas wells employing carbon disulfide-pentane mixtures
US3437146A (en) * 1968-01-11 1969-04-08 Midwest Chem & Processing Co I Method of removing paraffin from a well with heated solvent
USB359946I5 (en) * 1971-07-20 1975-01-28
US3914132A (en) * 1971-07-20 1975-10-21 Halliburton Co Composition and process for the removal of asphaltenic containing organic deposits from surfaces
US3998743A (en) * 1973-12-07 1976-12-21 Union Oil Company Of California Method and solvent composition for stimulating the production of oil from a producing well
US4090562A (en) * 1973-12-07 1978-05-23 Union Oil Company Of California Method and solvent composition for stimulating the production of oil from a producing well
US4089703A (en) * 1976-12-23 1978-05-16 White Chemical Company, Inc. Hot detergent process
US4207193A (en) * 1978-03-24 1980-06-10 Halliburton Company Methods and compositions for removing asphaltenic and paraffinic containing deposits
US4448253A (en) * 1983-03-10 1984-05-15 Shell Oil Company Moderated borohydride-induced reservoir dewatering
US4455175A (en) * 1983-08-01 1984-06-19 The Dow Chemical Company Method for removing or retarding paraffin buildup on surfaces in contact with crude oil
WO1985000539A1 (en) * 1983-08-01 1985-02-14 The Dow Chemical Company Method for removing and/or retarding paraffin buildup on surfaces in contact with crude oil or natural gas containing such paraffin
US4536222A (en) * 1983-08-01 1985-08-20 The Dow Chemical Company Method for removing or retarding paraffin buildup on surfaces in contact with natural gas
US4663059A (en) * 1986-02-17 1987-05-05 Halliburton Company Composition and method for reducing sludging during the acidizing of formations containing sludging crude oils
US4669544A (en) * 1986-04-17 1987-06-02 Dowell Schlumberger Incorporated Reducing paraffin deposits on paraffin contaminated surfaces
US4934457A (en) * 1989-07-18 1990-06-19 Wallender Kenneth D Composition and method for stimulating wells
US5183581A (en) * 1990-08-24 1993-02-02 Petroleo Brasileiro S.A. Process for the dewaxing of producing formations
US5400430A (en) * 1990-10-01 1995-03-21 Nenniger; John E. Method for injection well stimulation
US5247994A (en) * 1990-10-01 1993-09-28 Nenniger John E Method of stimulating oil wells
US5120935A (en) * 1990-10-01 1992-06-09 Nenniger John E Method and apparatus for oil well stimulation utilizing electrically heated solvents
EP1403463A1 (en) * 2002-09-24 2004-03-31 Baker Hughes Incorporated Paraffin inhibitor compositions and their use in oil and gas production
WO2006039362A2 (en) * 2004-09-29 2006-04-13 Baker Hughes Incorporated Process for downhole heating
US20060081374A1 (en) * 2004-09-29 2006-04-20 Baker Hughes Incorporated Process for downhole heating
WO2006039362A3 (en) * 2004-09-29 2006-07-20 Baker Hughes Inc Process for downhole heating
US6984614B1 (en) 2005-01-10 2006-01-10 Als Jerome S Composition and method for removing deposits
US20060192039A1 (en) * 2005-02-02 2006-08-31 Smith Kevin W In situ filter construction
US7318472B2 (en) 2005-02-02 2008-01-15 Total Separation Solutions, Llc In situ filter construction
WO2006104711A2 (en) * 2005-03-29 2006-10-05 Dyer Richard J Method for removal of asphaltene, paraffin and/or scale from producing wells
US20060219409A1 (en) * 2005-03-29 2006-10-05 Dyer Richard J Method for simultaneous removal of asphaltine, and/or paraffin and scale from producing oil wells
WO2006104711A3 (en) * 2005-03-29 2009-04-16 Richard J Dyer Method for removal of asphaltene, paraffin and/or scale from producing wells
US7497261B2 (en) * 2005-03-29 2009-03-03 Dyer Richard J Method for simultaneous removal of asphaltene and/or paraffin and scale from producing oil wells
US7296627B2 (en) * 2005-03-29 2007-11-20 Dyer Richard J Method for simultaneous removal of asphaltene, and/or paraffin and scale from producing oil wells
US20080047712A1 (en) * 2005-03-29 2008-02-28 Dyer Richard J Method for simultaneous removal of asphaltene, and/or paraffin and scale from producing oil wells
US20070254815A1 (en) * 2006-04-28 2007-11-01 Halliburton Energy Services, Inc. Compositions and methods for delivering an organic solvent to a downhole portion of a wellbore or to a portion of a pipeline
US20070251693A1 (en) * 2006-04-28 2007-11-01 Halliburton Energy Services, Inc. Compositions and methods for delivering an organic solvent to a downhole portion of a wellbore or to a portion of a pipeline
US20080020949A1 (en) * 2006-07-20 2008-01-24 Trimble Marvin I Method for removing asphaltene deposits
US7754657B2 (en) * 2006-07-20 2010-07-13 Ineos Usa Llc Method for removing asphaltene deposits
US8522876B2 (en) 2007-09-20 2013-09-03 Green Source Energy Llc In situ extraction of hydrocarbons from hydrocarbon-containing materials
US9102864B2 (en) 2007-09-20 2015-08-11 Green Source Holdings Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
US8101812B2 (en) 2007-09-20 2012-01-24 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials
US8926832B2 (en) 2007-09-20 2015-01-06 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials
US8272442B2 (en) 2007-09-20 2012-09-25 Green Source Energy Llc In situ extraction of hydrocarbons from hydrocarbon-containing materials
US9181468B2 (en) 2007-09-20 2015-11-10 Green Source Holdings Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
US8404108B2 (en) 2007-09-20 2013-03-26 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
US8404107B2 (en) 2007-09-20 2013-03-26 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials
US8685234B2 (en) 2007-09-20 2014-04-01 Green Source Energy Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
US9416645B2 (en) 2007-09-20 2016-08-16 Green Source Holdings Llc Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials
WO2011014057A1 (en) * 2009-07-27 2011-02-03 Petroliam Nasional Berhad (Petronas) A method and system for removing organic deposits
US9862873B2 (en) 2009-07-27 2018-01-09 Petroliam Nasional Berhad (Petronas) System for removing organic deposits
US9434871B2 (en) 2009-07-27 2016-09-06 Petroliam Nasional Berhad (Petronas) Method and system for removing organic deposits
US8691731B2 (en) 2009-11-18 2014-04-08 Baker Hughes Incorporated Heat generation process for treating oilfield deposits
US20110114323A1 (en) * 2009-11-18 2011-05-19 Baker Hughes Incorporated Heat Generation Process for Treating Oilfield Deposits
US9074121B2 (en) * 2011-03-15 2015-07-07 Richard J. Dyer Oil well cleaning compositions
US20120234548A1 (en) * 2011-03-15 2012-09-20 Dyer Richard J Oil well cleaning compositions
US9416627B2 (en) * 2011-03-15 2016-08-16 Richard J. Dyer Oil well cleaning compositions
US20130025873A1 (en) * 2011-07-15 2013-01-31 Berchane Nader S Protecting A Fluid Stream From Fouling
US9714374B2 (en) * 2011-07-15 2017-07-25 Exxonmobil Upstream Research Company Protecting a fluid stream from fouling
US20130186629A1 (en) * 2012-01-24 2013-07-25 Baker Hughes Incorporated Asphaltene Inhibitors for Squeeze Applications
US9637676B2 (en) * 2012-01-24 2017-05-02 Baker Hughes Incorporated Asphaltene inhibitors for squeeze applications
US20140318791A1 (en) * 2013-04-29 2014-10-30 Oceaneering International, Inc. System and method for subsea structure obstruction remediation using an exothermic chemical reaction
US9416625B2 (en) * 2013-04-29 2016-08-16 Oceaneering International, Inc. System and method for subsea structure obstruction remediation using an exothermic chemical reaction
US9255464B2 (en) * 2013-04-29 2016-02-09 Oceaneering International, Inc. System and method for subsea structure obstruction remediation using an exothermic chemical reaction
US20140318789A1 (en) * 2013-04-29 2014-10-30 Oceaneering International, Inc. System and method for subsea structure obstruction remediation using an exothermic chemical reaction
US20150005207A1 (en) * 2013-06-27 2015-01-01 Shell Oil Company Systems and methods for producing dimethyl sulfide from gasified coke
RU2667912C2 (en) * 2013-06-27 2018-09-25 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Systems and methods of producing dimethyl sulphide from gasification coke
WO2015157156A1 (en) * 2014-04-08 2015-10-15 Fu Xuebing Systems and methods for accelerating production of viscous hydrocarbons in a subterranean reservoir with emulsions comprising chemical agents

Similar Documents

Publication Publication Date Title
US3378074A (en) Method for fracturing subterranean formations
US3251415A (en) Acid treating process
US3392105A (en) Use of a soluble oil in the extraction of hydrocarbons from oil sands
US3528914A (en) Drilling fluid and method for increasing drilling rate
US3486560A (en) Ammoniated foamed well circulation fluids and uses thereof
US3601194A (en) Low fluid loss well-treating composition and method
US3711405A (en) Low fluid loss well treating composition and method
US3455390A (en) Low fluid loss well treating composition and method
US3100528A (en) Methods for using inert gas
US3487844A (en) Pipelining crude oil
US3070162A (en) Chemical method for cleaning disposal and injection wells
US3481404A (en) Sandstone acidizing process
US3061009A (en) Method of recovery from fossil fuel bearing strata
US3467195A (en) Pumping viscous crude
US3684012A (en) Method and composition for treating high-temperature subterranean formations
US2802531A (en) Well treatment
US5027901A (en) Method of oil well corrosion inhibition via emulsions and emulsions therefore
US3804760A (en) Well completion and workover fluid
US6379612B1 (en) Scale inhibitors
US6581687B2 (en) Water-in-oil microemulsions useful for oil field or gas field applications and methods for using the same
US4424866A (en) Method for production of hydrocarbons from hydrates
US7624743B2 (en) Methods and compositions for thermally treating a conduit used for hydrocarbon production or transmission to help remove paraffin wax buildup
US3722595A (en) Hydraulic fracturing method
US6984610B2 (en) Acid based micro-emulsions of surfactants and solvents
US3373808A (en) Oil recovery process