US3229765A - Refrigerated enclosure wall assembly and method of making - Google Patents

Refrigerated enclosure wall assembly and method of making Download PDF

Info

Publication number
US3229765A
US3229765A US192824A US19282462A US3229765A US 3229765 A US3229765 A US 3229765A US 192824 A US192824 A US 192824A US 19282462 A US19282462 A US 19282462A US 3229765 A US3229765 A US 3229765A
Authority
US
United States
Prior art keywords
blank
section
wall assembly
liner
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US192824A
Inventor
Raymond L Phillips
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whirlpool Corp
Original Assignee
Whirlpool Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whirlpool Corp filed Critical Whirlpool Corp
Priority to US192824A priority Critical patent/US3229765A/en
Application granted granted Critical
Publication of US3229765A publication Critical patent/US3229765A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/061Walls with conduit means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49359Cooling apparatus making, e.g., air conditioner, refrigerator

Definitions

  • the endless wall assembly for a refrigerated enclosure will customarily be the walls of a refrigerator or freezer liner than can be circumscribed by a continuous circumference and is customarily made by forming and joining together individual wall sections to the shape and dimensions of the liner. Where such a wall assembly is used in a freezer it is customary to attach a refrigerant tube to the outer surface of this inner liner assembly so that the assembly constitutes an evaporator and can therefore be chilled to a very low temperature.
  • One of the features of this invention is to provide an improved method of making such a wall assembly in which a metal blank corresponding to the wall assembly is provided followed by stretching the blank beyond its yield point but not exceeding its rupture point in the general direction of the length of this blank into substantially the shape and circumference dimensions of the wall assembly to provide the wall assembly.
  • Another feature of the invention is to provide such a method wherein prior to the stretching a metal refrigerant conduit such as a tube is applied to the outer surface of this endless blank preferably for a distance greater than 360.
  • Another feature of the invention is to provide a liner for a refrigerated enclosure comprising an endless metal wall assembly having a circumference and an internal stress in the direction of the circumference of a magnitude greater than the yield point of the metal but less than the rupture point and a metal refrigerant conduit attached to this wall assembly.
  • FIGURE l is a side elevational view of a liner section made up of an assembly of side ⁇ and end Walls for a refrigerated enclosure, specifically a household freezer, embodying the invention.
  • FIGURE 2 is an end elevational view of the liner section of FIGURE 1.
  • FIGURE 3 is an elevational view of a flat metal blank used in making the liner section.
  • FIGURE 4 is an enlarged view in section illustrating the operation of welding the refrigerant tube to the outer surface of the blank.
  • FIGURE 5 is an enlarged sectional detail view of a portion of FIGURE 4 taken at right angles to FIGURE 4.
  • FIGURE 6 is a perspective view of the partially completed blank after the refrigerant tube has been attached.
  • FIGURE 7 is a perspective view with a corner bar shown removed of an expansion jig used in stretching the endless metal blank to form the liner section.
  • FIGURE 8 is a perspective view of the jig of FIGURE 4 with the metal blank in position thereon prior to completing the blank.
  • the endless wall assembly 10 of the liner section for a household refrigerator has a main section 11 for the portion of the freezer for storing frozen foods and a smaller end section 12 which will constitute the fast freezing section of the freezer.
  • the end section 12 extends only from the top of the main section 11 to short of the bottom of this section so as to leave a machinery space 13.
  • a liat metal blank preferably of steel having the shape shown in FIG- URE 3.
  • the principal portion of the blank is rectangular and with rectangular end portions 15 anl 16 extending from one end thereof. These end portions 15 and 16 are spaced apart at their adjacent edges.
  • What will become the top edge 17 of the finished liner section is provided with spaced notches 18 of generally square shape whose function will be described hereinafter.
  • V-shaped notches 19 are provided in the opposite edge 20 with this opposite edge becoming the bottom of the completed liner section. The notches 19 determine the bend lines of the blank 14.
  • the two right-hand notches 18 and 19 are not so vertically aligned because of the different lengths of the end portions 15 and 16.
  • the metal blank 14 is curved into a generally cylindrical shape and the free end 21 of the long end portion 15 is welded to the corresponding section 22 of the opposite end 23 of the blank by means of a continuous weld 24.
  • the weld 24 is made so that the edge 17 of the blank is now endless and in a single plane.
  • the next step in the method is to place the now generally cylindrical blank 14 on a cylindrical jig, a portion of which is shown in FIGURE 4 at 25.
  • This jig has a generally cylindrical steel backing 26 and an insulated covering 27 of asbestos or the like between the backing 26 and inner surface of the now cylindrical blank 14. This insulated covering prevents excessive heat loss from the blank 14 during the welding operation and provides electrical insulation from ground.
  • a metal, preferably steel, refrigerant tube 28 is continuously welded to the outer surface of the blank 14.
  • a guide wheel 29 on the welding apparatus 30 holds the tube 28 againts a Contact 31 and against the outer surface of the blank 14.
  • a second contact 32 bears against the outer surface of the blank 14.
  • the welding is done by a high frequency welding current apparatus 30 in the manner shown and described in U.S. Patent 2,376,- 762 of May 22, 1945. With such an apparatus which is well known and widely used the tube 28 is attached to the outer surface of the blank 14 as the jig 25 and the blank are rotated.
  • the next step in the method is to remove the blank with the now attached tube 28 from the jig 25 and place it on an expanding device or expanding jig 34.
  • This expanding jig includes a iixed section 35 bolted to a form 36 and having rounded corner members 37 and 38.
  • a smaller movable section 39 also having corner forming members 40.
  • the distance between the sections 35 and 39 is controlled by means of a fluid cylinder 41.
  • a movable section 42 also slidable on the form 36.
  • This movable section 42 is provided with two corner members 43 similar to the members 37 and 40.
  • the expanding jig 34 can 'be arranged in the general shape of the completed liner section 1t) as shown in FIGURE 1.
  • the corner members 40 will form the corn-ers 44 of the end section 12
  • the corner members 37 and 38 will form th-e corners 45 on the bottom of the main section 11 beneath the end section 12, while the corner members 43 will form the other end corners 46 on the liner section.
  • the blank 14 is centered on the expanding jig 34 by arranging the four notches 18 in the edge 17 of the blank to engage outwardly projecting metal strips 47 at the four corners of the expanding jig in the manner shown in FIGn URE 8.
  • the blank 14 is held on the expanding jig with the notches 18 in the above-described engagement with the metal strips 47 by means of a lock bar 48.
  • this lock bar 48 has a top flange 49 with an opening 50 therein adapted to fit over a vertical pin 51 on the top of a corner member 43.
  • the bottom of the bar 48 is provided with a notch 51 adapted to fit over an intermediate section of the strip 47 at this corner so that the bottom 52 of this bar is held against outward movement by a pair of spaced blocks 53.
  • the inner surface of the bar 48 is provided with a plurality of vertically spaced projections 54, here shown as four, to bear against the outer surface of the blank 14 and hold the inner surface thereof against the outer surface of th-e corner member 57.
  • the outer free end 55 of the short end portion 16 of the blank 14 is welded to the edge section 56 opposite the edge 55 in the same manner that the edges 21 and 22 Were welded.
  • This welding operation is performed along the surface 57 of the corner member 38 by electric welding.
  • the surface 57 is preferably provided with an overlay of copper to serve as one of the welding contacts.
  • the blank now has the general shape of the liner section but is slightly smaller.
  • Force is then exerted through a toggle 58 composed of parallelogram bars 59 and vertical bars 60 constructed in the well known manner so that a downward force, as indicated by the arrow 61, will cause the movable section 42 of the expanding jig 34 to move away from the xed section 35.
  • the section 42 is continued to be moved until the metal blank has been stretched to the shape and dimensions shown in FIGURES 1 and 2.
  • force is applied through the cylinder 41 to move the section 39 away from the xed section 35 a distance equal to the longitudinal length of the end section 12 of the liner 10.
  • the metal of the liner is stretched so as to create internal stresses of a magnitude beyond the yield point of the metal. This causes the metal of the liner to take a permanent set so that it retains the shape of the liner. At the same time, the tube 28 where it passes around the corners of the liner may be flattened to a small degree.
  • the method of making the continuous wall assembly linear for a refrigerated enclosure comprising: providing a continuous metal blank having a circumference slightly less than the circumference of said wall assembly; attaching a metal refrigerant conduit to the outer surface of said blank generally around said blank circumference; stretching said blank beyond its yield point into substantially the shape and circumference dimensions of said wall assembly; and stretching said conduit simultaneously with said stretching of the blank.
  • the method of making the continuous wall assembly liner for a refrigerated enclosure having wall sections of different circumferences comprising: providing a continuous metal blank having a plurality of continuous portions of different circumferences each slightly less than that of the corresponding liner section; and stretching said continuous portions beyond their yield points into substantially the shape and circumference dimensions of said wall assembly to provide said wall sections.
  • the method of making the continuous wall assembly liner for a refrigerant enclosure having wall sections of different circumference at least on-e of which has refrigerant conduits on the outer surface thereof comprising: providing a metal blank in which a portion corresponding to said one section is continuous with a circumference slightly less than the corresponding circumference of said liner section; attaching a metal refrigerant conduit to the outer surface of said one portion; joining the ends of an additional blank portion to form an additional continuous blank portion; and stretching said continuous blank portions beyond their yield points into substantially the shape and circumference dimensions of said Wall assembly to provide said wall sections.
  • the method of making the continuous wall assembly liner for a refrigerated enclosure having wall sections of different circumference at least one of which has refrigerant conduits on the outer surface thereof comprising: providing a metal blank in which a portion corresponding to said one section is continuous with a circumference slightly less than the corresponding circumference of said liner section; attaching a metal refrigerant conduit to the outer surface of said one portion over a distance of more than 360; joining the ends of an additional blank portion to form an additional continuous blank portion; and stretchingV said continuous blank portions beyond Vtheir yield points into substantially the shape and circumference dimensions of said wall assembly to provide said wall sections.
  • a liner for a refrigerated enclosure comprising: a continuous metal Wall assembly having a circumference and prestressed in the direction of said circumference to beyond the yield point of said metal; and a metal refrigerant conduit attached to said Wall assembly and also prestressed in the direction of said circumference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

Jan. 18, 196e R, L, PHILLIPS 3,229,765
REFRIGERATED ENCLOSURE WALL ASSEMBLY AND METHOD OF MAKING Filed May '7, 1962 5 Sheets-Sheet 1 (NI Il rl Suo/vp WELD M HM"Wirf/HHM'M wie l im* muy# umm m El ,5 2/
1 l y lliil'l @Wm/i9@ ff? @M3 WW Jan. 18, 1966 R. l.. PHILLIPS 3,229,765
REFRIGERATED ENCLOSURE WALL ASSEMBLY AND METHOD OF MAKING Filed May '7, 1962 3 Sheets-Sheil 2 R. L. PHILLIPS Jam.` 18, 19%@ REFRIGERATED ENCLOSURE WALL ASSEMBLY AND METHOD OF MAKING 5 Sheets-Sheet I5 Filed May v, 1962 United States Patent ice 3,229,765 Patented Jan. 18, 1966 3 229,765 REFRIGERATED ENCLOSURE WALL ASSEMBLY AND METHOD F MAKING Raymond L. Phillips, Minneapolis, Minn., asslgnor to Whirlpool Corporation, a corporation of Delaware Filed May 7, 1962, Ser. No. 192,824 6 Claims. (Cl. 165-169) This invention relates to a method of making a wall assembly, and particularly the endless wall assembly, for a refrigerated enclosure.
The endless wall assembly for a refrigerated enclosure will customarily be the walls of a refrigerator or freezer liner than can be circumscribed by a continuous circumference and is customarily made by forming and joining together individual wall sections to the shape and dimensions of the liner. Where such a wall assembly is used in a freezer it is customary to attach a refrigerant tube to the outer surface of this inner liner assembly so that the assembly constitutes an evaporator and can therefore be chilled to a very low temperature.
One of the features of this invention is to provide an improved method of making such a wall assembly in which a metal blank corresponding to the wall assembly is provided followed by stretching the blank beyond its yield point but not exceeding its rupture point in the general direction of the length of this blank into substantially the shape and circumference dimensions of the wall assembly to provide the wall assembly.
Another feature of the invention is to provide such a method wherein prior to the stretching a metal refrigerant conduit such as a tube is applied to the outer surface of this endless blank preferably for a distance greater than 360.
Another feature of the invention is to provide a liner for a refrigerated enclosure comprising an endless metal wall assembly having a circumference and an internal stress in the direction of the circumference of a magnitude greater than the yield point of the metal but less than the rupture point and a metal refrigerant conduit attached to this wall assembly.
Other features and advantages of the invention will be apparent from the following description of one embodiment thereof taken in conjunction with the accompanying drawings. Of the drawings:
FIGURE l is a side elevational view of a liner section made up of an assembly of side `and end Walls for a refrigerated enclosure, specifically a household freezer, embodying the invention.
FIGURE 2 is an end elevational view of the liner section of FIGURE 1.
FIGURE 3 is an elevational view of a flat metal blank used in making the liner section.
FIGURE 4 is an enlarged view in section illustrating the operation of welding the refrigerant tube to the outer surface of the blank.
FIGURE 5 is an enlarged sectional detail view of a portion of FIGURE 4 taken at right angles to FIGURE 4.
FIGURE 6 is a perspective view of the partially completed blank after the refrigerant tube has been attached.
FIGURE 7 is a perspective view with a corner bar shown removed of an expansion jig used in stretching the endless metal blank to form the liner section.
FIGURE 8 is a perspective view of the jig of FIGURE 4 with the metal blank in position thereon prior to completing the blank.
In the method of this invention the endless wall assembly 10 of the liner section for a household refrigerator has a main section 11 for the portion of the freezer for storing frozen foods and a smaller end section 12 which will constitute the fast freezing section of the freezer. As can be seen from FIGURE l, the end section 12 extends only from the top of the main section 11 to short of the bottom of this section so as to leave a machinery space 13.
In producing the endless wall assembly 10 preparatory to making the completed liner by attaching bottom portions and auxiliary parts, there is provided a liat metal blank preferably of steel having the shape shown in FIG- URE 3. As is shown here the principal portion of the blank is rectangular and with rectangular end portions 15 anl 16 extending from one end thereof. These end portions 15 and 16 are spaced apart at their adjacent edges. What will become the top edge 17 of the finished liner section is provided with spaced notches 18 of generally square shape whose function will be described hereinafter. V-shaped notches 19 are provided in the opposite edge 20 with this opposite edge becoming the bottom of the completed liner section. The notches 19 determine the bend lines of the blank 14. As can be seen from FIGURE 3, the two right- hand notches 18 and 19 are not so vertically aligned because of the different lengths of the end portions 15 and 16.
In practicing the method of this invention the metal blank 14 is curved into a generally cylindrical shape and the free end 21 of the long end portion 15 is welded to the corresponding section 22 of the opposite end 23 of the blank by means of a continuous weld 24. The weld 24 is made so that the edge 17 of the blank is now endless and in a single plane.
The next step in the method is to place the now generally cylindrical blank 14 on a cylindrical jig, a portion of which is shown in FIGURE 4 at 25. This jig has a generally cylindrical steel backing 26 and an insulated covering 27 of asbestos or the like between the backing 26 and inner surface of the now cylindrical blank 14. This insulated covering prevents excessive heat loss from the blank 14 during the welding operation and provides electrical insulation from ground.
During the welding the jig 25 and thus the blank 14 are rotated about a generally horizontal axis and a metal, preferably steel, refrigerant tube 28 is continuously welded to the outer surface of the blank 14. During the rotation a guide wheel 29 on the welding apparatus 30 holds the tube 28 againts a Contact 31 and against the outer surface of the blank 14. A second contact 32 bears against the outer surface of the blank 14. The welding is done by a high frequency welding current apparatus 30 in the manner shown and described in U.S. Patent 2,376,- 762 of May 22, 1945. With such an apparatus which is well known and widely used the tube 28 is attached to the outer surface of the blank 14 as the jig 25 and the blank are rotated. It is of course possible to accomplish the same results by holding the jig 25 and blank 14 stationary and causing the welding head 33 of the welding lapparatus 36 to move around the outer surface of the blank. The method shown is preferred, however, as the apparatus required is simpler. Furthermore, with the apparatus as shown, it is easier to index the tube 28 so as to vary the spacing of the convolutions of the tube from each other, as shown in FIGURES 1 and 2. As is shown here, the tube convolutions are closer together at the top of the liner section than they are at the bottom.
The next step in the method is to remove the blank with the now attached tube 28 from the jig 25 and place it on an expanding device or expanding jig 34. IThis expanding jig includes a iixed section 35 bolted to a form 36 and having rounded corner members 37 and 38. Opposite the fixed section 35 is a smaller movable section 39 also having corner forming members 40. The distance between the sections 35 and 39 is controlled by means of a fluid cylinder 41. Cooperating with the fixed section 35 on the side thereof opposite the section 39 is a movable section 42 also slidable on the form 36. This movable section 42 is provided with two corner members 43 similar to the members 37 and 40.
As can be seen from an inspection of FIGURE 7, the expanding jig 34 can 'be arranged in the general shape of the completed liner section 1t) as shown in FIGURE 1. Thus, the corner members 40 will form the corn-ers 44 of the end section 12, the corner members 37 and 38 will form th-e corners 45 on the bottom of the main section 11 beneath the end section 12, while the corner members 43 will form the other end corners 46 on the liner section.
The blank 14 is centered on the expanding jig 34 by arranging the four notches 18 in the edge 17 of the blank to engage outwardly projecting metal strips 47 at the four corners of the expanding jig in the manner shown in FIGn URE 8. The blank 14 is held on the expanding jig with the notches 18 in the above-described engagement with the metal strips 47 by means of a lock bar 48. As is shown in FIGURE 7, this lock bar 48 has a top flange 49 with an opening 50 therein adapted to fit over a vertical pin 51 on the top of a corner member 43. The bottom of the bar 48 is provided with a notch 51 adapted to fit over an intermediate section of the strip 47 at this corner so that the bottom 52 of this bar is held against outward movement by a pair of spaced blocks 53. The inner surface of the bar 48 is provided with a plurality of vertically spaced projections 54, here shown as four, to bear against the outer surface of the blank 14 and hold the inner surface thereof against the outer surface of th-e corner member 57.
After the blank 14 is placed on the expanding jig 34, in the manner shown in FIGURE 8, the outer free end 55 of the short end portion 16 of the blank 14 is welded to the edge section 56 opposite the edge 55 in the same manner that the edges 21 and 22 Were welded. This welding operation is performed along the surface 57 of the corner member 38 by electric welding. In order to assis-t in this welding the surface 57 is preferably provided with an overlay of copper to serve as one of the welding contacts.
At the completion of this final welding the blank now has the general shape of the liner section but is slightly smaller. Force is then exerted through a toggle 58 composed of parallelogram bars 59 and vertical bars 60 constructed in the well known manner so that a downward force, as indicated by the arrow 61, will cause the movable section 42 of the expanding jig 34 to move away from the xed section 35. The section 42 is continued to be moved until the metal blank has been stretched to the shape and dimensions shown in FIGURES 1 and 2. At the same time force is applied through the cylinder 41 to move the section 39 away from the xed section 35 a distance equal to the longitudinal length of the end section 12 of the liner 10. During these movements of the movable portions 39 and 42, the metal of the liner is stretched so as to create internal stresses of a magnitude beyond the yield point of the metal. This causes the metal of the liner to take a permanent set so that it retains the shape of the liner. At the same time, the tube 28 where it passes around the corners of the liner may be flattened to a small degree.
To complete the freezer liner bottom wall sections are attached to the main sect-ion 11 an dthe end section 12 of the liner in the customary manner and the usual auxiliary parts are also attached in the Well known manner.
With the method of this invention it is possible to make the continuous circumferential section of the liner rapidly and efficiently. In addition, the stretching of the liner metal beyond its yield point but short of its rupture point makes the liner metal harder and sets it to the desired generally rectangular shape in the illustrated embodiment. In addition, it flattens the refrigerant tube to a small degree at the corners so as to increase the heat transfer.
Having described my invention as related to the embodiment shown in the accompanying drawings, it is my intention that the invention be not limited by any of the details of description, unless otherwise specied, but rather be construed broadly Within its spirit and scope as set out in the accompanying claims.
The embodiment of the invention in which an exclusive property or privilege is claimed is defined as follows:
1. The method of making the continuous wall assembly linear for a refrigerated enclosure, comprising: providing a continuous metal blank having a circumference slightly less than the circumference of said wall assembly; attaching a metal refrigerant conduit to the outer surface of said blank generally around said blank circumference; stretching said blank beyond its yield point into substantially the shape and circumference dimensions of said wall assembly; and stretching said conduit simultaneously with said stretching of the blank.
2. The method of making the continuous wall assembly liner for a refrigerated enclosure having wall sections of different circumferences, comprising: providing a continuous metal blank having a plurality of continuous portions of different circumferences each slightly less than that of the corresponding liner section; and stretching said continuous portions beyond their yield points into substantially the shape and circumference dimensions of said wall assembly to provide said wall sections.
3. The method of making the continuous wall assembly liner for a refrigerant enclosure having wall sections of different circumference at least on-e of which has refrigerant conduits on the outer surface thereof, comprising: providing a metal blank in which a portion corresponding to said one section is continuous with a circumference slightly less than the corresponding circumference of said liner section; attaching a metal refrigerant conduit to the outer surface of said one portion; joining the ends of an additional blank portion to form an additional continuous blank portion; and stretching said continuous blank portions beyond their yield points into substantially the shape and circumference dimensions of said Wall assembly to provide said wall sections.
4. The method of claim 3 wherein said conduit is attached to said portion while rotating said blank.
5. The method of making the continuous wall assembly liner for a refrigerated enclosure having wall sections of different circumference at least one of which has refrigerant conduits on the outer surface thereof, comprising: providing a metal blank in which a portion corresponding to said one section is continuous with a circumference slightly less than the corresponding circumference of said liner section; attaching a metal refrigerant conduit to the outer surface of said one portion over a distance of more than 360; joining the ends of an additional blank portion to form an additional continuous blank portion; and stretchingV said continuous blank portions beyond Vtheir yield points into substantially the shape and circumference dimensions of said wall assembly to provide said wall sections.
6. A liner for a refrigerated enclosure, comprising: a continuous metal Wall assembly having a circumference and prestressed in the direction of said circumference to beyond the yield point of said metal; and a metal refrigerant conduit attached to said Wall assembly and also prestressed in the direction of said circumference.
References Cited by the Examiner UNITED STATES PATENTS 1,993,171 3/ 1935 Hyde. 2,819,593 1/1958 Smith 62-519 X 2,934,917 5/1960 Collins 29-l57 X FOREIGN PATENTS 610,607 10/ 1948 Great Britain.
WHITMORE A.. WlLTZ, Primary Examiner.

Claims (1)

  1. 6. A LINER FOR A REFRIGERATED ENCLOSURE, COMPRISING: A CONTINUOUS METAL WALL ASSEMBLY HAVING A CIRCUMFERENCE AND PRESTRESSED IN THE DIRECTION OF SAID CIRCUMFERENCE TO BEYOND THE YIELD POINT OF SAID METAL; AND A METAL REFRIG-
US192824A 1962-05-07 1962-05-07 Refrigerated enclosure wall assembly and method of making Expired - Lifetime US3229765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US192824A US3229765A (en) 1962-05-07 1962-05-07 Refrigerated enclosure wall assembly and method of making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US192824A US3229765A (en) 1962-05-07 1962-05-07 Refrigerated enclosure wall assembly and method of making

Publications (1)

Publication Number Publication Date
US3229765A true US3229765A (en) 1966-01-18

Family

ID=22711173

Family Applications (1)

Application Number Title Priority Date Filing Date
US192824A Expired - Lifetime US3229765A (en) 1962-05-07 1962-05-07 Refrigerated enclosure wall assembly and method of making

Country Status (1)

Country Link
US (1) US3229765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907267A (en) * 1971-12-01 1975-09-23 Kelvinator Inc Apparatus for assembly of evaporator tubing to liner
US4112566A (en) * 1977-04-25 1978-09-12 Thermatool Corp. Method of manufacturing heat exchange panels
GB2421998A (en) * 2005-01-07 2006-07-12 Orrell Ltd A process for manufacturing a refrigerated merchandising cabinet
WO2009050008A2 (en) * 2007-10-11 2009-04-23 BSH Bosch und Siemens Hausgeräte GmbH Device for the production of a cooling device
CN106475446A (en) * 2016-10-31 2017-03-08 合肥华凌股份有限公司 The assembly method around pipe mold and refrigerator of the bottom evaporation tube of refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1993171A (en) * 1931-12-15 1935-03-05 Mc Cord Radiator And Mfg Compa Cooling unit for refrigerators
GB610607A (en) * 1946-04-11 1948-10-19 Edward Arthur Thorp Method of and machine for making metal box bodies
US2819593A (en) * 1953-09-09 1958-01-14 Amana Refrigeration Inc Freezer liner and method of making same
US2934917A (en) * 1956-02-27 1960-05-03 Rudy Mfg Company Evaporator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1993171A (en) * 1931-12-15 1935-03-05 Mc Cord Radiator And Mfg Compa Cooling unit for refrigerators
GB610607A (en) * 1946-04-11 1948-10-19 Edward Arthur Thorp Method of and machine for making metal box bodies
US2819593A (en) * 1953-09-09 1958-01-14 Amana Refrigeration Inc Freezer liner and method of making same
US2934917A (en) * 1956-02-27 1960-05-03 Rudy Mfg Company Evaporator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907267A (en) * 1971-12-01 1975-09-23 Kelvinator Inc Apparatus for assembly of evaporator tubing to liner
US4112566A (en) * 1977-04-25 1978-09-12 Thermatool Corp. Method of manufacturing heat exchange panels
GB2421998A (en) * 2005-01-07 2006-07-12 Orrell Ltd A process for manufacturing a refrigerated merchandising cabinet
GB2421998B (en) * 2005-01-07 2011-01-12 Orrell Ltd A process for manufacturing a refrigerated merchandising cabinet
WO2009050008A2 (en) * 2007-10-11 2009-04-23 BSH Bosch und Siemens Hausgeräte GmbH Device for the production of a cooling device
WO2009050008A3 (en) * 2007-10-11 2010-03-04 BSH Bosch und Siemens Hausgeräte GmbH Device for the production of a cooling device
CN101821570B (en) * 2007-10-11 2012-12-26 Bsh博世和西门子家用器具有限公司 Device for the production of cooling device
RU2473027C2 (en) * 2007-10-11 2013-01-20 Бсх Бош Унд Сименс Хаусгерете Гмбх Device to manufacture refrigerating unit
CN106475446A (en) * 2016-10-31 2017-03-08 合肥华凌股份有限公司 The assembly method around pipe mold and refrigerator of the bottom evaporation tube of refrigerator
CN106475446B (en) * 2016-10-31 2018-12-18 合肥华凌股份有限公司 The assembly method around pipe mold and refrigerator of the bottom evaporation tube of refrigerator

Similar Documents

Publication Publication Date Title
US3004330A (en) Tubes for structural and fluid conducting purposes, and methods of making the same
US3229765A (en) Refrigerated enclosure wall assembly and method of making
US2300760A (en) Molding of articles by reinforced synthetic resins
US3834177A (en) Refrigerator cabinet structure and its manufacture
US1301714A (en) Method of and apparatus for forming glass tubes.
US3512239A (en) Method of forming dimpled plate heat exchanger elements by the use of hydrostatic pressure
US2500501A (en) Method of making heat exchangers
US2567716A (en) Heat exchange unit
US2838830A (en) Process of manufacturing heat exchanger
US3383900A (en) Method of sizing of metal objects
US3374535A (en) Method of making electric heaters
US3340589A (en) Method of making sheet metal panel
US2995807A (en) Heat exchangers and methods of making the same
US2423811A (en) Welding assembly
US3373478A (en) Method of making refrigeration apparatus
US2856163A (en) Refrigerator condenser
US1993171A (en) Cooling unit for refrigerators
US3253424A (en) Apparatus for making ice members
NO125963B (en)
US2660412A (en) Heat exchange panel and its method of manufacture
US2617551A (en) Refrigerator and its construction
US3112558A (en) Finned tubing manufacture
US2689596A (en) Process and apparatus for bending tubes to small radii
US2598191A (en) Method of making fin elements
US3004329A (en) Heat exchanger and method of construction