US3222433A - Method of casting propellant within a rocket motor casing - Google Patents

Method of casting propellant within a rocket motor casing Download PDF

Info

Publication number
US3222433A
US3222433A US124908A US12490861A US3222433A US 3222433 A US3222433 A US 3222433A US 124908 A US124908 A US 124908A US 12490861 A US12490861 A US 12490861A US 3222433 A US3222433 A US 3222433A
Authority
US
United States
Prior art keywords
closure
casing
fuel
binder
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US124908A
Inventor
Jr Nicolas Makay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US124908A priority Critical patent/US3222433A/en
Application granted granted Critical
Publication of US3222433A publication Critical patent/US3222433A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0058Shaping the mixture by casting a curable composition, e.g. of the plastisol type

Description

Dec. 7, 1965 K JR 3,222,433
METHOD OF CASTING PROPELLANT WITHIN A ROCKET MOTOR CASING Filed July 18, 1961 SOLVENT BATH CHANGING FURNACE POLYMERIZING PHASE INVENTOR NICOLAS MAKAY JR BY 7 5 t ATTORNE s United States Patent 3,222,433 METHOD OF CASTING PROPELLANT WITHIN A RUCKET MOTOR CASING Nicolas Makay, Jru, Rua Joaquim Nabuco 179, Apto. 602, Rio de Janeiro, Brazil Filed July 18, 1961, Ser. No. 124,908 3 Claims. (Cl. 2643) The present invention relates to the method of, making rocket motors for missiles, and particularly to a method for making solid propellant filled rocket motors for missiles.
Among prior methods, the propellant is batch mixed in sigma-blade mixers and then the mixture is cast directly into the rocket motor or into molds. In the latter case, the solidified cast mixture is removed from the mold and mounted in a rocket motor. Another prior known method comprises the continuous mixing of oxidizers, fuel and other additives, the mixture then being extruded or poured into molds or into the rocket motor. Because the most efficient mixtures are substantially impossible to cast and are unworkable, less than maximum efficient mixtures are often employed. Thus, for example, ammonium perchlorate oxidizers require, for the highest effect, a mixture of about 90% by weight or 80% by volume. This mixture is not castable so that a less efficient mixture containing less solids is often used.
The mixture of oxidizers and fuel is dangerous to handle, requiring expensive, remotely controlled equipment. Furthermore, the solid-liquid mixture of high solid content is a viscous material which is inclined to retain air bubbles. Since all air must be removed, complicated vacuum casting or forming processes are required.
The principal object of this invention is to provide a method for casting high ei'liciency solid propellant grains directly into the rocket motor.
Another object of the invention is to provide such a method which will eliminate the disadvantages of prior known methods and apparatus.
Still another object of the invention is to provide such a method employing simple and inexpensive apparatus.
Still another object of the invention is to provide such a method that will be safe.
In one aspect of the invention, a rocket motor may comprise a tubular element. A first closure or mandrel may be threadedly mounted into one end of the tubular element of the motor and it may extend through the motor along its longitudinal centerline, forming an annular space therein. After the annular space has been filled with the proper sized oxidizer, which may be one of the many materials that generate oxygen as they are consumed in burning, a closure may be threadedly mounted into the opposite end of the motor. As will be described, the closure members preferably are made of a low melting material so that it can be removed easily. The closures may be held in place by other suitable \nieans. By way of example, the most common oxidizers are potassium chlorate, KClO ammonium perchlorate, NH C lO and ammonium nitrate, NH NO although sodium and potassium nitrates have been used in the past.
In anothei mpect of the invention, both the lower end of the mandrehand the closure may be provided with passageways extending therethrough that communicate with the annular spacewithin the motor that surrounds the mandrel. The tubular ends of the mandrel and clos ure may be connected to separate valves, and sight glasses may be located between each valve and its corresponding en With the first closure in place, the annular space surrounding the mandrel is filled with proper sized oxidizer. The other closure then is put into place and one valve is closed while the other is connected to a vacuum so as to withdraw all air from the mass of oxidizer. The end of the apparatus containing the closed valve is then connected to a source of a polymerizable or solidifiable liquid fuel-binder. By way of example, some of the best known binders are asphalt, phenolic resin, polystyrene, synthetic rubbers, urea-aldehydes, vinyl polymers and nitrocellulose. The term polymerizable is intended to encompass a fuel-binder which will flow into the container and then can be solidified therein.
The vacuum acts to draw in the liquid fuel-binder until it appears in the sight glass adjacent the valve directly connected to the vacuum source when both valves are closed. The entire device is then raised to the proper temperature where it is maintained for the proper time to polymerize or to efiect solidification of the fuel-binder.
As mentioned, the mandrel and closures may be made of a low melting point alloy such as Roses or Woods metal, or they may be made in the form of a solid core coated with a special paint which paint will release the core when raised to a predetermined temperature. After polymerization or solidification of the fuelbinder, the entire apparatus may be heated above the melting point of the material of the mandrel and closure, whereupon the mandrel and closure are melted and collected for reuse, leaving the motor filled with a highly efficient solid propellant.
The above, other objects and novel features of the invention will become apparent from the following specification and accompanying drawing which is merely exemplary.
In the drawing:
FIG. 1 is a longitudinal sectional view of a rocket motor at one stage of the method of this invention;
FIG. 2 is a view similar to FIG. 1 at another stage of the method of this invention;
FIG. 3 is a diagrammatic view of certain steps in the process; and
FIG. 4 is a longitudinal sectional view of the completed rocket motor embodying the principles of the invention.
Referring to FIG. 1, the principles of the invention have been shown as applied to a rocket motor comprising a casing 10 which is shown as being tubular in form. The casing 10 may be made from any suitable material such as stainless steel, titanium, certain low alloy steels containing vanadium in conjunction with chromium, nickel and molybdenum as well as other materials.
The casing 10 may include internal threads 11 and 12 at each end thereof. A closure mandrel 13 having a stem 14 may be threaded into one end of the casing 10 with its stem 14 extending along the longitudinal centerline of the casing 10, forming an annular space 15 between stem 14 and the inner wall of the casing.
The mandrel 13 may include a passage 16 that includes two or more branches 17, 18 leading to the annular space 15. A tubular sight glass 19 may have its one end held in abutting relation with the one end of mandrel 13 with its tubular passage aligned with the passage 16 by a plastic, rubber or other flexible tubular element 20. The other end of the sight glass 19 may be connected in a similar fashion to a valve 21 for a purpose to be described later.
The annular chamber or space 15 may be filled with a granular oxidizer. As previously mentioned, the commonly used oxidizers for solid propellant fuel are potassium perchlorate, ammonium perchlorate and ammonium nitrate, although sodium and potassium nitrates have been used. When additives are to be employed which are not soluble, emulsionable or suspendable in the liquid fuelbinder, they may be, of course, mixed with the granular oxidizer.
Referring to FIG. 2, a closure 22 may be threaded into the end of casing containing the threads 12. It may completely fill the casing 10 above the level of the oxidizer Within the annular space 15. The closure 22 may include a passage 23 with branches 24, 25 leading to space 15. The outer end of closure 22 may have another sight glass 26 connected to it and a valve 27 in the same way that sight glass 19 is connected to valve 21.
With the apparatus in the condition shown in FIG. 2, valve 21 is closed and valve 27 is open and connected to a vacuum pump (not shown). This will effect the evacuation of the air and gas within space between the granules of powdered oxidizer. After .a sufficient time to evacuate the space 15, the valve 21 is connected to a source of polymerizable liquid fuel-binder and opened.
The fuel-binder forms a matrix of plastic, resinous or elastomeric material. The matrix provides fuel for the combustion reaction. Both thermosetting and thermoplastic substances may be used. Such binder materials may be classified as (1) asphalt oil types, (2) cellulosic derivatives, (3) synthetic resins, (4) elastomers, and (5) polyesters. When additives are to be used which are soluble, emulsionable or suspendable in the fuel-binder, they may be incorporated therein. The polymerizable liquid fuel-binder is drawn upwardly through passages 16, 17 and 18 by the vacuum acting through valve 27, thereby filling all of the interstices between the granules of oxidizer, providing a thoroughly and evenly dispersed fuelbinder throughout the mass of oxidizer within the space 15. The liquid fuel-binder then passes upwardly through the passages 24, 25, 23 in the closure 22, and when it is observed in sight glass 26, valve 21 and 27 are closed and the assembly is disconnected from the vacuum pump and the source of liquid fuel-binder.
The mandrel 13, stem 14 and closure 22 are made from a low melting point alloy material but having a melting point substantially above the polymerization temperature of the liquid fuel-binder, such as Roses or Woods metal, or it may be a solid core coated with a special paint which will release the core when heated to a predetermined temperature.
The casing 10, mandrel 13 and closure 22 may then be placed within a furnace 28 shown diagrammatically in FIG. 3, and raised to a temperature and held there for a sufiicient length of time to effect polymerization of the liquid fuel-binder, thus causing it to adhere to the internal surface of the casing 10. After complete polymerization of the fuel-binder, the temperature within furnace 28 may be raised to the melting point of the material from which mandrel 13, stem 14 and closure 22 are made. This molten material may be collected for reuse, and the gates formed by the passages 16, 17, 18 and 23, 24, 25 are removed from the ends of the charge within the annular space 15, forming the completed rocket motor as shown in FIG. 4.
Alternatively, the mandrel 13, stem 14 and closure 22 may also be made from a solid core having a special coat of paint that will, when the device is raised above the polymerization temperature of the fuel-binder, permit the ready removal of the closures 13 and 22 in their solid form. Again, these elements 13, 14 and 22 may be made of a material that will dissolve in a solvent that will not react with the propellant grains and therefore can be removed by immersing the filled casing within such a solvent.
By way of example, the oxides employed may be 75 parts by volume of potassium perchlorate, 24 parts by volume of vinyl polyester, and the remainder sodium luaryl sulphate and powdered aluminum.
Although the various features of the new and improved method for making rocket motors for missiles have been shown and described in detail to fully disclose several emlemma 1 4. bodiments of the invention, it will be evident that changes may be made in such details and certain features may be used without others without departing from the principles of the invention.
What is claimed is:
1. The method of making solid propellant fuel filled rocket motors which comprises filling a casing with granular oxidizer; applying closure members having passage means therethrough to each end of said casing made from a material capable of being changed into a different phase facilitating removal; applying a vacuum through one of said closures to evacuate all air and gas between said granules; while said vacuum is being applied through said one closure, admitting an unreacted polymerizable liquid fuel-binder through the other closure until the interstices between said granules are completely filled; heating said unreacted liquid filled casing to a sufi'icient temperature and for a sufiicient time to effect polymerization of said fuel-binder; and thereafter subjecting said assembly to a condition effecting a phase change of said closure members for removing the same.
2. The method of making solid propellant fuel filled rocket motors which comprises filling a casing with granular oxidizer; applying closure members having passage means therethrough to each end of said casing made from a material having a relatively low melting point; applying a vacuum through one of said closures to evacuate all air and gas between said granules; while said vacuum is being applied through said one closure, admitting an unreacted polymerizable liquid fuel-binder through the other closure until the interstices between said granules are completely filled; the polymerization temperature of said liquid being lower than said melting point; heating said unreacted liquid filled casing to a sufficient temperature and for a sufiicient time to effect polymerization of'said fuel-binder; and thereafter raising the temperature of said filled casing to said melting point where said closures melt and drain from said casing.
3. The method of making solid propellant fuel filled rocket motors which comprises filling a casing with granular oxidizer; applying closure members having passage means therethrough to each end of said casing made from a material that is soluble in a solvent that does References Cited by the Examiner UNITED STATES PATENTS 830,432 9/ 1906 Hennessey. 1,475,764 11/ 1923 Frederick. 1,554,697 9/1925 Alden. f 2,916,776 12/ 1959 ONeill et al. 3,021,748 2/ 1962 Miller. 3,027,597 4/1962 McCurdy.
CARL D. QUARFORTH, Primary Examiner. ALEXANDER H. BRODMERKEL, wry 1AM J. STEPHE SO AURICE A.- RI DISI, m e

Claims (1)

1. THE METHOD OF MAKING SOLID PROPELLANT FUEL FILLED ROCKET MOTORS WHICH COMPRISES FILLING A CASING WITH GRANULAR OXIDIZER; APPLYING CLOSURE MEMBERS HAVING PASSAGE MEANS THERETHROUGH TO EACH END OF SAID CASING MADE FROM A MATERIAL CAPABLE OF BEING CHANGED INTO A DIFFERENT PHASE FACILITATING REMOVAL; APPLYING A VACUUM THROUGH ONE OF SAID CLOSURES TO EVACUATE ALL AIR AND GAS BETWEEN SAID GRANULES; WHILE SAID VACUUM IS BEING APPLIED THROUGH SAID ONE CLOSURE, ADMITTING AN UNREACTED POLYMERIZABLE LIQUID FUEL-BINDER THROUGH THE OTHER CLOSURE UNTIL THE INTERSTICES BETWEEN SAID GRANULES ARE COMPLETELY FILLED; HEATING SAID UNREACTED LIQUID FILLED CASING TO A SUFFICIENT TEMPERATURE AND FOR A SUFFICIENT TIME TO EFFECT POLYMERIZATIN OF SAID FUEL-BINDER; AND THEREAFTER SUBJECTING SAID ASSEMBLY TO A CONDITION EFFECTING A PHASE CHANGE OF SAID CLOSURE MEMBERS FOR REMOVING THE SAME.
US124908A 1961-07-18 1961-07-18 Method of casting propellant within a rocket motor casing Expired - Lifetime US3222433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US124908A US3222433A (en) 1961-07-18 1961-07-18 Method of casting propellant within a rocket motor casing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US124908A US3222433A (en) 1961-07-18 1961-07-18 Method of casting propellant within a rocket motor casing

Publications (1)

Publication Number Publication Date
US3222433A true US3222433A (en) 1965-12-07

Family

ID=22417373

Family Applications (1)

Application Number Title Priority Date Filing Date
US124908A Expired - Lifetime US3222433A (en) 1961-07-18 1961-07-18 Method of casting propellant within a rocket motor casing

Country Status (1)

Country Link
US (1) US3222433A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336175A (en) * 1964-04-09 1967-08-15 Bell Telephone Labor Inc Method of construction of helix wave guide
US3419644A (en) * 1966-01-21 1968-12-31 Bofors Ab Method of filling a tubular part with a solid, granular substance and a liquid substance
US3470273A (en) * 1966-06-10 1969-09-30 Imp Metal Ind Kynoch Ltd Top casting under pressure of rocket motor propellants
US4297447A (en) * 1978-08-03 1981-10-27 Elastoflon Inc. Compound for coating containing fluorocarbonpolymer and method for its manufacture
DE1476941C1 (en) * 1966-02-15 1984-05-24 Aerojet-General Corp., El Monte, Calif. Method of making a solid rocket
EP0260936A2 (en) * 1986-09-18 1988-03-23 Thiokol Corporation High solids ratio solid rocket motor propellant grains and method of construction thereof
US4915883A (en) * 1987-08-03 1990-04-10 Morton Thiokol, Inc. Method of and apparatus for purging an annular bayonet
US5024160A (en) * 1986-08-18 1991-06-18 Thiokol Corporation Rapid burning propellant charge for automobile air bag inflators, rocket motors, and igniters therefor
US5127223A (en) * 1986-09-18 1992-07-07 Thiokol Corporation Solid rocket motor propellants with reticulated structures embedded therein and method of manufacture thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US830432A (en) * 1905-06-22 1906-09-04 Jerome H Hennessey Ink-roller and process of making the same.
US1475764A (en) * 1919-05-12 1923-11-27 Westinghouse Electric & Mfg Co Composite article
US1554697A (en) * 1921-07-18 1925-09-22 Alden Milton Manufacture of hollow articles
US2916776A (en) * 1953-11-30 1959-12-15 Olin Mathieson Rocket powder grain
US3021748A (en) * 1958-05-19 1962-02-20 Phillips Petroleum Co Method for bonding support rods in propellant grains
US3027597A (en) * 1948-05-20 1962-04-03 Hercules Powder Co Ltd Method and apparatus for manufacture of cast plastic compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US830432A (en) * 1905-06-22 1906-09-04 Jerome H Hennessey Ink-roller and process of making the same.
US1475764A (en) * 1919-05-12 1923-11-27 Westinghouse Electric & Mfg Co Composite article
US1554697A (en) * 1921-07-18 1925-09-22 Alden Milton Manufacture of hollow articles
US3027597A (en) * 1948-05-20 1962-04-03 Hercules Powder Co Ltd Method and apparatus for manufacture of cast plastic compositions
US2916776A (en) * 1953-11-30 1959-12-15 Olin Mathieson Rocket powder grain
US3021748A (en) * 1958-05-19 1962-02-20 Phillips Petroleum Co Method for bonding support rods in propellant grains

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336175A (en) * 1964-04-09 1967-08-15 Bell Telephone Labor Inc Method of construction of helix wave guide
US3419644A (en) * 1966-01-21 1968-12-31 Bofors Ab Method of filling a tubular part with a solid, granular substance and a liquid substance
US3486330A (en) * 1966-01-21 1969-12-30 Bofors Ab Encased propellant for a rocket motor
DE1476941C1 (en) * 1966-02-15 1984-05-24 Aerojet-General Corp., El Monte, Calif. Method of making a solid rocket
US3470273A (en) * 1966-06-10 1969-09-30 Imp Metal Ind Kynoch Ltd Top casting under pressure of rocket motor propellants
US4297447A (en) * 1978-08-03 1981-10-27 Elastoflon Inc. Compound for coating containing fluorocarbonpolymer and method for its manufacture
US5024160A (en) * 1986-08-18 1991-06-18 Thiokol Corporation Rapid burning propellant charge for automobile air bag inflators, rocket motors, and igniters therefor
EP0260936A2 (en) * 1986-09-18 1988-03-23 Thiokol Corporation High solids ratio solid rocket motor propellant grains and method of construction thereof
EP0260936A3 (en) * 1986-09-18 1989-02-08 Morton Thiokol, Inc. High solids ratio solid rocket motor propellant grains and method of construction thereof
US4915754A (en) * 1986-09-18 1990-04-10 Morton Thiokol, Inc. High solids ratio solid rocket motor propelant grains and method of construction thereof
US5127223A (en) * 1986-09-18 1992-07-07 Thiokol Corporation Solid rocket motor propellants with reticulated structures embedded therein and method of manufacture thereof
US4915883A (en) * 1987-08-03 1990-04-10 Morton Thiokol, Inc. Method of and apparatus for purging an annular bayonet

Similar Documents

Publication Publication Date Title
US3222433A (en) Method of casting propellant within a rocket motor casing
US2417090A (en) Manufacture of propellent explosives
DE2945805C2 (en)
KR890006334A (en) Process for manufacturing parts from particulate matter
US2988438A (en) Combustible compositions
US3870775A (en) Method of making shaped articles
UA5692A1 (en) method of manufacturing of containers from metal with internal shell
US2939176A (en) Molding of propellants
DE2322760B2 (en) Process for the desanding and core removal of castings
US3834957A (en) Solvent process for production of composite propellants using hexane and hmx
DE19823999A1 (en) Process for the production of pyrotechnic primers
US2784638A (en) Apparatus for and method of loading fusible explosive materials into shell casings and the like
US3722354A (en) Propellant casting
US4889774A (en) Carbon-fiber-reinforced metallic material and method of producing the same
US4152987A (en) Impermeable polymer bomb liner for use with TNT containing explosives
US3879504A (en) Method for injection molding of explosive and pyrotechnic material
US3592628A (en) Method of making foamed materials in zero gravity
US5690867A (en) Process for the manufacture of an explosive ammunition component with controlled fragmentation
US4469647A (en) Method and apparatus for mixing, casting and dispensing friction-sensitive pyrotechnic materials
US3171870A (en) Polymer processing
US1453933A (en) Method of loading high-explosive shells
US3106497A (en) Spherical particle oxidizer of lithium perchlorate and ammonium perchlorate and propellant
DE1087955B (en) Process for the production of shock-insensitive charges for explosive grenades
WO1986007004A1 (en) Method of making sleeve inhibited polyethylene film
US3053707A (en) Blasting agent